当前位置: 仪器信息网 > 行业主题 > >

北刘寄奴

仪器信息网北刘寄奴专题为您整合北刘寄奴相关的最新文章,在北刘寄奴专题,您不仅可以免费浏览北刘寄奴的资讯, 同时您还可以浏览北刘寄奴的相关资料、解决方案,参与社区北刘寄奴话题讨论。

北刘寄奴相关的资讯

  • Nutech® 助力2020年山东省生态应急演练暨比武竞赛
    2020年9月28日-29日,省生态环境厅、省委省直机关工委、省总工会、团省委、省妇联、省人力资源和社会保障厅、省应急厅、省青年志愿者协会在泰安市共同组织开展2020年山东省生态环境应急实兵演练暨生态环境监管技术比武竞赛活动。 本次比武竞赛分应急管理、应急监测、环境执法、辐射事故应急4个项目。采取现场实战和业务知识考核两方面进行。Nutech® 助力多个参赛队伍进行此次比武竞赛,Nutech3000便携式分析仪以其优越的性能特点深得使用者的好评,仪器内置电池测试使用时长大于六小时,配置提手和双肩式专用背包,或拎或背,检测灵敏度非常高,双FID+催化氧化,数据稳定,分析快,最快1秒更新记录一次NMHC数据。
  • 五大仪器设备助力勘测小行星“贝努”
    据美国国家航空航天局(NASA)官网消息,NASA将于美国东部时间9月8日下午7:05从佛罗里达州卡纳维拉尔角空军基地发射“源光谱释义资源安全风化层辨认探测器(OSIRIS-REx)”。作为美国首个小行星采样返回任务,OSIRIS-REx旨在探测一颗名为“贝努”(Bennu)的小行星,研究地球如何形成,生命如何开始,让人们更深入地认识那些可能撞击地球的小行星。  OSIRIS-REx首席调查员、亚利桑那州立大学图森分校(UAT)的但丁劳雷塔介绍,OSIRIS-Rex搭载了5台设备来探测“贝努”。由UAT承制的3台照相机组成的相机组主要用于观测“贝努”,并拍摄相关图像,帮助探测器选择合适的采样地点并见证采样事件 激光测高计用于测量航天器和“贝努”表面之间的距离并帮助绘制小行星的形状 热辐射光谱仪研究矿物质丰度并观测红外热光谱提供温度信息 可见光和红外光谱仪主要用于测量“贝努”发出的可见光和红外光,确定其矿物质和有机物组成 风化层X射线成像光谱仪将观测X射线光谱,以确定“贝努”表面化学成分及丰度。  除了这5台探测设备,还有洛克希德马丁太空系统公司提供的触摸和采样获得机制(TAGSAM)及样品返回舱,前者用于收集“贝努”表面样本,后者拥有一台隔热设备和一个降落伞,以便将样品送回地球。  按计划,重约2110公斤、完全由燃料驱动的OSIRIS-REx将搭载“阿特拉斯5(Atlas V)”火箭升空,于2018年抵达“贝努”,随后进入距离小行星表面约4.8公里的轨道进行为期6个月的勘测,之后利用机器手臂采集2—70盎司(约60到2000克)的地表样本,并于2023年将样本送回地球。  NASA科学任务董事会执行副主席杰夫约德说:“这一任务将有助于我们理解宇宙以及我们在其中的位置。”
  • 【应用分享】温中止痛中药——花椒的33种农残测定分析(固相萃取法)
    中药花椒本品为芸香科植物青椒、花椒的干燥成熟果皮。由于花椒基质中含有大量油脂类、色素类成分,这些成分易造成GC-MS/MS上目标物保留时间漂移、化合物不出峰和污染柱前端;LC-MS/MS上易导致目标物不出峰,从而导致分析结果干扰大、回收率差、线性不达标。今天,我们用固相萃取法来看花椒项目的前处理效果吧。适用范围本方法参考中国药典2020版2341第五法中的固相萃取法方式二,适用于含色素、挥发油、基质复杂中药材的农残检测。实验步骤一 / 对照品溶液的制备1.1 混合对照品配制精密量取禁用农药混合1 mL,置20 mL量瓶中,加乙腈稀释至刻度,摇匀,备用;1 .2 气相色谱-串联质谱法分析用内标溶液的制备取磷酸三苯酯对照品适量,精密称定,加乙腈溶解并制成每1 mL含1.0 mg的溶液,即得。