当前位置: 仪器信息网 > 行业主题 > >

苯醚菊酯农残

仪器信息网苯醚菊酯农残专题为您整合苯醚菊酯农残相关的最新文章,在苯醚菊酯农残专题,您不仅可以免费浏览苯醚菊酯农残的资讯, 同时您还可以浏览苯醚菊酯农残的相关资料、解决方案,参与社区苯醚菊酯农残话题讨论。

苯醚菊酯农残相关的资讯

  • 欧盟修订双苯三唑醇等农残最大残留限量
    p   2016年7月7日,欧盟委员会发布G/SPS/N/EU/168通报,拟修订法规(EC)396/2005号附件II和V中部分食品的双苯三唑醇(bitertanol)、吡螨胺(tebufenpyrad)和矮壮素(chlormequat)等3种农残最大残留限量。部分限量修订情况见下表: /p p /p table border=" 1" cellpadding=" 0" cellspacing=" 0" width=" 600" tbody tr td width=" 38" p style=" text-align:center " 序号 /p /td td width=" 104" p style=" text-align:center " 农残名称 /p /td td width=" 227" p style=" text-align:center " 产品名称 /p /td td width=" 123" p style=" text-align:center " 现行残留量(mg/kg) /p /td td width=" 116" p style=" text-align:center " 拟修残留量(mg/kg) /p /td /tr tr td width=" 38" p style=" text-align:center " 1 /p /td td width=" 104" p style=" text-align:center " 双苯三唑醇 /p /td td width=" 227" p style=" text-align:center " 荞麦、小米、黄米、燕麦、大米等 /p /td td width=" 123" p style=" text-align:center " 0.05 /p /td td width=" 116" p style=" text-align:center " 0.01 /p /td /tr tr td width=" 38" p style=" text-align:center " 2 /p /td td width=" 104" p style=" text-align:center " 吡螨胺 /p /td td width=" 227" p style=" text-align:center " 杏仁等树生干坚果 /p /td td width=" 123" p style=" text-align:center " 0.05 /p /td td width=" 116" p style=" text-align:center " 0.01 /p /td /tr tr td width=" 38" p style=" text-align:center " 3 /p /td td width=" 104" p style=" text-align:center " 矮壮素 /p /td td width=" 227" p style=" text-align:center " 杏仁等树生干坚果 /p /td td width=" 123" p style=" text-align:center " 0.1 /p /td td width=" 116" p style=" text-align:center " 0.01 /p /td /tr /tbody /table p /p
  • 美国环境保护署豁免苯甲醇在作物及农产品上的残留限量
    世界农化网中文网报道: 美国环境保护署(EPA)近日豁免了CJB应用技术公司(CJB)申请的苯甲醇在作物和原始农产品采前和采后的残留限量。   CJB致力于作物保护、特种化学品、生物制品和其他工业市场的产品开发解决方案,在产品和制剂开发方面帮助客户更快进入新市场,提高竞争优势。CJB表示,使用苯甲醇专利技术配制的产品,将增强其活性成分(AI)性能,该公司预计将苯甲醇授权给农业化学品制造商。   苯甲醇是一种工业、消费品、家庭和商业产品中广泛使用的化合物。作为农药助剂和制剂中罐装成分的苯甲醇的试验表明,苯甲醇可增强活性成分的有效性,包括对耐药性的抵抗力。苯甲醇可用于作物采前和采后,以及草坪、苗圃和观赏植物等非作物用途。   CJB的商务总监Jim Loar表示:″出于农业中耐药病原体的威胁,我们一直寻找能够延长活性成分有效性的技术,使其作为防治作物病害的有效工具,由此开发了苯甲醇,并获得了将其用于农业制剂的专利。EPA豁免了苯甲醇的残留限量,将使这项技术有效帮助客户提高产品性能。我们打算在农业制剂中大规模应用这项专利技术,我们的团队将为客户预测可能面临的挑战,并为其找到解决方案。″
  • 津津有“卫”丨 3· 15曝海参养殖竟使用敌敌畏!岛津与您聚焦水产品中农药残留问题
    315消费者权益晚会央视315晚会曝光了山东即墨海参养殖添加敌敌畏,现场触目惊心!使用量全凭农户经验、毫无根据;被投放的池塘中鱼、虾、蟹等其他生物几乎灭绝;污染的水直接排回大海。殖池塘旁随处可见使用过的敌敌畏空瓶 图片来源:央视财经315晚会 说到农药残留,大部分人关注的是瓜果蔬菜,殊不知水产品中的农药残留问题也正在威胁着人类健康。由于大量不规范使用农药带来了农作物和水源污染,进而造成水产品中的农药残留[1]。我国有多个法规对水产养殖禁用农药提出要求:如农业部第193号/560号公告、NY5071-2002《无公害食品 渔用药物使用规则》。禁用名录包括六六六、滴滴涕、地虫硫磷、氟氯氰菊酯、林丹等,GB 2763-2019《食品中农药最大残留限量》中规定水产品中的六六六、滴滴涕的最大残留量分别为0.1、0.5mg/kg,然而此类要求仍落后于欧盟、日本、美国等发达国家。日本渔业发达,其肯定列表中针对水产品中58种农药制定了361个限量标准,还有7种不得检出,堪称全球最严[2]。 水产品通常含有丰富的蛋白质、脂肪,相较于果蔬类更为复杂,那么如何准确检测水产品中的农药残留呢?下表归纳了目前部分国标的具体情况。除国标方法外,岛津采用先进的在线GPC-GCMS法检测水产品中的农药残留。 在线凝胶渗透色谱-二维气相色谱/质谱法测定鲫鱼中的14种农药残留[3] 仪器:在线凝胶色谱-多维气相色谱质谱联用仪GPC-MDGC/MS色谱柱:GPC色谱柱 Shim-pack VP-ODS(150mm×4.6mm,5μm)GC一维柱 -5 ms(15m×0.25mm×0.1μm)GC二维柱 -17ms(30m×0.25mm×0.25μm)前处理流程:5.0g样品,加入18mL环己烷/乙酸乙酯(1:1,V/V)、10g无水硫酸钠和2g中性氧化铝,均质;离心,重复提取一次。上清液40℃旋蒸至约2mL,5mL环己烷/乙酸乙酯(1:1,V/V)分两次洗涤,氮吹至近干。丙酮/环己烷(3:7,V/V)定容至2mL,加入100mg PSA,涡旋离心,于-18℃的冰箱中静置,2h后用0.22μm滤膜过滤,上机分析。样品加标回收率:87.1%~112.0% 在线GPC-MDGC/MS工作原理示意图14种农药的一维色谱图(a)和二维色谱图(b)(1-14分别为灭线磷、六氯苯、五氯硝基苯、林丹、乐果、氯唑磷、七氟菊酯、五氯苯胺、六六六、甲基对硫磷、杀螟硫磷、苄呋菊酯、甲氰菊酯、苯醚菊酯) 同时,岛津也非常关注水质中的农药残留安全问题,采用AOE系统,无需对水样进行提取浓缩,直接上机,简单快捷。 在线SPE 大体积进样-三重四极杆质谱仪在水质农药指标检测中的应用[4 ] 仪器:岛津AOE系统+LCMS-8050色谱柱:Shim-pack Velox PFPP (2.1 mm I.D.×100 mm L., 2.7 μm)流动相:A 相-0.1% 甲酸水溶液;B 相- 乙腈进样体积:5mL前处理流程:过膜,按照体积比加入0.1% 甲酸水溶液样品加标回收率:58.9-111.2% 自来水中11种农药加标色谱图(按保留时间先后:马拉硫磷、对硫磷、灭草松、毒死蜱、乐果、呋喃丹、敌敌畏、阿特拉津、甲基对硫磷、2,4-滴、五氯酚) 参考文献[1] 庞国芳.农药残留高通量检测技术:第二卷(动物源产品),2012[2] 孟娣等,水产品中农药残留限量标准的对比分析,中国农学通报,2015,31[3] 李淑静等, 在线凝胶渗透色谱-二维气相色谱/质谱法测定鲫鱼中的14种农药残留,色谱,2014.02[4] 岛津应用文章, LCMSMS-411
  • 我国大米农药残留检测标准比日本苛刻
    大米是我们餐桌上“头号主角”,受到市民的关注。“近年来,通过国家和省部级检测机构调查,江苏的稻田重金属镉的含量是合格的,铅的超标土地也已经转移不再用于种植水稻。”江苏省农科院刘贤金副院长告诉记者,目前我省稻米质量安全的潜在威胁是农药残留。该院专家历时三年,找到了播撒农药技术的“黄金组合”,在保证“消灭”病虫害的前提下,成功将我省水稻种植期间用药从10次压缩到2—3次。“此外,我们还依托最精密的仪器,可以实现一次检测近大米500种农药残留,比日本的标准还‘苛刻’,这在全国还属于首次,也欢迎大米种植企业来检验。”  大米生产中的威胁是农药残留  2013年5月中国广东发现大量湖南产的含镉毒大米,一度引起轰动。镉通常通过废水排入环境中,再通过灌溉进入食物,水稻是典型的“受害作物”。其实不光是我国,日本也频频出现“镉大米”事件。  不光是镉、铅这样的重金属污染,现在的稻米还面临着农药残留的威胁。就江苏而言,目前按照最严格的国内外标准,江苏稻田重金属镉的含量是合格的 铅超标的土地也已经转移基本不再用于种植水稻。对江苏大米来说,目前最主要的威胁是农药残留,这对我省的稻米产业也产生巨大的安全标准挑战。  从10次减少到2—3次,大米“吃药”越来越少  想要控制稻米的农药残留,最有效的方法就算是“少打药”。以江苏为代表的长江中下游稻区,水稻的“生育期”长达6个月,由于天气的原因,一些重大病虫害发生的危害特别大。如果少打药,那虫害如何规避?  据了解,在具体实施的过程中,科研人员建立了稻田全程施药操作规范标准化技术。以太仓稻区为例,采用“1+3+x”的减次减量施药模式,即在水稻移栽时进行一次杂草防除,到分蘖末期、拔节期等关键时间播撒相应农药等,这样水稻抽穗扬花后50天内都不用再打药了。与常规用药相比,至少减少3次用药,还降低了用工成本,比常规用药稻区增产5%以上。  日本大米VS国产大米,结果你想到了吗  一提到日本大米,很多人都觉得它肯定比我们地产大米要安全,不少去日本的人还抢购了不少大米。但是事实真是如此吗?在省农科院食检所, “史上最严格”的稻米“评选标准”会告诉你并不是这样。“我们利用最精密的高分辨仪器,可以实现一次检测近500种农药残留,这在水稻上还是首次。”刘贤金告诉记者,此前,我国实行的水稻农残检测有183种。日本检测300多种,而欧盟达到了500多种。“预计我们明年能够检测农残的种类将达到600多种。”  这种技术不光可以检测农药残留,铅、镉为代表的重金属,多氯联苯为代表的工业污染物都可以同时检测,最快三天就可以出检测报告。“前几年,浙江有水稻企业有大米要出口到日本,就曾经利用我们的技术做过检测,后来出口去了日本。”相关工作人员介绍说。“我们曾经在超市随机购买过5种国产大米,和从日本带回来的大米品种一起做农残和重金属的检测,利用我们的技术和仪器、外国检测公司以及出入境检验检疫部门,检测的结果都是同样安全。”
  • 纳米生物传感器:蔬果有无农残 试纸一测便知
    纳米生物传感器,听起来是一个非常陌生的名词,但验孕棒等试纸产品,你肯定不会陌生,它们就是此类传感器的“化身”。  中科院宁波材料技术与工程研究所研究员黄又举精耕于纳米材料领域,构建出纳米生物传感器新材料,旨在推动更多的检测产品进入寻常百姓家。  可以设想,将来如果你对蔬果农残担忧,用这种试纸测一测,有无农残,指标多少,便一目了然 甚至一些人体健康指标也可以利用生物传感器,转化为看得见、摸得着的直观呈现。  人物名片  姓名:黄又举  职务:中科院宁波材料技术与工程研究所研究员  荣誉:2015年第六批宁波市“3315计划”创新人才  课题研究收获“意外之喜”  黄又举大学学的是高分子材料科学与工程专业,后进入中国科技大学攻读博士学位。他坚信,材料若能结合生物领域,将拥有非常广阔的发展前景。博士毕业后,他远赴新加坡南洋理工大学从事博士后研究,主要研究方向是化学与生物医学工程领域。  “我在攻读博士后之前从未涉及过纳米粒子方面的研究,后来因为研究需要相关的材料,才学习合成纳米粒子材料,没想到展现了这方面的天赋。”4年在新加坡深造研究让他收获了“意外之喜”。  2013年10月,黄又举通过“春蕾人才”计划,进入中科院宁波材料技术与工程研究所工作。去年12月,由于他出色的科研表现,被破格提升为项目研究员。  在攻关纳米生物传感器核心材料等关键问题上,黄又举潜心研究了五六年。  纳米金材料是他的研究重点。纳米金材料是纳米传感器的核心材料,被广泛应用于试纸条、试纸盒中,其大小、形状以及自组装行为直接影响到可视化的性能。  传统纳米金合成主要是通过调控反应动力学和热力学,进而调控形貌和大小,但众多实验参数常常会影响纳米金的大量高质量制备。黄又举则突破了传统的方法,提出了纳米金的两种新生长模式———智能化合成与非连续性生长模式。  他研发出超过20种单分散的不同形貌的金纳米粒子,包括球形、方形、棒状、片状、星形、线形以及一些复杂的多级纳米结构。与现有的其他产品相比,这种合成方法确保纳米粒子在大规模制备条件下,仍能保持粒子的高度均匀性。  “市场上纳米金粒子产品存在纯度不足、形貌种类有限等缺陷。”黄又举说,“我们团队研发出来的产品纯度和品质都非常高,且在相同的单位价格之下,能够生产出更大体量的产品。”  生物传感器应用非常广阔  “此类传感器的应用空间非常广阔,主要集中在一些可视化的试剂盒、试纸条上。”他介绍说,“目前市面上较为常见的就是验孕试纸,以后的应用方向还可以针对男性、小孩等受众,同时在食品安全领域也可大做文章。”  如在食品安全领域,普遍的家庭要检测蔬果是否含有毒素,不可能购置大型的仪器,只能通过一些简单的工具去鉴别,因此可以通过裸眼观察到颜色变化的试剂、试纸成为较为理想的工具、方法。  “在目前推崇‘精准医疗’的大环境下,需要更多的生物传感器去检测各类人体指标以达到预防的目的。”黄又举对研究领域的前景充满了信心。  据了解,他和团队合成的纳米金样品已经受到国内外多家高校、院所和公司的青睐与好评,样品已经免费试用于美国斯坦福大学、新加坡南洋理工大学、新加坡国立大学、韩国成均馆大学和各类生物公司等30余家机构。  同时,他与众多企业合作展开一些专利布局。浙江星博生物科技有限公司就与其合作,研发了可商业化的男性生殖健康体外检测产品。  今年,黄又举还与宁波美成生物科技有限公司合作在中科院材料所筹建了“食品安全快速检测材料与技术联合实验室”,引入了20余个快检便携式仪器,主要进行食品检测技术方面的研究和应用,争取向提供第三方检测服务方面发展。  黄又举表示,目前他们正在研究定量检测的问题,主要面向一种能随目标物浓度变化产生颜色变化的试纸条和试剂盒。“例如,你拿一张检测毒素的试纸去检测某个东西,试纸可以直接通过不同的颜色来显示毒素含量,就像pH试纸随着酸碱性浓度的不同显示不同的颜色”他说。  他表示,在互联网高速发展时代,可以将可视化生物传感器与移动医疗结合,通过相关生物传感器芯片、手机APP以及医疗大数据处理平台的构建,实现可视化生物传感器的商业化。
  • 我国团队研制出纳米探针,借助手机实现农药残留可视化定量检测
    从中国科学院合肥科学物质研究院了解到,该院固体所研究员蒋长龙团队设计制备了两种高效的比率荧光纳米探针,并结合智能手机的颜色识别器,实现对食品和环境水体中农药的可视化定量检测。相关研究成果日前发表在《化学工程杂志》和《ACS可持续发展化学与工程学研究》上。图 1. 比率荧光探针可视化检测氨甲基酸酯农药残留的机理示意图。 图 2. 比率荧光探针快速可视化定量检测有机磷农药残留的机理示意图。  氨基甲酸酯类化合物主要用作杀虫剂、杀螨剂、除草剂和杀菌剂,已成为农药的一大类别。有机磷农药主要用于防治植物病、虫、草害,其挥发性强,遇碱失效。这两种农药广泛用于农业生产中,在农作物中会存在不同程度的残留。但它们在自然界中降解速度较慢,其残留随呼吸、皮肤吸收或误食进入人体后,药物毒素会使人体器官功能受损,严重者会出现呼吸麻痹甚至死亡。  目前,国内外用于农药残留检测的主要分析方法仍然局限于酶抑制法和免疫测定等,这些方法通常存在成本高、操作复杂、耗时长等问题。因此,发展快速、低成本、特异性强、灵敏度高的农药检测新方法具有非常重要的意义。  鉴于此,研究人员构建了一种无酶比率荧光探针,以CdTe量子点作为背景荧光,用于氨基甲酸酯农药的全谱视觉识别。氨基甲酸酯农药加入后,通过亲核缩合反应产生绿色荧光的异吲哚,该荧光探针出现了从红色到绿色的明显颜色变化,实现对氨基甲酸酯的快速可视化响应。  此外,研究人员还通过集成绿色碳点和CdTe量子点构建了比率荧光探针,用于甲基对硫磷的高选择性定量检测。在碱性条件下,甲基对硫磷能迅速水解生成对硝基苯酚, 氢键加强的瞬时反应导致碳点和对硝基苯酚之间的内滤效应猝灭绿色荧光,从而导致探针产生由绿到红的灵敏荧光色度变化,并且检测限远远低于国家最大残留标准。
  • 津津有卫丨乳制品质量安全之农残检测
    上周,一则“知名牛奶检测丙二醇”的新闻又上了热搜,乳制品质量安全持续受到各方关注。乳制品质量安全包括很多内容,如营养指标、微生物、内源性及外源性污染物、违禁添加等等。今天先来介绍下乳制品中农残的检测。 制品农残从哪来?牛奶(生乳)中农药残留主要来源于奶牛喂养过程中污染水源、饲料来源,部分农药通过食物链蓄积在奶牛体内,并残存于牛奶中,因此要对生乳中农残进行限量要求。 我国乳制品农药残留限量要求GB2763-2021中生乳的农残限量标准要求有125项,其中68项为临时限量,125项中MRL值范围0.001~1 mg/kg。 岛津乳制品农残解决方案特点1、岛津LC-MS/MS农残数据库针对GB2763-2021中生乳农残的覆盖率超过85%。2、GC-MS/MS和LC-MS/MS相结合全方位覆盖生乳农残检测要求。 应用案例:LC-MS/MS和GC-MS/MS分析牛奶中346种农药残留原理:QueChERs前处理,基质匹配外标法定量分析仪器及条件: 表一 不同仪器分析化合物数量方法结果及特点:1. 高通量分析,不同仪器分析化合物数量见表一,两种仪器可共同分析化合物有44个。2. 分析速度快,LC-MS/MS和GC-MS/MS分析时间均在25min之内。3. 灵敏度高,LC-MS/MS中165个化合物LOQ达到5μg/kg,58个达到10μg/kg GC-MS/MS中108个化合物LOQ达到5μg/kg,49个化合物达到10μg/kg。4. 方法回收率和精密度:加标5和10μg/kg(共同分析化合物为10-20μg/kg),两方法294个化合物在LOQ的回收率在70-120%之间,93个化合物在30-70%之间,所有化合物6次重复测定RSDr和RSDR均小于20%。 图1 LC-MS/MS三个化合物线性(从左到右为三环唑、多杀菌素A、增效醚)和LOQ浓度色谱图 图2 GC-MS/MS三个化合物线性(从左到右为四氯硝基苯、倍硫磷、恶草酮)和LOQ浓度色谱图 详细应用报告下载 长按识别二维码下载 本文内容非商业广告,仅供专业人士参考。
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 中药农残分析之“QuEChERS”(中):原理应用
    QuEChERS的原理  3.1 QuEChERS方法原理  QuEChERS原理与高效液相色谱和固相萃取相似,都是利用吸附剂填料与样品基质中的杂质相互作用,吸附杂质从而达到除杂净化的目的。均质后的样品经乙腈(或酸化乙腈提取后,采用萃取盐盐析分层后,利用基质分散萃取机理,采用PSA或其它吸附剂与基质中绝大部分干扰物(有机酸、脂肪酸、碳水化合物等)结合,通过离心方式去除,从而达到净化的目的。  QuEChERS方法的步骤可以简单归纳为:  (1)样品粉碎   (2)单一溶剂乙腈提取分离   (3)加入MgSO4 等盐类除水   (4)加入乙二胺-N-丙基硅烷(PSA)等吸附剂除杂   (5)上清液进行GC-MS、LC-MS 检测(图6)。  注:对高色素含量的样品,可采用PSA/C18/石墨化炭黑净化管进行净化。  图6 QuEChERS方法的主要步骤  3.2 提取液的选择  食品中农药残留检测前处理常用的提取剂有丙酮、乙酸乙酯、乙腈等,QuEChERS 法最初的研究对象是针对水果、蔬菜等含水量较高的农产品,丙酮虽然可以从样品中很好地提取出残留农药,但是其水溶性过强,很难与基质中的水分分开,从而提高了分离难度且影响试验结果 乙酸乙酯只能部分和水互溶,较易分离,但其对于强极性农药无法从含水基质中萃取完全,因而也不是合适的选择。乙腈相对于乙酸乙酯和丙酮可以对水果、蔬菜样品中的农药有更强的选择性,不易提取出多余的杂质,且可以通过盐析较易与基质中的水分分离,所以该方法最终选择乙腈作为最合适的提取剂。实验数据表明,在回收率方面,对于非极性农药来说,乙腈与乙酸乙酯没有明显的区别,但是乙腈可以提供更稳定的结果,相对标准偏差(RSD)值更小 对于极性农药(拒嗪酮、甲胺磷、乙酰甲胺磷等)来说,乙腈的提取效率要高很多。  3.3 QuEChERS方法中常用的吸附净化剂  表1 QuEChERS方法中常用的吸附净化剂及其作用  目前报道的QuEChERS方法中使用的填料通常包括PSA(乙二胺基-N-丙基)、C18、无水MgSO4和GCB(石墨化炭黑)等,MgSO4常被用作含水分样品的基础除水剂,PSA通过胺基的弱离子交换作用和极性基质成分形成氢键,从而吸附和消除样品基质中的糖类、色素以及脂肪酸。GCB对杂质有强烈的吸附作用,但同时对非极性农药和具有平面结构的物质也有一定的吸附作用,二者结合能够对样品中不同类型的杂质起到好的吸附作用,所以吸附剂的选择和用量是净化步骤的重点(表1)。  C18是目前使用最多的一种吸附剂,对非极性化合物有较强吸附作用,常被用来去除极性溶液中的非极性化合物,对于中药基质来说,C18主要用于去除共萃物中的非极性组分,如油脂等。弗罗里硅土主要成分是硅酸镁,属于极性吸附剂,适用于从非极性的溶液中萃取极性化合物(如胺类、羟基类及含杂原子或杂环化合物),主要用于有机氯和拟除虫菊酯类农药的前处理净化。硅胶为非键合的活性硅土,是最强的极性吸附剂,将目标化合物溶在非极性溶剂中,通过增强四氢呋喃或乙酸乙酯来逐渐增加溶剂的极性,将目标物与干扰物分开。石墨化炭是将炭黑在惰性条件下加热到2700-3000度而制成,表面是六个碳原子构成的平面六角形,这种结构对于平面芳香环结构以及具有六元环结构的分子具有很强的选择性,石墨化炭属于疏水性填料,其结构特点是石墨化炭吸附剂既适用于萃取非极性至中等极性的化合物,也可用于对极性化合物的萃取。在中药材样品中的应用主要是除去叶类或全草类中药中的色素。对于复杂样品,仅采用一种填料的净化方式并不能达到理想净化效果,常需要含有不同吸附剂的组合净化。  3.4 针对不同极性农药QuEChERS方法吸附剂的选择[4]  酸性农药(如2,4-D、灭草松等)会和氨基型吸附剂(如NH2、PSA等)发生结合而导致回收率降低,因此,对于分析含有这类目标化合物时,最好的分析方法是跳过分散基质萃取步骤直接进LC-MS/MS分析,可采用尼卡巴嗪作为内标。  由于石墨化碳对于片状化合物的特殊选择性,使用石墨化碳黑时可能也导致片状农药(百菌清、克菌丹等)的回收率降低,可以考虑通过在萃取液中加入甲苯来提高该类农药的回收率(乙腈/甲苯比率一般为3:1)。另外部分样品如鳄梨、花生、橄榄油等含有较多的脂肪,由于脂肪在乙腈中的溶解度有限,所以会导致部分脂溶性好的农药(如六氯苯、DDT等)的回收降低,因此可选择两种方式进行处理:(1)将萃取液或净化后样品放入冰箱冷冻1h以上(或冷冻过夜) (2)反相吸附剂吸附去除:在萃取液中加入C18或C8吸附剂,吸附去除脂肪。  经典QuEChERS方法对酸或碱敏感的农药的萃取效率较低,当样品的基质环境在pH值在5-5.5,这类农药可以获得一个更稳定的结果。因此,可采用了乙酸钠和柠檬酸缓冲盐体系来保证样品基质环境的pH值5-5.5,这样既可以保证碱不稳定的农药(如克菌丹、灭菌丹和对甲抑菌灵等的回收,也可以保证酸不稳定的农药等的回收。而对于一些基本身基质质非常酸的样品(pH  (1)GC-MS/MS方法采用溶剂置换避免了乙腈对气相色谱柱和检测器的损伤,无需LVI上样   (2)结合了EN和AOAC的优势,蔬菜水果用EN方法结果更准确 谷物、茶叶等用AOAC方法净化效果更好   (3)使用空白基质做标准曲线,结果更准确   (4)使用陶瓷均质子,混匀效果更好   (5)对于颜色较深的蔬菜水果,建议增大GCB的含量。 图7 GB 23200.113-2018方法    图8 GB 23200.121-2021方法  这两个标准将QuEChERS方法的全面引入,一个样品使用同一个前处理方法即可同时用于GC-MS/MS和LC-MS/MS检测,大大简化了前处理过程,缩短前处理时间,提高了国标方法的适用性和检测效率。GC-MS/MS标准中包含有机磷、有机氯、菊酯、三唑类、酰胺类、三嗪类、苯氧羧酸类、氨基甲酸酯类等208种农药,LC-MS/MS标准中包含剧毒禁用有机磷及氨基甲酸酯类农药,又涉及到常用销量大农药品种如三唑类杀菌剂及苯甲酰脲类杀虫剂等375种农药,其中重合的农药有118种,两个标准共包含465种农药。因此,仅需两针进样即可完成GB 2763-2019《食品安全国家标准 食品中农药最大残留限量》中规定的大多数农药残留品种测定(图9)。    图9 GB 23200.113-2018和GB 23200.121-2021对比  由于中药材基质的复杂性,样品经提取后不仅将残留的农药提取出来,样品基质的相关成分如油脂、色素、糖分、蛋白质、有机酸等也会一同提取出来,这些共萃物会严重污染仪器的色谱系统,影响待测物的离子化效果,进而干扰检测结果。  与食品/农产品相比,中药材与天然药物的农药残留分析具有以下特征[2]:  (1)中药资源广泛,种类繁多,大部分样品还需经过复杂多样的炮制过程,给农药残留测定带来更多的不确定因素   (2)中药材与天然药物所含次生代谢产物较多,种类又复杂多样,有的次生代谢物的含量还会远高于农药残留的水平,这个中药材与天然药物的农药残留测定带来较大挑战   (3)中药材与天然药物的服用人群为身体患有疾病或体质较为虚弱的人,相较食品而言,中药材与天然药物对农药最大残留限量的要求会更严格   (4)长期以来,中药材多为小农户生产,缺乏统一科学的植物保护指导,造成中药材与天然药物施用农药较为混乱,施用种类无法有效统计,这就对中药材与天然药物中农药残留测定的种类提出了更高的要求。综上所述,中药农残分析对前处理技术提出了更高的要求。  表2 2020年版《中国药典》中药材农残前处理方式的对比  2020年6月,《中国药典》2020年版正式出版,33种禁用农药正式列入2020年版《中国药典》四部通则《0212药材和饮片检定通则》。2020版药典在四部通则《2341农药残留量测定法》中新增了“第五法 药材及饮片(植物类)中禁用农药多残留测定法”。考虑到中药材基质的复杂性, QuEChERS作为可供选择的三种前处理方法之一被正式列入,除此之外还有直接提取法和固相萃取净化法(表2)。  药典中QuEChERS方法其主要步骤如图10所示,特点主要为:  (1)因为兼顾GC-MS/MS和LC-MS/MS分析,没有对上机液中乙腈进行溶剂置换,会对GC-MS/MS色谱柱造成损害,影响使用寿命,最好能配合PVT-LVI进样系统使用   (2)使用了酸性乙腈提取,部分农药对酸敏感,pH=5的提取液条件下,几天内会发生分解,处理完后需尽快上机测定   (3)使用空白基质做标准曲线,结果更准确   (4)方法提取步骤中没有提及使用陶瓷均质子,因此前面样品均质时需均质充分   (5)使用了C18和硅胶填料,对样品中脂肪和糖类有较好去除效果。  图10 2020年版《中国药典》2341通则QuEChERS法
  • 智云达农药残留检测仪现身热播大剧《家宴》
    由王刚、颜丙燕、曾黎、高虎等著名演员主演的电视剧《家宴》近期在各大卫视热映。《家宴》以其强大的阵容,紧凑新颖的剧情吸引了大批观众。大米对家人的付出和她事业心、责任感都将人物刻画的深入人心。当电视剧热映至第八集时,冯家菜因故要被检查问题原料时,很多观众都会为大米心里抱不平,厌恶故意刁难之人,同时也有很多观众被质监所带去的那个12分钟就可以进行农药残留检测的ZYD-NB便携式农药残留检测仪吸引住了。因为这个仪器改变了大家以前对实验室农药残留检测的固有印象。 ZYD-NB便携式农药残留快速检测仪是由智云达科技有限公司研发生产,根据国标方法---速测卡法(纸片法)而专门设计的仪器。主要用于水果、蔬菜、茶叶、粮食、水及土壤中有机磷和氨基甲酸酯类农药的农药残留检测 ,特别适用于各级食品安全检测机构现场执法使用。就和《家宴》当中一样,现在各地的食品检验所已经开始广泛的使用食品检测仪器进行现场检测。这样不仅检验更有效率,不给不法商贩可乘之机,而且操作简便、结果准确。既给质监部门提供了便捷、也是对消费者负责。 质监部门选择ZYD-NB便携式农药残留检测仪是有道理的,它效率高:10个通道可同时测定10个样品;采用微电脑控制,温度和时间可调;并有自动控制和自动报警;采用液晶显示器,显示清晰明了。此外农药残留速测仪还可用于果蔬茶生产基地和农贸批发销售市场现场速测,餐馆、食堂、家庭果蔬加工前的农药残留检测等,应用很广泛。 北京智云达科技有限公司一直以来致力于食品快检行业、希望成为行业领导者。除了农残仪,智云达还研发生产了ZYD-TF土壤化肥速测仪、亚硝酸盐速测管、奶无忧三聚氰胺速测卡、ZYD-WSW食品微生物检测箱等等一系列产品。今后我们也会更加努力开发新产品,为质量检测机构提供更先进的仪器,为消费者提供更便捷实惠的家庭装检测产品。以家庭、个人为单位的消费群体已经开始慢慢习惯于利用食品安全检测仪来保证食品安全卫生,我们希望以后也能在您的家宴上看到智云达的身影。
  • 我国首个农药残留检测制备专利落户福建
    记者8日从福建检验检疫局获悉,福建省日前获得国家知识产权局颁发的“含联苯菊酯残留的茶叶实物标样自然基体阳性材料获取方法”发明专利证书,这是我国农药残留检测自然基体标样制备领域的首个专利。“这种新方法获得的样品均匀稳定,运输方便,使用可靠,可方便地应用于联苯菊酯农药残留检测的质量控制,确保检测结果与贸易国准确接轨。”有关部门负责人表示。 含联苯菊酯残留的茶叶实物标样自然基体阳性材料获取方法 申请号/专利号: 201010109315   本发明提供一种联苯菊酯残留的茶叶实物标样候选非加料自然基体阳性材料获取方法 属于农药残留检测质控用的自然基体实物标样制备技技术领域,所述自然基体阳性材料为通过对栽培的茶树喷洒含有联苯菊酯的药液,结合茶叶中联苯菊酯含量监控,24小时后采摘茶叶,所采新鲜茶叶经过杀青、揉捻、烘干顺序加工成干茶坯,然后经粉碎成粉状并通过120目筛,得到所述的含联苯菊酯残留的茶叶实物标样候选非加料自然基体阳性材料。本发明获得的材料可制备出与真实检测样品完全一致的茶叶中联苯菊酯残留分析质控用自然(污染)基体标准样品 所制备的自然(污染)基体标准样品均匀性、稳定性好,特性稳定,使用方便。   申请日:2010年02月03日   公开日:2010年07月21日   授权公告日:   申请人/专利权人:福建出入境检验检疫局检验检疫技术中心   申请人地址:福建省福州市湖东路312号国检广场B座715室   发明设计人:余孔捷   专利代理机构:福州元创专利代理有限公司   代理人:蔡学俊   专利类型:发明专利   分类号:G01N1/28 G01N30/02
  • 农药残留限量增至7107项 看GB 2763—2019的变化有哪些
    p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 近日,根据国家卫生健康委员会、农业农村部和国家市场监督管理总局公告2019年第5号, strong GB 2763—2019 /strong & nbsp strong 食品安全国家标准 食品中农药最大残留限量 /strong 将代替原GB 2763—2016和GB 2763.1—2018等3项食品安全国家标准,并自发布之日起6个月正式实施。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 此次新发布的标准还包括GB 23200.116—2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法和GB 23200.117—2019食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法两项。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/76c5ab6b-b58d-422a-b67b-4e107fb8ae23.jpg" title=" 1_副本.png" alt=" 1_副本.png" / /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 据悉,此次发布的新版农药残留限量 strong 标准规定了483种农药在356种(类)食品中7107项残留限量 /strong ,与2016版相比 strong 新增农药品种50个、残留限量2967项 /strong , strong 涵盖的农药品种和限量数量均首次超过国际食品法典委员会数量 /strong ,标志着我国农药残留限量标准迈上新台阶。与GB 2763—2016和GB 2763.1—2018相比, strong GB2763-2019的主要技术变化 /strong strong 有 /strong : /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 1、对原标准中2,4-滴异辛酯等6种农药残留物定义,阿维菌素等21种农药每日允许摄入量等信息进行了修订; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 2、增加了2,4-滴二甲胺盐等51种农药,删除了氟吡禾灵1种农药,其最大残留限量合并到氟吡甲禾灵和高效氟吡甲禾灵; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 3、修订了代森联等5种农药的中、英文通用名; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 4、增加了2967项农药最大残留限量; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 5、修订了28项农药最大残留限量值; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 6、将草铵膦等12种农药的部分限量值由临时限量修改为正式限量; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 7、将二氰蒽醌等17种农药的部分限量值由正式限量修改为临时限量; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 8、增加了45项检测方法标准,删除了17项检测方法标准,变更了9项检测方法标准; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 9、修订了规范性附录A,增加了羽扇豆等22种食品名称,修订了7种食品名称,修订了2种食品分类; /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 10、修订了规范性附录B,增加了11种农药。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 此外,在GB 23200.116—2019中,规定了植物源性食品中90种有机磷类农药及其代谢物残留量的气相色谱法测定(气相色谱双柱法、气相色谱单柱法)。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 据介绍,2019版《食品安全国家标准 食品中农药最大残留限量》主要有五方面特点:& nbsp & nbsp /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 一、 strong 全部覆盖我国批准使用的农药品种 /strong ,解决了历史遗留的“有农药登记、无限量标准”问题,同时以评估数据为依据,科学严谨设定残留限量。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 二、 strong 突出高风险的禁限用农药 /strong ,规定了27种禁用农药585项限量、16种限用农药311项限量。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 三、 strong 特色小宗作物限量标准显著增加 /strong 。其中,新增人参、杨梅、冬枣等119种特色小宗作物上804项限量,总数达到1602项,是2016版的2倍多。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 四、 strong 动物源性食品残留限量有了突破性增长 /strong 。规定了109种农药在肉、蛋、奶等27种居民日常消费的动物源性食品中的703项最大残留限量,是2016版的14倍,从以植物源性食品为主积极向动物源性食品扩展,进一步拓宽了食品安全监管的覆盖面。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 五、 strong 进口食品农产品中农药品种数量显著增长 /strong 。针对进口农产品中可能含有我国尚未登记农药的情况,通过评估转化了国际食品法典标准,制定了77种尚未在我国批准使用的农药1109项残留限量。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 据悉,农业农村部将确保到2020年我国农药残留限量标准及其配套检测方法标准达到1万项以上。 /span /p p span style=" font-family: 宋体, SimSun " & nbsp /span /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201909/attachment/ad77151a-c9b9-4e14-b7a7-fa089d8d47d4.pdf" title=" GB 2763-2019 食品安全国家标准 食品中农药最大残留限量.pdf" GB 2763-2019 食品安全国家标准 食品中农药最大残留限量.pdf /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201909/attachment/56e5dc2f-db2e-4a32-95d0-3a14dd6ebc42.pdf" title=" GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定.pdf" GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定.pdf /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201909/attachment/9e8d83ce-462e-4d7d-a685-bb89d3887c3c.pdf" title=" GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定.pdf" GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定.pdf /a /p p span style=" font-family: 宋体, SimSun " /span br/ /p p span style=" font-family: 宋体, SimSun " & nbsp /span /p p span style=" font-family: 宋体, SimSun " & nbsp /span /p
  • 欧盟修订啶虫脒等农药的最大残留限量
    据设在国家质检总局的中国WTO/SPS国家通报咨询中心消息:欧盟近日发出通报告知欧盟成员国及向欧盟出口相关产品的第三国,欧盟委员会制定指令草案:修订有关啶虫脒(acetamiprid)、茚虫威(indoxacarb)、二甲戊乐灵(pendimethalin)、吡蚜酮(pymethrozine)、肟菌酯(trifloxystrobin)等农药的最大残留限量。涉及到某些植物源性产品,包括水果和蔬菜。本次修订放宽了欧盟上述农药的最大残留限量要求:譬如,啶虫脒在欧芹上的最大残留限量由原来的0.01ppm提高到5ppm,茚虫威在香蕉上的最大残留限量由原来的0.02ppm提高到0.2ppm,二甲戊乐灵在豌豆种上的最大残留限量由原来的0.05ppm提高到0.2ppm,吡蚜酮在葡萄干上的最大残留限量由原来的0.1ppm提高到0.5ppm,肟菌酯在芒果上的最大残留限量由原来的0.02ppm提高到0.5ppm。该草案的拟批准日期为2007年12月。
  • 专家解读|功能化三聚氰胺海绵用于液质联用检测农兽药多残留净化研究
    1. 简介随着全球动物源性食品消费需求的增长,动物养殖业对产量和生产效率的追求不断提高,养殖过程中不可避免地会使用到兽药。研究表明,饮食摄入是普通人群暴露于低浓度兽药和农药的主要途径,农兽药滥用导致的药物残留严重影响了食品安全。为保护消费者,各国和地区制定了相关法规以控制和减少食品中此类残留的发生。然而,食品中农兽药残留水平低,种类多,待筛查样本量大,因此发展快速、高灵敏度、高准确度、高通量的农兽药多残留分析方法对于保障食品安全非常重要。药物多残留检测技术可提高农兽药残留检测方法的分析性能和分析效率,降低成本,在食品质量安全监测中越来越受到检测人员的青睐。这种方法允许通过单次检测多种化合物,极大地提高了检测效率。然而不同类别农兽药的理化性质差异大,且动物源性食品的基质复杂,通常需要同时提取和富集不同类别的化合物,多组分分析是一项极具挑战性的技术。相较于电化学方法、酶联免疫分析、荧光分析法等,液相色谱-质谱(Liquid Chromatography-Mass Spectrometry, LC-MS)联用技术具有分析速度快、灵敏度高、准确性好、筛查通量大等优点,已被广泛应用于食品中农兽药多残留的监测与安全控制工作。但食品种类多样、基质组成较复杂,易对LC-MS联用电喷雾离子化过程中形成的待测分子信号造成干扰,影响检测结果的准确性和灵敏度。因此,需要采用基质净化技术对待测样品进行适宜的基质净化前处理,减弱和消除基质效应。已报道的食品基质净化技术应用比较多的主要有液-液萃取技术、固相萃取技术及QuEChERS技术等。LLE会消耗大量的有毒溶剂,不仅危害实验人员的健康,而且容易对环境造成污染。自SPE技术问世以来,不同类型的 SPE柱已成功应用于各类兽药多残留量分析。但商业SPE小柱不仅价格昂贵外,其净化过程也很繁琐且耗时(净化过程主要包括活化、平衡、加载、洗涤和洗脱)。与之相比,QuEChERS技术更为简单快捷,采用不同的基质吸附剂进行净化,并通过简单的涡流、离心等步骤,可以有效地去除干扰基质。QuEChERS能满足高效、简洁、精准、安全、可靠以及大批量前处理等检测方法的发展需求。QuEChERS法的净化流程基本上可以归纳为提取-盐析-净化这三步,用于净化的材料基本可以分为2类:第一类是硅基材料:以C18、PSA等最为常用。第二类是碳基材料:以CNT、Graphene等最为常用。虽然相比其他前处理过程已经大大简化,但是在整个过程仍需反复的涡流、离心,成为整个前处理过程的耗时限速步骤。此外,微纳米颗粒通过提高比表面积增加吸附效率,然而颗粒尺寸进一步的缩小将带来离心分离回收困难的问题。因此,磁性材料开始用于食品基质的净化过程。2. M-SPE技术M-SPE技术是以磁性或可磁化材料作为吸附基底的一种萃取技术。磁性吸附剂被直接分散到样品溶液中用于萃取目标物质,随后在外部磁场的作用下实现目标物与干扰基质的分离。M-SPE技术操作简便、重现性好,不需要繁琐的活化、上样、除杂、洗脱等流程,且无萃取柱堵塞之虞,具有良好的应用前景。图1是将合成的磁性多壁碳纳米管用于鸡蛋中兽药多残留分析的具体分析流程,仅采用外部磁场的作用即可实现净化材料与提取液的分离,通过对盐析条件和提取液PH值的优化选择了合适的提取条件,然后又与其他几种常用净化材料进行对比,并优化磁性碳纳米管的用量,证明了磁性碳纳米管的优势,方法不仅大大缩短了样品前处理时间而且解决了多壁碳纳米管回收困难、回收率低的问题。图1 磁性多壁碳纳米管用于鸡蛋中兽药多残留分析流程然后又将磁性多壁碳纳米管用于羊肉中兽药多残留分析,同样通过提取条件、净化条件得到了适用于羊肉基质的磁性固相萃取净化方法。与其他净化材料相比同样取得了相对满意的结果。然而,在实验过程中发现,磁性纳米材料的尺寸均一性、颗粒间团聚以及利用率不完全等对微纳米材料的基质净化效果以及兽药回收率均具有重要影响,依然是需要妥善解决的问题。因此,开发新型的、吸附效率高的、易于回收的固相吸附基质材料十分必要,具有着较高的应用价值和广阔的应用前景。3. 弹性多孔净化材料及其应用理想的净化材料应该具有高效的基质除杂能力、便捷的基质分离能力以及高选择的基质净化能力。而弹性多孔海绵材料因其低成本、高孔隙率、高比表面积、强机械稳定性等优点在油水分离和吸附/分离领域得到了广泛的应用研究。商业三维聚合海绵材料主要包括聚氨酯海绵(PUS)、三聚氰胺海绵(MeS)和聚丙烯海绵(PPS)。其中,三维多孔结构的三聚氰胺海绵(MeS),具有超过 99%的孔隙率、约×102μm的孔径和相互交联的高分子骨架,且其表面广布纳米级毛细管开孔结构,以及丰富的氨基、羟基、醛基和醚键等化学功能基团,独特的结构性质使得其可以作为一种优异的吸附基底材料,同时丰富的功能位点也为功能涂层的修饰提供了骨架支撑。未经修饰的海绵可依据海绵自身进行基底吸附;硅烷化改性或碳材料加载的功能化海绵可引入功能基团,从而实现硅基或碳基的特异性吸附。3.1 三聚氰胺海绵用于牛奶中兽药多残留分析图2是将未经修饰的三聚氰胺海绵用于牛奶中兽药多残留分析。由于三聚氰胺海绵表面的亲疏水性基团以及较大的比表面积,提取液可自发渗透到其众多海绵微孔中,并且拥有极高的基质吸附效率。此外,其良好的机械性能和弹性使其可以通过物理挤压的方式快速方便地去除粗提溶液中干扰基质。只需使用三聚氰胺海绵直接汲取提取液,然后通过物理挤出即可轻松获得净化液,用于后续的LC-MS/MS分析。图2 三聚氰胺海绵用于牛奶中兽药多残留分析流程考虑到所检测的兽药之间较大的理化差异,以及复杂基质的影响。设计了4种不同提取条件用以研究脱水剂和Na2EDTA添加对药物提取效率的影响,同时也研究酸度对药物回收的潜在影响,得到了满意的提取条件。然后又对净化模式进行了比较。三聚氰胺海绵具有良好的弹性和机械性能,能够通过动态净化和静态净化两种方式实现基质的净化过程。在动态模式下,通过快速拉动和推动注射器的柱塞杆,将粗提液反复吸进和挤出海绵。在静态模式下,提取溶液自发地渗入海绵微孔并被保留,直到吸附过程结束。鉴于动态和静态模式海绵表面和提取溶液中干扰基质的吸附和迁移存在差异,考察了不同动态净化模式和静态净化模式对三聚氰胺海绵净化性能的影响,见图3。图3 净化模式对牛奶中兽药多残留回收率的影响接下来又与商业d-SPE吸附剂C18和PSA以及多功能针式过滤器MFF进行对比,比较回收率以及基质效应结果发现三聚氰胺海绵拥有相同或更好的净化性能。同时,净化前后海绵的红外光谱图有明显变化,透射电镜图也观察到了净化后海绵表面明显吸附了一些基质。为了证明该方法的适用性和准确性,考察该方法的选择性、线性、基质效应、精密度、LODs和LOQs,结果均能够满足检测需求。本研究通过简单的浸泡和挤压,可以在几秒钟内方便地通过三聚氰胺海绵去除基质,并且不需要额外的操作。3.2 Silanized MeS用于农兽药多残留分析接下来我们又制备了一系列硅烷化三聚氰胺海绵并用于不同食品中农兽药多残留分析。硅烷化三聚氰胺海绵采用两步溶胶-凝胶法制备而成。下边这3张图分别三聚氰胺海绵经不同硅烷修饰后的傅里叶变换红外光谱图、X射线光电子能谱图和透射电镜图,均能表明不同硅烷在海绵骨架表面的功能化成功。其中,从透射电镜图可以看出不同硅烷对海绵进行改性后,其微观形貌发生明显变化。例如,三聚氰胺海绵分别经 OTS、 PTS和 ATS硅烷化处理后,其表面形成大量或蓬松、或立方体、或泥浆状共聚物。图4 三聚氰胺海绵及硅烷化三聚氰胺海绵的FTIR图(a),XPS图(b)和SEM图(c)将7种不同的改性海绵用于粗提液的净化。大部分药物回收率处于可接受的60%-120%范围内,表明它们适合于去除鸡蛋中的基质干扰。通过对净化后基质去除率研究上述改性海绵的净化效率发现不同改性海绵在去除基质效率方面存在显著差异,如图5所示。 图5 使用不同类硅烷化三聚氰胺海绵对检测兽药的回收率分布 (a),使用不同类型硅烷化三聚氰胺海绵净化后的样品基质去除率 (b)为了考察吸附剂用量对净化效率的影响,将不同数量的硅烷化三聚氰胺海绵小柱分装至到注射器中。当使用一个或两个海绵小柱时,不足一半的乙腈提取液(1 mL)可以被吸入海绵中,这不利于快速高效的基质净化。当填装过多海绵小柱时(n≥7),顶部的海绵几乎不会被粗提取液浸湿。因此,通过加标回收实验研究了料液比对基质净化效果的影响。加下来又研究了硅烷浓度、料液比及净化模式,得到了相对满意的净化条件。同时与原始海绵的比较实验中发现,必要的硅烷化过程显著增加了检测兽药的总回收率。基于上述实验结果,功能化三聚氰胺海绵可视为一种操作方便、快速高效的基质净化材料。之后我们又将硅烷化三聚氰胺海绵分别用于猪肉、豇豆和蜂蜜中农兽药多残留分析。研究考察了不同硅烷化海绵的配比对回收率及基质净化效果的影响,也都取得了相对满意的结果。3.3 r-GO@MeS用于兽药多残留分析以氧化石墨烯作为功能单体用于三聚氰胺海绵的改性。氧化石墨烯是一种高效的污染物吸附材料,其含氧官能团以及大量的芳环基团使其对极性化合物和非极性化合物拥均有较强的吸附性能。还原氧化石墨烯改性三聚氰胺海绵 (rGO@MeS) 采用水热法一步制备。图6是将rGO@MeS用于羊肉中兽药多残留分析的具体流程。为了考察三聚氰胺海绵作为基质净化材料在肉类制品中的适用性,首先选择脂肪和蛋白质含量较高的羊肉作为实验对象用于方法开发,并以氧化石墨烯作为功能单体用于三聚氰胺海绵的改性。与原始海绵相比,rGO@MeS的直接变化就是海绵本身的颜色变化。通过透射电镜也观察到明显的表面微观形貌变化。这些都表明石墨烯成功键合到海绵骨架表面。图6 rGO@MeS用于羊肉中兽药多残留分析流程接下来,使用三种不同浓度氧化石墨烯(0.5,1.0,1.5 mgmL-1)改性海绵用于粗提液的净化。又比较不同净化材料获得的药物回收率和基质吸附性能和净化除色效果。通过比较原始海绵与改性海绵净化后萃取液的颜色,发现使用rGO@MeS净化后的提取液澄清且透亮。为了进一步验证和比较上述材料的基质净化效果,考察了不同改性海绵对兽药回收率及其分布的影响。图7 石墨烯浓度与料液比影响图8 净化液颜色对比然后我们又将还原氧化石墨烯三聚氰胺海绵分别用于牛奶和牛肉中兽药多残留的分析,均取得了满意的结果。4. 弹性多孔净化材料理论研究与应用前景(1)研究表明以功能化三聚氰胺海绵为代表的弹性多孔净化材料具有良好的基质净化效果,在复杂食品基质净化中具有良好的应用前景;(2)研究表明功能化三聚氰胺海绵净化选择性可通过功能团种类、丰度以及净化模式加以调控,但深入的基质净化机制与规律尚需要进一步研究;(3)研究表明功能化三聚氰胺海绵基质净化覆盖性适中,总体基质移除率仍然有上升空间,未来复合型功能化三聚氰胺海绵材料开发具有良好的开发潜力。作者简介许旭,女,博士,讲师,毕业于中科院成都有机化学研究所,就职于郑州轻工业大学食品与生物工程学院,主要从事农兽药、植物生长调节剂等食品化学危害物多残留分析研究。近年来,主持国家自然科学基金青年基金1项和河南省教育厅高等学校重点研究项目1项,参与省部级科研项目2项,发表论文二十余篇,其中以第一作者或通讯作者发表SCI论文7篇,高被引论文2篇,申报授权发明专利1项。
  • 聚焦肉蛋奶安全:动物性食品中也有农药残留?
    动物性食品是指动物来源的食物,包括我们餐桌上常见的畜肉(猪肉、牛肉、羊肉等)、禽肉(鸡肉、鸭肉等)、蛋类、水产品(鱼类、虾、蟹、贝类等)、奶及其制品等。动物性食品为我们提供蛋白质、脂肪、矿物质和维生素等人体必需的营养物质。随着人们生活水平的提高,食品安全问题愈发引人关注,动物性食品作为我们饮食组成中的必要部分,其重要性不言而喻。 2021年11月,农业农村部、国家卫生健康委、市场监管总局在第488号公告中公布了包括GB 31658.8-2021《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》在内的36项食品安全国家标准,自2022年2月1日起实施。GB 31658.8-2021标准针对常见动物性食品中的多种拟除虫菊酯类农药残留量测试,提供了配备负化学电离源(NCI)的气相色谱-质谱检测方法。 拟除虫菊酯的“前世今生” 菊酯是一种天然的杀虫剂,从除虫菊花中分离萃取而得,其活性成分包括除虫菊素I、除虫菊素II等6种化合物。天然除虫菊酯的杀虫效果好,但见光易分解。20世纪60年代,在天然除虫菊酯化学结构和构型研究清楚的基础上,化学家着手开发一类具有光稳定性的除虫菊酯的类似物,即拟除虫菊酯类农药。 常见拟除虫菊酯类化合物 拟除虫菊酯的化学结构和生物活性类似天然除虫菊酯,具有高效、广谱、相对低毒、低残留等优点,被广泛用于农作物的病虫害防治,但其使用不当时也会通过食物链的富集作用残留在动植物体内,进而对人类健康造成危害。 限值与管控 针对此类农药,GB 2763-2021《食品安全国家标准-食品中农药最大残留限量》中已涵盖了11种动物性食品中甲氰菊酯、联苯菊酯等多种菊酯化合物的最大残留限量。在其引用的测试标准中,检测方法多为气相色谱法或气相色谱-质谱法。 而在本次公布的GB 31658.8-2021《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》中,采用了配备负化学电离源(NCI)的气相色谱-质谱仪,对牛、羊、猪肌肉、脂肪和肝脏中的溴氰菊酯、联苯菊酯等多种拟除虫菊酯类农药残留量进行测定。 岛津解决方案 使用岛津GCMS-QP2020 NX产品,建立了使用负化学电离源(NCI)测定拟除虫菊酯类农药残留量的方案。 岛津气相色谱质谱仪GCMS-QP2020 NX • 方法介绍 • 标准谱图图1 7种拟除虫菊酯50 ng/mL混合标准溶液色谱图(1:七氟菊酯 2:联苯菊酯 3-6:氟氯氰菊酯 7-8:氟氰戊菊酯 9-10:氰戊菊酯 11-12:氟胺氰菊酯13-14:溴氰菊酯) 图2 部分化合物校准曲线 此方法在10-1000 ng/mL范围内线性良好,灵敏度和准确度均可满足标准要求。 • 样品测试结果分别取市售牛里脊肉、猪肉样品进行实验,样品谱图见图2所示,2个样品中均未检出7种拟除虫菊酯类农药残留。 图3 样品测试谱图 What’s more? 在标准规定的方法之外,岛津还开发了利用气相色谱-串级质谱GCMS-TQ8050 NX测试动物性食品中拟除虫菊酯类农药残留量的方案。此方法质谱部分配备EI源(电子轰击电离源),采用MRM(多反应监测)采集模式,目标化合物经二次电离/二次筛选后到达检测器,抗干扰能力更强,在复杂基质样品的低浓度化合物分析中体现了优越的灵敏度及准确性。 图4 部分化合物质量色谱图(20 ng/mL)及校准曲线 总结 动物性食品是人体重要的蛋白质、维生素等营养物质的来源,随着大家食品安全意识的不断提高,人们“舌尖上的安全”也成为食品行业关注的热点。岛津公司秉承“为了人类和地球的健康”的理念,快速应对国标动物性食品中拟除虫菊酯检测项目,让您吃得营养、吃得健康。 本文内容非商业广告,仅供专业人士参考。
  • 担心农残标准不合格?甲胺磷、甲基对硫磷等高毒农残标准现状
    目前我国农产品农药残留现状,可以用三句话来概括,即近年不断好转,总体现状较好,但仍存在隐患。具体来说,一是全国每年3-5次的农产品质量安全例行监测显示逐年好转和大为改善的结果,不仅表现于农药残留超标率逐年持续下降,已从十年前的超过50%到目前的10%以下;而且表现在残留检出值也是明显降低,十年前检出超过1 mg/kg农药残留量的蔬菜数量较多,但现已很少见,仅偶有检出超过1 mg/kg的。二是目前农产品农药残留监测合格率总体较高,如稻米和水果高达98%以上,蔬菜和茶叶也达95%以上。 三是目前农药残留状况尚不稳定,仍然存在着一些风险隐患,如南方地区或其他地区的夏季由于病虫害发生重、农药使用量大、易造成农产品农药残留超标,又如在设施反季节栽培情况下由于农药用量大并且不易降解、也易引起农药残留超标,还有随着国内外残留限量标准的提高或监测农药种类的增加、原来不超标的农产品变成了超标;特别是由于我国农业生产的产业规模太小,有众多千家万户的农民分散生产和经营,加上生产技术较为落后,基地准出和市场准入难以真正做到,造成监管更加困难。 同时,人们往往喜欢比较我国与欧美发达国家的标准。在农药残留标准数量方面,由于欧美农药管理历史长,我国农药残留的标准数量相对还比较少,因此,加快制定和完善农药残留标准是十分重要的工作。但有一点要明白,在标准的水平方面,很难比较各国残留标准的高低。从技术层面讲,各国的农业生产、农药使用情况和食物结构等不同,因此,残留标准会存在一定差异。从管理层面讲,尽管制定残留标准的主要目的是为了确保食品安全,但现在各国越来越将农药残留作为农产品国际贸易的技术壁垒,必要时进而用作政治筹码。各国农药残留标准差异还受以下几个因素的影响。一是对于本国不生产不使用的农药,往往制定最严格的标准,而本国使用的农药特别是在出口农产品上使用的农药,残留标准在安全范围内尽可能松。如美国、欧盟和日本对本国没有登记使用的农药按照一律限量标准(即0.01~0.05mg/kg)执行,而这个浓度许多发展中国家的仪器都难以检测;但是在本国登记使用的农药,即使农药毒性高,其标准却松。如美国规定高毒农药甲胺磷在芹菜上的标准为1mg/kg,花椰菜上为0.5mg/kg,日本规定芹菜上为5mg/kg,花椰菜上为1mg/kg。 二是本国没有或主要依靠进口的作物上的标准严。如氯虫苯甲酰胺是个新杀虫剂,欧盟在葡萄上的标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,茶叶上为0.02mg/kg,按理葡萄可鲜食,标准应该更高,但葡萄是欧洲的优势作物,因此制定的标准松;再如常用的杀菌剂百菌清,欧盟在直接食用的苹果、梨上标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,在茶叶上为0.1mg/kg。 三是同一作物,各国标准也不同,如安全性不很高的杀菌剂克菌丹在稻谷中的残留标准,日本是5mg/kg,欧盟为0.02mg/kg,相差100倍;又如高毒农药甲基对硫磷,日本为1mg/kg,欧盟为0.02mg/kg,相差50倍。 为了协调和统一残留标准,国际食品法典委员会负责制定农药残留国际标准,但即使有国际残留标准,大部分发达国家都执行自己的本国标准,而绝大部分发展中国家因为制定残留标准能力弱,往往只能执行国际标准。 我国是国际食品法典农药残留标准委员会的主席国,因此,我国的农药残留标准尽可能与国际食品法典标准(而不是欧美日标准)接轨,有的标准比发达国家低,但有的标准比发达国家高。 如新农药甲氧虫酰肼我国在甘蓝中的标准为2mg/kg,而美国和日本的为7mg/kg;马拉 硫磷是老农药,我国在柑橘、苹果、菜豆中的标准为2mg/kg,在糙米中为1mg/kg,在萝卜中为0.5mg/kg,均严于美国8mg/kg的标准;嗪草酮在大豆中标准为0.05mg/kg,而美国的为0.3mg/kg、欧盟和日本为0.1mg/kg的标准;常用杀菌剂噻菌灵我国在蘑菇中的标准为5mg/kg,美国为40mg/kg、欧盟10mg/kg、日本60mg/kg,分别比他们严格8、2、和12倍。 我国制定农药残留标准主要考虑安全,很少涉及贸易保护问题。由此可知,不管各国残留标准水平是否存在差异,残留标准都是根据安全风险评价而制定的,只要符合残留标准,农产品是安全的,不能用别国的标准来判断是否存在安全,不能用一国标准否定别国的标准,这缺乏科学性。因为农药残留标准是不仅仅根据安全风险评估结果来制定,也综合考虑产业发展、国际贸易等各方面因素。 如果不能确定或者过分担心农药残留标准不合格,还可以自行进行检测。 BePure专注于标准物质的研发和生产已有20多年,对于农药残留检测有着丰富的经验,满足国内检测实验室在农残领域的要求。配套的营运中心和售前售后团队保证产品品质和服务可靠快速。现在是很多政府实验室、制药企业、第三方机构和科研单位“指定供应商”。
  • 中药农残分析之“QuEChERS”(上):发展简史
    1.前言  样品前处理对分析检测实验员来说是至关重要的一环,是样品检测中耗时最长、工作量最大的部分,前处理质量的好坏直接决定着分析的准确性和精密度。据统计,检测分析的误差近50%来源于样品的准备和处理,而真正来源于分析的还不到30%,而且大部分样品前处理所占用的工作量超过整个分析的70% [1]。如何面对越来越复杂的样品基质进行痕量分析及其样品前处理已成为检测分析业界一个大的挑战,也是目前分析测试工作的瓶颈和国内外研究的薄弱环节。在保障检测结果准确的前提下追求更快速,更高效的前处理技术具有十分重要的意义。  一个理想的样品前处理方法应该符合以下条件[2]:(1)能够选择性地将目标化合物从样品基质中提取出来,而共提取的干扰物少 (2)通过提取净化得到的目标化合物应该保持原有的基本特征,不能产生降解,分解等现象 (3)方法的重现性好,回收率满足要求 (4)方法简便,易于操作,能够满足快速响应及高通量样品分析的需求 (5)自动化程度高,这也是样品前处理技术发展的趋势之一。  农药的大量使用而导致的污染危害问题已越来越严重,有关研究已引起世界各国广泛关注。在全球范围内,每年大约有超过2000种食品样品用作农药残留分析,农药残留分析是一项复杂的痕量分析技术。近年来,人们越来越重视农药残留问题,也愈发追求更快速、更高效的农药残留检测手段。QuEChERS方法由于具有快速、简单、廉价、有效、可靠、安全的特点成为一种备受关注的农残分析样品前处理技术。  2.QuEChERS 发展史  图1 QuEChERS 方法的两位发明者  QuEChERS的名字取自快速(Quick)、简单(Easy)、便宜(Cheap)、高效(Effective)、耐用(Rugged)和安全(Safe)六个单词的首字母。它是一种用于高湿度样品中多农药残留分析的样品制备和净化技术。Michelangelo Anastassiades(图1右)于2001-2002在美国宾夕法尼亚州温德摩尔的USDA/ARS-ERRC博士后访问期间,参与Steven Lehotay(图1左)的研究小组时开发了QuEChERS方法。最初,该方法是为分析动物组织中兽药(驱虫剂和甲状腺素)而开发的,但意外发现,QuEChERS方法提取极性化合物,特别是碱性化合物方面的潜力后,在植物中的农药残留分析测试中取得了巨大成功。于2002年6月在罗马举行的EPRW 2002年会议上首次提出(QuEChERS)的农药残留测定方法。传统的样品前处理技术经历了液固萃取、液液萃取、固相萃取几个阶段。QuEChERS方法一经问世,其在食品中的农药分析领域里就引起了人们的广泛关注。与以往费时费力的农残前处理方法相比,QuEChERS将几步实验步骤合为一步,大大提高了实验工作效率同时显著降低了试剂消耗。  图2 AOAC.2007与EN 15662的区别  为了拓宽所能应用的极性农药的范围和提高某些种类农药的回收率,QuEChERS方法自出现以来也经历了许多改进。2007年,Steven Lehotay 编写了AOAC.2007,美国农业部通用标准。2008年,Michelangelo Anastassiades 回到欧洲,并于2008年发表了EN 15662,即现行的欧盟标准。虽然都是有初始的方法发明者参与,但由于国情及理念上的差异,欧美的两个标准之间有一定的区别(图2),主要体现在四个方面[3]:(1)AOAC方法萃取液用1%乙酸乙腈,较EN方法复杂 (2)AOAC方法对于含色素的样品,GCB含量较高,对于平面结构的农药回收率影响较大 (3)AOAC方法中C18含量较多,对于谷物、坚果类净化效果更好 (4)AOAC方法中填料量较EN方法多,价格相对更高。当然,目前AOAC也倾向于去开发一个通用的QuEChERS方法。  因此现在,QuEChERS有三个标准方法版本:最初的(图3)、AOAC官方方法2007.01(图4)、CEN标准方法EN15662(图5),除此之外还有许多差不多的改良方法。伴随着高通量、高灵敏度、高选择性的液相色谱-质谱、气相色谱-质谱技术的发展,近年来QuEChERS技术的应用更是得到了长足的发展。现在QuEChERS已经成为了全球检测水果、蔬菜中农残时的标准样品处理方法。除此以外,其应用也涉及到越来越多的不同领域,比如肉类、血液样品、酒、甚至土壤中抗生素、药物、滥用药、还有其他污染物的检测。只要是待测目标物的回收率满足需求,而且去除杂质的基质背景满足检测的需求,都可以采用该方法来净化。该方法的优点具有高回收率、准确的测定结果、高样品通量以及低的无氯溶剂使用量。这些可以减少试剂的成本,以及实验人员接触有害溶剂的可能性。另外,玻璃器皿的使用和劳动成本也会降低,这是因为该方法所需要的样品量更小,因此无需太大的实验空间和大量的有机溶剂。宽泛的应用范围以及操作的简易性使得该方法成为残留物分析的首选方法之一。    图3 QuEChERS 早期方法版本图4 QuEChERS 方法AOAC.2007版本  AOAC.2007版本的特点[3]:  (1) 脂含量1%的样品,加入与PSA等量的C18   (2) 没有平面结构农药(噻苯达唑、特丁硫磷、五氯硝基苯、六氯苯等)时,可使用与PSA等量的GCB   (3) 有大体积进样(LVI)系统的GC-MS/MS,可直接乙腈进样,没有的建议用甲苯复溶。  图5 QuEChERS 方法EN15662版本  EN15662版本的特点[3]:  (1) 对于含水量80%的样品,需加入足够的冷水,使水的总量约为10g   (2) GCB的作用是去除类胡萝卜素和叶绿素,对于一些非平面结构的色素无法去除   (3) 对于脂质含量丰富的样品,可在提取后取8mL提取液在冰箱中放置一段时间,再取6mL净化   (4) 含果核的样品,测试时应将果核去除,最终计算时应将果核计算在内   (5) 部分农药(如克菌丹、灭菌丹、抑菌灵、对甲抑菌灵、哒草特、灭虫威砜、百菌清等)对碱敏感,PSA的加入会导致其不稳定,在几天内分解   (6) 部分农药(如吡蚜酮、二恶唑、硫双威等)对酸敏感,pH=5的提取液条件下,几天内会发生分解   (7) 部分农药(如磺酰脲、丁硫克百威、丙硫克百威)对酸非常敏感,不能用酸性缓冲体系提取   (8) 丁硫克百威和丙硫克百威在酸性条件下会降解为克百威,因此在酸性提取条件下检出克百威,需要调整提取条件重新测定。
  • 欧盟拟修订联苯肼酯在蔬果中最大残留限量
    欧盟拟修订联苯肼酯在多种蔬果中的最大残留限量   据欧盟食品安全局(EFSA)消息,应欧盟委员会的要求,近日欧盟食品安全局提议修订联苯肼酯(bifenazate)在柑橘、仁果、核果、茄子等多种商品中的最大残留限量。   据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,荷兰收到要求修定多种蔬菜中联苯肼酯最大残留限量的申请。为协调联苯肼酯的最大残留限量(MRL),荷兰建议修订联苯肼酯的最大残留限量。   荷兰依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧盟食品安全局。欧盟食品安全局对评估报告进行评审后,做出如下决定: 商品种类 现行MRL(mg/kg) 建议MRL(mg/kg) 柑橘类水果 0.01 0.9 仁果 0.01 0.5/0.7 核果 0.01 2 食用葡萄、酿酒葡萄 0.01 0.7 草莓 2 3 胡椒 2 2/3 葫芦-不可食用的皮 0.01 0.6 啤酒花(干制) 0.02 20
  • 中药农残分析之“QuEChERS”(下):注意事项
    QuEChERs应用中的注意事项 图11 样品均质在QuEChERS方法中的重要性  样品的采集以及均质化是QuEChERS的步骤中密不可分的一环,样品良好的均质步骤有利于得到更小的样品颗粒大小,从而保障之后的振动萃取的效率。因此,QuEChERS方法发明者之一的 Anastassiades教授曾在一次采访中说道:“In this regard, the $5000 chopper used for sample comminution is more important than the $300000+ worth of LC–MS and GC–MS instruments used for analyses.”他表示,对于QuEChERS来说,一台好的研磨机的价值远高于30万美元的LC-MS/GC-MS(图11)。由此可以看出,良好的样品均质对于QuEChERS方法良好结果的重要性。  农药残留分析实验室现在面临着样品量越来越多的问题,QuEChERS过程的自动化也渐渐显得重要,在通常的实验中,QuEChERS仍然主要是人手操作的,包括手摇萃取和样品操作。目前市面上也出现了一些使用机械臂操作,电脑控制的全自动QuEChERS样品处理工作站,宣称可以实验人员从日常重复而繁重的操作中解放出来。但是这些全自动设备在实验室日常检测中使用的实际效果如何?Anastassiades和Lehotay认为,QuEChERS面临的问题不是使其更快更简单,而是使其更便捷,完全的自动化往往会使样品处理更花时间和精力,甚至还有更高的花费,但是如果能让实验室的分析人员中不重复操作震摇这个步骤,将是一个非常美好的事情。因为,QuEChERS实验操作过程中的手摇萃取过程对大多数的实验室化学分析人员来说是一个头疼的问题,而且不同人员之间的震摇力度也有较大差异,最终导致结果重现性变差。虽然在大部分的情况下,1min的萃取时间已经足够,但是在某些情况下,延长萃取时间会显著提高萃取的回收率。对于一些农残已经扩散到样品蜡质层结构的样品,普通的手摇萃取是无法取得满意的萃取回收率,就需要更长的萃取时间和更强的震摇力度才能让被包裹的农残目标物浸泡出来得以被提取,这个时候,自动化的震摇装置就显得尤为必要。因此,在QuEChERS的萃取过程中能有一台自动化的强力震摇机将会是实验人员的一个好帮手。  在QuEChERS方法开始的乙腈萃取中,当加入无水硫酸镁时,会产生一定的热量,这可能会带来正反两方面作用。在某种程度上,热量能提高萃取速度和萃取效率,但是另一方面,热量太多时可能会导致一些热不稳定或者易挥发农残的损失。大量的实验数据表明,实验过程中的热量对少数农药造成潜在的降解的机率是非常小的,主要原因在于酸性的提取试剂有助于这些农药保持稳定,此外,如果样品在萃取前放在冷藏环境适当降温或者放在冰水浴环境中进行提取,萃取过后温度反而是非常适中的。  QuEChERS方法适用的农药种类目前已经拓展到了400多种,从目前已有的数据看,除了具有平面结构的农药会被石墨化炭黑在分散基质萃取中强烈吸附而导致回收率偏低,还有一些农药(比如草甘膦及其代谢物氨基甲磷酸、百草枯、乙烯利、乙磷酸、马来酰肼等)也不能用QuEChERS方法提取。  2020年版《中国药典》中共列入了三种前处理方法,分别为直接提取法、QuEChERS法和固相萃取(SPE)法。相对于其它两种方法,SPE法能更有效的去除杂质,但是也会降低某些极性农药的回收,同时操作上更繁琐、实验成本更高。Anastassiades和Lehotay认为,在农残的检测上,大量的实验数据表明,QuEChERS法中的分散基质萃取步骤相对于SPE的化学过滤净化方式能提供更高的回收率,而且操作更快、更简单也更便宜 由于QuEChERS法操作步骤和所需使用的设备更少,不同实验室人员结果之间的重现性也更好。图12 样品中影响回收率的基质干扰物  QuEChERS方法中起净化作用的核心就是吸附剂填料,因此制备高效的吸附剂或者搭配吸附剂组合配比是提高方法净化效果和提高回收率的关键。理想状态下完美的吸附剂应该只去除样品提取液中的杂质而不对目标物造成损失。在食品/农产品样品中,对色谱/质谱分析产生干扰的杂质包括脂肪、碳水化合物、蛋白质、水和少量的金属成分,维生素以及其它一些天然成分。QuEChERS方法中的选择性提取步骤会除去部分杂质(脂肪、水、蛋白质、糖分)(图12),再结合后续的基质分散萃取步骤可以通过吸附剂的吸附进一步降低残留杂质(如脂肪和其它酸性物质、叶绿素、花青素等色素、甾醇类物质、水等)。Anastassiades和Lehotay认为,每毫升提取物加入150mg硫酸镁、50-150mgPSA、50mgC18和7.5mgGCB进行萃取是目前所知对于食品中农残分析的最佳的分散基质萃取方案,可在很广的浓度范围内提供高的回收率。目前一些改进的QuEChERS方法,使用了一些其他吸附剂,或者改变吸附剂用量,调整提取液pH或溶剂组成,用正己烷除脂,这些步骤可能会使的杂质去除得更好,但是会降低农残的回收率。分子印记技术(MIPs)能针对性地去除某类杂质成分,在不降低被测物回收的前提下,该类填料的使用会是一个很好的补充。  QuEChERS方法结合质谱使用时往往会遇到基质干扰(文章标题《一文读懂:农残分析基质效应之“液相色谱-质谱(LC-MS)篇”》)。就农残分析而言,一些简单的食品/农产品样品不会出现基质干扰(某些干燥的、有油脂的样品除外) 但是对于一些复杂样品来说(比如茶叶、中药材、香料、动物内脏、柑桔油等),无论采用哪种净化方法也无法完全消除基质效应的影响。同时,如果样品基质中含有与被测物结构相似的杂质,也很难通过样品前处理过程除去,这时候可以考虑采用调节萃取剂、调剂提取剂pH、加盐、改变体积比、加水、吸附剂等手段加以改善。对于pH的影响,利用QuEChRES方法定量测定蘑菇中尼古丁时,需要调节提取液pH至10-11才能得到较好回收率。从洋葱、韭菜等香味较浓郁的蔬菜基质中提取百菌清时,pH要调至2,这样才能降低基质对其的吸附而提高回收率 另外,对于沙蚕毒素类的农药,低pH值也是非常必要的。而对于酸性的除草剂,比如苯氧基链烷酸,会易于形成共价键结合的残留,因此必须在液液萃取前把其释放出来。通常可以通过先调节pH到12进行碱解30min,然后再调回中性进行QuEChERS萃取的方式来提高回收率。如果是某类的农药,采用针对性强的前处理方法能达到很好的回收,但此时不可避免会降低另外一些农药的回收,在多农残同时提取时这情况难免发生。对于这些复杂的情况,这时候就需要高质量的色谱-质谱分析仪器。高灵敏度、高选择性的色谱-质谱仪可以检测到样品提取液更低浓度的目标物,同时能最大限度的避免样品基质中的杂质干扰。  在QuEChERS出现之前,其它农残检测方法得到的提取液中,一般每毫升非极性溶剂要相当于含有2-5g的样品提前量,当结合使用GC-MS(SIM模式)进行不分流进样,进样量为1-3μL时,方法检出限一般为10ng/g。除非对提取液进行浓缩或者溶剂置换,一般QuEChERS方法得到的提取液乙腈中,每毫升只相当于1g样品提取量。因此,为了能使QuEChERS方法达到之前方法的检出限,在气相分析系统中,程序升温进样口结合大体积进样方式是很好的一个解决途径。QuEChERS结合PTV-LVI已成为欧洲的标准方法,但是在美国使用得较少。  QuEChERS方法中大量使用乙腈作为提取溶剂。从化学性质上来讲,乙腈对于液相系统来说是一种很好的溶剂,但对于气相来说就完全不同了,因为乙腈属于极性溶剂,大量进入色谱柱会快速的对色谱柱吸附涂层造成损害,影响色谱柱分离能力。但是PTV-LVI进样系统的使用可以显著减少乙腈进入气相色谱柱的量,因此,如果能使用适当的方法,乙腈的使用在气相分析方法中也不会是一个缺点。但是对于酸化乙腈来说,其会导致一些对碱性环境敏感的农残会在乙腈中发生降解,但数据表明,酸性乙腈会增大气相色谱柱柱流失。同时,从成本上考虑,乙腈的价格比其它溶剂要贵,因此,如果能回收使用乙腈将会对QuEChERS在更大范围内的推广使用带来更好的推动作用。  叶绿素的干扰是QuEChERS方法应用中遇到的一个很大的困难,因为即使每毫升样品提取液中加入7.5mgGCB或者50mgCholoFiltr吸附剂(美国UCT公司),去除率也只有80%-90%。此外,对于叶绿素和脂肪等大分子杂质的去除,凝胶渗透色谱(GPC)相比分散基质萃取效果更好,但是GPC在时间、仪器成本和试剂使用量上都存在明显的缺点。在脂肪类大分子的去除上,可以通过使用C18填料的分散基质萃取或者样品冷冻的方式来达到GPC一样的效果。  6.QuEChERS伴侣   (图13 中药QuEChERS多功能前处理系统(QuEChERS伴侣  随着我国第三方检测市场竞争的日益激烈,检测行业逐渐从“技术密集型”退化成了“人员密集型”,但是用人成本的持续上涨也成为了行业发展的一大瓶颈。  因此,农残检测分析实验室面临三大痛点问题:  1. 人员培训周期长   2. 人员流动性大   3. 检测数据准确性和时效性差。  所以越来越多的实验室从成本和效率角度考虑,倾向于使用QuEChERS方法。国家食品质量监督检验中心和北京本立科技有限公司针对中药材样品特点,共同研制了“中药QuEChERS多功能前处理系统”(图13),配合独有专利技术的样品提取管,可实现中药样本的震摇、均质、萃取、净化、离心步骤完美切换衔接,可同时完成10-12个样品的处理(30min)。整个前处理过程需要人工完成的只有样品预粉碎、称样、加溶剂、取上清液这4个简单步骤,而震摇、萃取、离心这些耗时、繁琐、费力的步骤实现了自动化、标准化集成,既保证了结果的一致性又降低了对实验人员的素质要求和劳动强度,并最大程度减少剧毒乙腈的暴露风险。“中药QuEChERS多功能前处理系统”契合快速(Quick)、简单(Easy)、便宜(Cheap)、高效(Effective)、耐用(Rugged)和安全(Safe)的理念,堪称QuEChERS最佳伴侣,是企业实验室和第三方检测实验室的福音和工作利器。  目前,国家食品质量监督检验中心正在开发与“中药QuEChERS多功能前处理系统”配套的中药材前处理SOP手册,对于实验操作人员来说,对照SOP手册来操作“中药QuEChERS多功能前处理系统”做中药材农残检测,简便直接,几乎不需要培训即可上手,实验结果可媲美具有丰富经验的农残分析工程师,完美解决农残检测分析实验室三大痛点问题。  7. 结语  QuEChERS法作为一种新型的广谱性的残留提取净化技术,自问世以来得到迅速发展和广泛应用。QuEChERS的发展离不开现代色谱与质谱技术的发展,纵观国内外的应用研究就能发现,QuEChERS技术的广泛应用主要是与GC-MS、LC-MS结合进行食品/农产品中农药残留的测定。因此,在可预见的将来,样品前处理技术将会继续与这些检测技术密不可分,会不断加强与各种检测仪器的兼容和联用,进一步扩大其应用范围,逐步成为世界各国进行各类药物多残留痕量、超痕量分析时首选的前处理方法。
  • 转基因大米、农药残留水果流入超市
    最近,一国际环保机构公布了一项最新调查,发现有的城市百佳、吉之岛、沃尔玛等超市违法销售转基因大米及米制品,同时,在这些超市出售的蜜桃、龙眼和荔枝等水果上检测出了混合农药残留。   该机构在湖南省、湖北省和广东省内的沃尔玛、好又多、新一佳、百佳、华润万家、中百仓储和吉之岛等7家超市的10家门店购买了20份夏季水果、20份散装大米和3份米粉样品,送至独立第三方实验室,分别进行农药残留检测和转基因成分检测。   转基因成分检测发现,来自百佳超市(深圳太阳广场店)的奇兰香散装香米和来自吉之岛超市(深圳中信城市广场店)的金稻鱼中国香米均为转基因大米。另外,来自沃尔玛超市(长沙雨花亭店)的沃尔玛自有品牌惠宜江西米粉中含有转基因成分。   农药残留的检测则显示,来自华润万家超市(东莞市厚街店)的奈李、水蜜桃和荔枝分别含有6种、7种和8种农药残留。百佳超市(深圳市太阳广场店)所销售的蜜桃含有6种农药残留,而龙眼则含有7种农药残留,其中包括被世界卫生组织列为高毒类农药的敌敌畏残留。此外,该机构也在百佳超市的龙眼和华润万家超市的荔枝上分别检测出了可能对儿童生长发育造成长期负面影响的有机磷类农药。   据了解,我国农业部已经一再表明我国目前未允许任何转基因水稻的商业化种植、生产和经营,也未批准进口转基因稻米用于加工,但市场上的转基因大米或米制品却在被公然违法销售。该国际机构食品与农业项目负责人表示,“这次的发现让人震惊。其检测结果说明这些超市没能承担起为消费者保障食品安全的责任”。该机构呼吁超市尊重消费者的合法权益,立即将这些产品下架,政府采取有效措施以保障公众的食品安全。
  • 精品|中药农残方案秘籍大公开 三种前处理视频抢鲜看!
    精品|中药农残方案秘籍大公开 三种前处理视频抢鲜看!飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼“每逢佳节胖三斤”,刚过完春节的各位小伙伴是不是已经摩拳擦掌开始动起来,一起甩走多余的热量呢?作为实验猿们,Z快的方法当然是各种实验做起来,左手一个烧杯,右手一个量筒,奔走在前处理间和仪器分析室之间。2020年底新版药典的实施,对于中药农残分析的各位实验猿们是一个ji大的挑战,尤其是新增第五法33种禁用农残分析,面对多种前处理方案,想要动起来的大家是不是有点无从下手呢?各位实验猿们不要担心,不要心慌,赛默飞已为大家做好了充分的准备,早在去年9月,赛默飞发布了中药农残QuEChERS前处理的手把手教学视频,受到了大家的热烈欢迎↓↓↓《2020版中国药典》中药农残检测|手把手教学视频小编备受鼓励,这次一鼓作气给大家一次放送三种前处理方式的手把手教学视频,一起跟着飞飞动起来吧~有了这3种前处理操作秘籍,想必各位小伙伴再也不用担心各种中药带来的挑战啦!A中药农残前处理-QuEChERSB中药农残前处理- SPE-HyperSep Retain PEPC中药农残前处理-SPE-GCB/NH2福利大放送同时飞飞给大家准备了福利大放送,各种优惠多多,一起买买买~2020版中国药典2341农药残留测定法耗材包四重惊喜,保“价”护航扫码进入领取丰厚礼品
  • 水质中有机氯农药和氯苯类化合物测定的前处理方案
    有机氯农药是用于防治植物病、虫害的组成成分中含有有机氯元素的有机化合物。具有成本低,效率高,杀虫谱广等特点,使用最早、应用最广的杀虫剂有DDT、六六六,三氯杀螨醇、七氯、艾氏剂等。这一类农药性质稳定,难于降解,积存在动、植物体内的有机氯农药分子消失缓慢,其通过地表径流、喷洒残留、渗透或残留在粮食作物上而逃逸到环境中,包括我们赖以生存的水环境,而后经过生物富集和食物链的作用,最后进入人体,在肝、肾、心脏等组织中蓄积,影响人类健康。 尽管有机氯类农药在我国已经禁用多年,但是目前的水环境中还是存在着不同程度的污染。参考:HJ-699-2014 《水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》Detelogy推出水质中有机氯农药和氯苯类化合物测定的高效智能前处理方案。实验步骤取样:量取100.0mL水样,加入20.0μL替代物标准溶液(四氯间二甲苯、十氯联苯),用MultiVortex多样品涡旋混合器混匀。液液萃取:加入10g氯化钠(用于破乳,若样品含盐量较高,可适当减少用量),振荡至完全溶解后,加入15mL正己烷,剧烈振荡15min(注意放气),静置15min分层;再重复萃取一次,合并萃取液待干燥。干燥:将无水硫酸钠干燥柱固定于iSPE-864全自动智能固相萃取仪中,将上述洗脱液以2mL/min的速率过干燥柱进行干燥,少量正己烷洗涤洗脱液盛装器皿,一并过无水硫酸钠干燥柱,收集滤液于浓缩管中,用FV32Plus全自动高通量智能平行浓缩仪浓缩至近干(水浴温度设置为45℃以下),正己烷定容3mL。净化:将弗罗里硅土固相萃取小柱置于iSPE-864全自动智能固相萃取仪按下述条件净化。注:1、上样前需保证整个活化过程萃取柱是湿润的,否则需重新活化。 2、对于较为干净的地下水、地表水、海水样品,可以省略净化步骤。浓缩定容:将洗脱液置于FV32Plus全自动高通量智能平行浓缩仪浓缩至小于1mL,加入5.0μL内标使用液,用正己烷定容至1.0mL,用MultiVortex多样品涡旋混合器混匀,移入自动进样小瓶,待测。实验方案中涉及到的仪器MultiVortex多样品涡旋混合器▣ 高通量,兼容多种规格样品管,包括玻璃试管。▣ 底盘低重心设计,噪声小,动力强劲,最高转速可达3000rpm。▣ 可预设多个方法,每个方法可设6段自动变速,方便随时调用。iSPE-864全自动智能固相萃取仪▣ 8通道,连续批量处理64个样品。▣ 自动完成活化、上样、淋洗、氮吹、洗脱等全流程。▣ 柱塞杆密封过柱技术,有效避免失速和堵柱。▣ 智能溶剂管理系统,废液分类收集,省时环保。▣ 标配氮气吹扫功能,氮吹压力和时长可自由设定。▣ 智能控制终端和主机一体化设计,节省实验空间。FV32Plus全自动高通量智能平行浓缩仪▣ 可同时处理32位样品,兼容2-80mL多规格样品管。▣ 兼容针追随式氮吹和涡旋式氮吹,多路供气保障平行性。▣ 各通道独立控制,可自动定容至1.0mL、0.5mL或近干状态。▣ 三面水浴可视窗具备声光提醒功能,标配智能快插排水口。▣ 13.3寸超大彩色触屏控制,保存多种预设方法随时调用。
  • 华中农大研制出仿壁虎脚纳米SERS基底 农残检测再添利器
    受壁虎脚底奥秘的启发,华中农业大学教授韩鹤友带领的课题组将仿生思想与纳米技术相结合,研制出一种仿壁虎脚纳米SERS基底,在用于水果蔬菜农药残留检测时,可以实现基底与实际样品表面的亲密接触,做到无损伤、直接、快速检测。该研究成果于近日发表在国际分析化学领域权威期刊《分析化学》上。  据介绍,壁虎是自然界的“纳米高手”。此前科学家研究发现,壁虎飞檐走壁的奥秘在于脚底隐藏着数百万根纳米级的刚毛,而每根刚毛末端又有数百根更细的分支。这些柔软的纳米结构能够任意地调整角度与墙壁充分接触,极大地增加了脚掌与墙壁的接触面积,产生巨大的粘附力。  韩鹤友课题组以表面超疏水化处理的阳极氧化铝(AAO)为模板,用聚二甲基硅氧烷将阳极氧化铝的形貌复制下来,得到了与壁虎脚刚毛类似的3D纳米“触角”阵列结构,并利用种子沉积法将银纳米粒子修饰到“触角”阵列上。利用这些高密度的“触角”,便能像壁虎脚底的刚毛一样自由地到达实际样品表面的微小区域,通过“擦”“粘贴—揭起”等简单的采样方式,对复杂表面的微量样品进行原位、无损伤地直接收集,省去了样品预处理的烦琐过程,大大缩短了分析时间。此外,“触角”阵列上修饰的银纳米粒子之间还可产生数量可观的拉曼信号“热点”,使得样品表面的拉曼散射效应增强1200万倍,极大地提高了检测的灵敏度。在实验中, 检测限达到了1.6 纳克/平方厘米。  在实验中,韩鹤友课题组创制的神奇材料成功实现了苹果、葡萄、黄瓜表面的甲基对硫磷、福美双、孔雀石绿等农药残留的高效检测,检测限达到了1.6 ng/cm2。一块指甲盖大小的果蔬表面,只要有十亿分之一克农药残留,都能够被快速检测出来。  备注:这是韩鹤友课题组继用“知了翅膀SERS检测H5N1等动物病毒”(ACSappliedmaterials&interfaces.,2014,6,6281-6289.封面文章)工作后,将仿生思想与纳米技术相结合,突破传统基底的制备限制的又一成果。 内容来源于中国科学报、长江商报等
  • 大连市分析测试学会关于发布《蔬菜中含氰基拟除虫菊酯类农药残留快速检测》等3项团体标准的公告
    各有关单位:根据《大连市分析测试学会团体标准管理办法》的相关规定,大连市分析测试学会批准发布《蔬菜中含氰基拟除虫菊酯类农药残留快速检测》(T/DSAT 0001-2024)、《冷鲜牛羊肉中鸭源性成分快速检测方法-胶体金免疫层析法》(T/DSAT 0002-2024)、《水果蔬菜中三苯基氢氧化锡(三苯基乙酸锡)、苯丁锡、三唑锡(三环锡)残留量的测定 液相色谱-电感耦合等离子体质谱法》(T/DSAT 0003-2024)共3项团体标准,自2024年3月1日起正式实施,现予以公告。 关于发布《蔬菜中含氰基拟除虫菊酯类农药残留快速检测》等3项团体标准的公告.pdf大连市分析测试学会 2024年2月1日食用农产品上市期短,食用农产品的安全监管需要高效、简便的监管技术,因此食品快速检测是基层农产品安全监管不可缺少的技术手段。《中华人民共和国食品安全法》第一百一十二条规定食品安全监管部门在食品安全监督管理工作中可以采用国家规定的快速检测方法对食品进行抽查检测,支持并肯定了快速检测技术在食品安全抽检中的地位。2022 年最新修订的《农产品质量安全法》规定“县级以上地方人民政府农业农村主管部门可以采用国务院农业农村主管部门会同国务院市场监督管理等部门认定的快速检测方法,开展农产品质量安全监督抽查检测。抽查检测结果确定有关农产品不符合农产品质量安全标准的,可以作为行政处罚的证据。”随着该部法律的出台,快速检测将在“从农田到餐桌”全链条农产品质量安全监管的工作中,发挥越来越重要的作用。2023 年 1 月发布的《市场监管总局关于规范食品快速检测使用意见的通知》对食用农产品、散装食品、餐饮食品、现场制售食品等快速检测工作作出进一步的规范,要求各级市场监管部门应对食品快检机构严格监督检查。2023年8月,深圳市市场监督管理局发布了公开征求《食品快速检测服务能力评价指南》等4项地方标准意见的通告,其中包含两项食品快检相关地方标准意见:《食品快速检测服务能力评价指南》与《食品快速检测工作指南》。
  • 两部委公布12种农药最大残留限量
    中华人民共和国卫生部 中华人民共和国农业部 公告 2010年第13号   根据《食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品中百菌清等12种农药最大残留限量》(GB25193—2010),自2010年11月1日起实施。   特此公告。   二〇一〇年七月二十九日 附:食品中百菌清等12种农药最大残留限量 1 范围 本标准规定了食品中百菌清等12种农药的最大残留限量。 本标准适用于与限量相关的食品种类。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 5009.105 黄瓜中百菌清残留量的测定 GB/T 5009.143 蔬菜、水果、食用油中双甲脒残留量的测定 GB/T 5009.145 植物性食品中有机磷和氨基甲酸酯类农药多种残留的测定 GB/T 5009.173 梨果、柑橘类水果中噻螨酮残留量的测定 GB/T 19648 水果和蔬菜中500种农药及相关化学品残留的测定 气相色谱—质谱法 GB/T 19649 粮谷中475种农药及相关化学品残留量的测定 气相色谱—质谱法 GB/T 20769 水果和蔬菜中450种农药及相关化学品残留量的测定 液相色谱—串联质谱法 NY/T 761 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定 SN 0279 出口水果中双甲脒残留量检验方法 SN 0499 出口水果蔬菜中百菌清残留量检验方法 SN 0592 出口粮谷及油籽中苯丁锡残留量检验方法 SN/T 1975 进出口食品中苯醚甲环唑残留量的检测方法 气相色谱—质谱法 SN/T 1977 进出口水果和蔬菜中唑螨酯残留量检测方法 高效液相色谱法 SN/T 2158 进出口食品中毒死蜱残留量检测方法 德国食品与日用品法(LMBG §35)推荐官方分析方法(2002年版) 3 术语和定义 下列术语和定义适用于本文件。 3.1 残留物 pesticide residues 任何由于使用农药而在农产品及食品中出现的特定物质,包括被认为具有毒理学意义的农药衍生物,如农药转化物、代谢物、反应产物以及杂质等。 3.2 最大残留限量 maximium residue limits(MRLs) 在生产或保护商品过程中,按照农药使用的良好农业规范(GAP)使用农药后,允许农药在各种农产品及食品中或其表面残留的最大浓度。 3.3 每日允许摄入量 acceptable daily intakes(ADI) 人类每日摄入某物质至终生,而不产生可检测到的对健康产生危害的量,以每千克体重可摄入的量(毫克)表示,单位为mg/kg bw。 4 技术要求 每种农药的最大残留限量规定如下。 4.1 百菌清(chlorothalonil) 4.1.1 主要用途:杀菌剂。 4.1.2 ADI:0 mg/kg bw~0.02 mg/kg bw。 4.1.3 残留物:百菌清。 4.1.4 最大残留限量:应符合表1的规定。 表 1 食品名称 最大残留限量,mg/kg 番 茄 5 黄 瓜 5 4.1.5 检测方法:按 NY/T 761、SN 0499、GB/T 5009.105规定的方法测定。 4.2 苯丁锡(fenbutatin oxide) 4.2.1 主要用途:杀螨剂。 4.2.2 ADI:0 mg/kg bw~0.03 mg/kg bw。 4.2.3 残留物:苯丁锡。 4.2.4 最大残留限量:应符合表2的规定。 表 2 食品名称 最大残留限量,mg/kg 番 茄 1* * 因无相关的监测方法,该限量为临时限量。 4.2.5 检测方法:参照 SN 0592规定的方法测定。 4.3 苯醚甲环唑(difenoconazole) 4.3.1 主要用途:杀菌剂。 4.3.2 ADI:0 mg/kg bw~0.01 mg/kg bw。 4.3.3 残留物:苯醚甲环唑。 4.3.4 最大残留限量:应符合表3的规定。 表 3 食品名称 最大残留限量,mg/kg 梨 0.5 4.3.5 检测方法:按 GB/T 19648、GB/T 20769、SN/T 1975规定的方法执行。 4.4 丁硫克百威(carbosulfan) 4.4.1 主要用途:杀虫剂。 4.4.2 ADI:0 mg/kg bw~0.01 mg/kg bw。 4.4.3 残留物:丁硫克百威、克百威、3-羟基克百威的总和。 4.4.4 最大残留限量:应符合表4的规定。 表 4 食品名称 最大残留限量,mg/kg 棉 籽 0.05 4.4.5 检测方法:按LMBG §35规定的方法执行。 4.5 毒死蜱(chlorpyrifos) 4.5.1 主要用途:杀虫剂。 4.5.2 ADI:0 mg/kg bw~0.01 mg/kg bw。 4.5.3 残留物:毒死蜱。 4.5.4 最大残留限量:应符合表5的规定。 表 5 食品名称 最大残留限量,mg/kg 柑 橘 1 4.5.5 检测方法:按 GB/T 5009.145、GB/T 19648、GB/T 20769、NY/T 761、SN/T 2158规定的方法执行。 4.6 氟酰胺(flutolanil) 4.6.1 主要用途:杀菌剂。 4.6.2 ADI:0 mg/kg bw~0.09 mg/kg bw。 4.6.3 残留物:氟酰胺。 4.6.4 最大残留限量:应符合表6的规定。 表 6 食品名称 最大残留限量,mg/kg 糙 米 2 4.6.5 检测方法:按 GB/T 19649规定的方法执行。 4.7 抗蚜威(pirimicarb) 4.7.1 主要用途:杀虫剂。 4.7.2 ADI:0 mg/kg bw~0.02 mg/kg bw。 4.7.3 残留物:抗蚜威。 4.7.4 最大残留限量:应符合表7的规定。 表 7 食品名称 最大残留限量,mg/kg 小 麦 0.05 4.7.5 检测方法:按 GB/T 19649规定的方法执行。 4.8 氯苯胺灵(chlorpropham) 4.8.1 主要用途:植物生长调节剂。 4.8.2 ADI:0 mg/kg bw~0.05 mg/kg bw。 4.8.3 残留物:氯苯胺灵。 4.8.4 最大残留限量:应符合表8的规定。 表 8 食品名称 最大残留限量,mg/kg 马铃薯 30 4.8.5 检测方法:按 GB/T 19649规定的方法执行。 4.9 噻螨酮(hexythiazox) 4.9.1 主要用途:杀螨剂。 4.9.2 ADI:0 mg/kg bw~0.03 mg/kg bw。 4.9.3 残留物:噻螨酮。 4.9.4 最大残留限量:应符合表9的规定。 表 9 食品名称最大残留限量,mg/kg 柑 橘 0.5 4.9.5 检测方法:按 GB/T 5009.173、GB/T 19648、GB/T 20769规定的方法执行。 4.10 双甲脒(amitraz) 4.10.1 主要用途:杀虫剂。 4.10.2 ADI:0 mg/kg bw~0.01 mg/kg bw。 4.10.3 残留物:双甲脒。 4.10.4 最大残留限量:应符合表10的规定。 表 10 食品名称 最大残留限量,mg/kg 苹 果 0.5 柑 橘 0.5 棉 籽 0.5 4.10.5 检测方法:按 GB/T 5009.143、SN 0279规定的方法执行。 4.11 异菌脲(iprodione) 4.11.1 主要用途:杀菌剂。 4.11.2 ADI:0 mg/kg bw~0.06 mg/kg bw。 4.11.3 残留物:异菌脲。 4.11.4 最大残留限量:应符合表11的规定。 表 11 食品名称 最大残留限量,mg/kg 苹 果 5 4.11.5 检测方法:按 GB/T 19648、NY/T 761规定的方法执行。 4.12 唑螨酯(fenpyroximate) 4.12.1 主要用途:杀螨剂。 4.12.2 ADI:0 mg/kg bw~0.01 mg/kg bw。 4.12.3 残留物:唑螨酯。 4.12.4 最大残留限量:应符合表12的规定。 表 12 食品名称 最大残留限量,mg/kg 苹 果 0.3 柑 橘 0.2 4.12.5 检测方法:按 GB/T 19648、GB/T 20769、SN/T 1977规定的方法执行。
  • 大连市分析测试学会批准发布《蔬菜中含氰基拟除虫菊酯类农药残留快速检测》等3项团体标准
    各有关单位:根据《大连市分析测试学会团体标准管理办法》的相关规定,大连市分析测试学会批准发布《蔬菜中含氰基拟除虫菊酯类农药残留快速检测》(T/DSAT 001-2024)、《冷鲜牛羊肉中鸭源性成分快速检测方法-胶体金免疫层析法》(T/DSAT 002-2024)、《水果蔬菜中三唑锡、三环锡、苯丁锡、三苯基氢氧化锡、三苯基乙酸锡的测定 液相色谱-电感耦合等离子体质谱法》(T/DSAT 003-2024)共3项团体标准,自2024年3月1日起正式实施,现予以公告。 大连市分析测试学会2024年2月1日关于发布《蔬菜中含氰基拟除虫菊酯类农药残留快速检测》等3项团体标准的公告.pdf
  • 舌尖上的安全--阿尔塔发布51种农业部例行监测农残标准品
    舌尖上的安全蔬菜水果中51种农业部例行监测农残的LC-MS/MS分析方法 为确保国民“舌尖上的安全”,农业部建立了农药残留例行监测制度,每年多次检测全国多个城市的蔬菜水果等农产品。在农业部规定的70多种例行监测农残中,有51种农药适用于液质联用 (LC-MS/MS) 分析 ,本方法可用于同时分析蔬菜水果中51种农业部例行监测的农残。 1. 此方法同时分析51种农药,分析时间仅7.5min,大大节省了样品分析时间。2. 样品前处理采用国际通用的QuEChERS (AOAC 2007.1) 方法,样品处理简单、干净。3. 该方法在Triple Quad™ 3500, 4500仪器上,韭菜、豆角和草莓3种基质中经过验证,真正地可用于实际样品的检测。4. 连续分析120个样品15小时,仪器分析结果稳定可靠。5. 现成方法包括所有样品处理,标准曲线配制,数据采集方法, 定量分析和报告模板。 应用于中文Cliquid® 软件中,简单、易上手,客户省去实验方法开发,直接应用方法分析样品,让初学者很快可以得到专家级的结果。 Figure 1. 韭菜基质中0.01 mg/kg农药的色谱图51种农药:多菌灵、啶虫脒、吡虫啉、毒死蜱、噻虫嗪、烯酰吗啉、苯醚甲环唑、腐霉利、氟虫腈、三唑磷、丙溴磷、二甲戊灵、克百威、辛硫磷、异菌脲、敌百虫、咪鲜胺、氟啶脲、阿维菌素、氧乐果、除虫脲、甲基异柳磷、敌敌畏、甲胺磷、灭多威、乙酰甲胺磷、嘧霉胺、甲萘威、涕灭威亚砜、涕灭威、乐果、3-羟基克百威、涕灭威砜、甲拌磷、甲基对硫磷、杀螟硫磷、倍硫磷、水胺硫磷、对硫磷、三唑酮、二嗪磷、灭幼脲、亚胺硫磷、马拉硫磷、哒螨灵、伏杀硫磷、嘧菌酯、甲氨基阿维菌素苯甲酸盐、虫螨腈、甲氰菊酯、联苯菊酯Figure 2. 连续分析15小时典型农药的峰面积变化图Table 1. 在韭菜基质中,典型农药的回收率和线性相关系数 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M 51种农药混标,10ppm订货信息产品名称订货信息产品名称订货信息产品名称1ST21058多菌灵1ST20348氟啶脲1ST20140甲基对硫磷1ST20297啶虫脒1ST25000阿维菌素1ST20111杀螟硫磷1ST20298吡虫啉1ST20167氧乐果1ST20065倍硫磷1ST20001毒死蜱1ST20345除虫脲1ST20173水胺硫磷1ST20350噻虫嗪1ST20127甲基异柳磷1ST20434对硫磷1ST21145烯酰吗啉1ST20097敌敌畏1ST21202三唑酮1ST21189苯醚甲环唑1ST20093甲胺磷1ST20094二嗪磷1ST21226腐霉利1ST20449灭多威1ST20349灭幼脲1ST20305氟虫腈1ST20144乙酰甲胺磷1ST20189亚胺硫磷1ST20438三唑磷1ST21161嘧霉胺1ST20168马拉硫磷1ST20155丙溴磷1ST20277甲萘威1ST25016哒螨灵1ST22249二甲戊灵1ST20273涕灭威亚砜1ST20172伏杀硫磷1ST20271克百威1ST20375涕灭威1ST21157嘧菌酯1ST20170辛硫磷1ST20098乐果1ST25001甲氨基阿维菌素苯甲酸盐1ST21164异菌脲1ST202593-羟基克百威1ST20222甲氰菊酯1ST20182敌百虫1ST20266涕灭威砜1ST20210联苯菊酯1ST21247咪鲜胺1ST20124甲拌磷1ST20396虫螨腈
  • 银纳米棒簇有序阵列构筑及SERS检测水中农药残留研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文小组与美国西弗吉尼亚大学教授吴年强小组及技术生物与农业工程研究所研究员黄青小组合作,在银纳米棒簇有序阵列构筑及基于其表面增强拉曼散射(SERS)效应检测水中农药残留方面取得进展,相关成果以卷首插画论文发表在《先进材料》(Adv. Mater. 2016, 28, 4871-4876)上。  拉曼散射光谱能够提供分子振动的指纹信息,是化学、生物、环境等领域中最具应用前景的分析技术之一。然而拉曼散射效应非常微弱,拉曼散射光强度约为入射光强度的10-6~10-9,所以需要利用贵金属纳米结构SERS基底来大幅度增强拉曼散射信号。对于理想的SERS基底,首先应具有高密度的“热点”(一般位于  该团队副研究员朱储红利用多孔阳极氧化铝和单层胶体球构成的复合模板,采用电沉积法成功构筑了银纳米棒簇有序阵列。这种分级有序纳米结构阵列的SERS增强因子高达108,并具有较好的信号均匀性和重现性,其信号特征峰强度的相对标准偏差小于10%。时域有限差分法模拟结果表明,相邻纳米棒顶端之间约2纳米宽的间隙内,具有强电磁场耦合产生的“热点” 该有序阵列的高增强因子正是源于这些密集分布的“热点”。采用该SERS基底能够同时检测水中多种痕量农药,例如甲基对硫磷和2,4-二氯苯氧乙酸等。该工作为大面积、可重复制备高度有序的纳米棒簇阵列提供了一种低成本的简便方法。相关研究结果表明银纳米棒簇有序阵列在基于SERS效应检测水中农药残留方面具有重要的应用前景。  相关工作得到国家重点基础研究发展计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。  文章链接  图1. 卷首插画  图2. 银纳米棒簇有序阵列同时检测水中的甲基对硫磷和2,4-二氯苯氧乙酸得到的SERS光谱。曲线I:水中0.3μ M甲基对硫磷和2μ M的2,4-二氯苯氧乙酸混合农药的SERS光谱 曲线II:0.3μ M甲基对硫磷的SERS光谱 曲线III:2μ M的2,4-二氯苯氧乙酸的SERS光谱。
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 农残新国标发布,屹尧科技冲锋在“前”
    9月3日,农业农村部会同国家卫生健康委、市场监管总局发布的新版《食品安全国家标准 食品中农药最大残留限量》(GB 2763-2021)将正式实施。与2019版相比,新国标新增农药品种81个,增幅16.7%;农药残留限量增加2985项,增幅为42%;达到国际食品法典委员会(CAC)相关标准的近2倍,并且采用的风险评估原则、方法、数据等要求与CAC和发达国家接轨。为进一步突出对高风险农药和重点农产品的监管,更大范围保障农产品质量安全,新国标规定了甲胺磷等29种禁用农药792项限量标准、氧乐果等20种限用农药345项限量标准。针对社会关注度高的蔬菜、水果等鲜食农产品,新国标制修订了5766项残留限量,占目前限量总数的57.1%;为加强进口农产品监管,制定了87种未在我国登记使用农药的1742项残留限量。作为分析检测先锋队的样品前处理仪器,屹尧科技全自动固相萃取仪和全自动凝胶净化色谱仪在相关检测方法中已经积累了丰富的应用经验,并可提供更高通量的前处理解决方案。屹尧科技自主研发生产的FLEXI全自动凝胶净化色谱仪,在首都科技条件平台检测与认证领域中心组织的2016年检测仪器设备验证与综合评价项目中,作为验评项目之一,由北京农业质量标准与检测技术研究中心作为核心实验室参与并对该仪器进行了评价。各实验室采用FLEXI 全自动凝胶净化色谱仪通过对环境样品,粮谷,茶叶以及动物样品等不同种类样品开展的实验分析,完成了对仪器整体性能指标的评价。其中,粮谷样品参考了《GBT 20770-2008 粮谷中486种农药及相关化学品残留量的测定 液相色谱-串联质谱法》,完成了对多菌灵,噻虫嗪,吡虫啉,啶虫咪,嘧霉胺,多效唑,烯酰吗啉,咪酰胺,腈菌唑,辛硫磷等十种农药的残留分析。茶叶样品参考了《GBT 23376-2009 茶叶中农药多残留测定 气相色谱质谱法》,完成了乐果,杀螟硫磷,毒死蜱,水胺硫磷,三氯杀螨醇,三唑磷,联苯菊酯,氯氰菊酯,氰戊菊酯,溴氰菊酯等十种农药的残留分析。并结合上述实验,验评结束后,在核心期刊中共同发表了若干相关文章。屹尧科技始终致力于推动样品前处理的自动化和智能化,追求更高通量、更高效率、更高可靠性和更省人工。继2015年屹尧科技全自动固相萃取仪EXTRA出口韩国农业部之后,我司固相萃取仪和GPC产品已广泛应用于各省市海关、疾控中心、食品药品检验所、粮油监测站、产品质量监督检验所等单位。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制