精密量取适量,加乙腈制成每1 mL含0.1 μg的溶液。1.3 空白基质溶液的制备取花椒空白基质样品,同供试品溶液的制备方法处理制成空白基质溶液。1.4 基质混合对照溶液的制备分别精密量取空白基质溶液1.0 mL(6份),置氮吹仪上,40 °C 水浴浓缩至约0.6 mL,分别加入混合对照品溶液10 μL、20 μL、50 μL、100 μL、150 μL、200 μL,加乙腈稀释至1 mL,涡旋混匀,即得。二 / 供试品溶液的制备(QuEChERS法)提取:取花椒粉末(过3号筛)5 g,精密称定,加氯化钠1 g,加入50 mL乙腈,匀浆处理2 min,离心后分取上清液,残渣再加50 mL乙腈,匀浆处理1 min,离心后,合并两次提取上清液,减压浓缩至3~5 mL,加乙腈定容至10 mL,摇匀,置-20 ℃冷藏3 h或家用冰箱冷藏过夜,取出趁冷离心1 min(4000转/min),分取所有上清液置离心管中,摇匀,待净化。三 / 净化3.1 GC-MS/MS样品 SPE柱:SelectCore HLB-C中药农残专用柱500mg/6mL净化:取SelectCore HLB-C固相萃取柱500mg/6mL,加乙腈5 mL活化,再取上述花椒提取液2 mL置已活化的SelectCore HLB-C固相萃取柱中,收集样品液,待所有样品液进入柱体填料后,取5 mL乙腈洗脱,合并样品液与洗脱液,氮吹至2 mL即得。GC-MS/MS测定:精密量取上述减压回收后的样品溶液1 mL,氮吹至0.4 mL加入混合对照溶液,乙腈定容至1 mL,再加入0.3 mL磷酸三苯酯溶液,混匀,过0.22 μm尼龙针式过滤器,上机分析。3.2 LC-MS/MS样品 SPE柱:SelectCore HLB固相萃取柱500mg/6mL净化:量取上述花椒提取液3 mL,过SelectCore HLB固相萃取柱500mg/6mL,收集全部净化液,混匀,即得。LC-MS/MS测定:精密量取过固相萃取柱后溶液1 mL氮吹至0.4 mL加入混合对照品液,乙腈定容至1 mL,再加入0.3 mL水,混匀,过0.22 μm尼龙针式过滤器,上机分析。四 / 仪器分析4.1 GC-MS/MS气相色谱-串联质谱法(岛津GC-MS-TQ8040 NX)色谱条件色谱柱:NanoChrom BP-50+MS, 30m×0.25mm×0.25μm;进样口温度:250 ℃;升温程序:初始温度为60 ℃,保持1 min;以10 ℃/min升温至160 ℃;再以2 ℃/min升温至230 ℃,最后以15 ℃/min升温至300 ℃,保持6 min;载气:高纯氦气(纯度99.999%);进样方式:不分流进样;恒压模式:146 kPa;进样量:1 μL质谱条件电离方式:电子轰击电离源(EI);电离能量:70 Ev;接口温度:250 ℃;离子源温度:250 ℃;监测方式:多反应监测模式(MRM);溶剂延迟:10 minGC-MS/MS监测目标物注意事项:目标物定量离子CE电压参考离子CE电压地虫硫磷245.90137.005245.90109.0015甲基对硫磷263.10109.0013125.0047.0010甲拌磷砜124.9096.905153.0097.0010特丁硫磷砜198.90143.0010124.9096.905特丁硫磷亚砜186.0097.0020186.00124.9010氟甲腈、氟虫腈、氟虫腈亚砜、氟虫腈砜、久效磷、水胺硫磷采用LC-MS/MS监测结果,GC-MS/MS可不监测以上化合物。4.2 LC-MS/MS高效液相色谱-串联质谱法(岛津LC-MS 8045)色谱条件色谱柱:ChromCore C18-MS Pesticides, 2.6μm, 2.1×100mm;流动相:A:0.1%甲酸水溶液(含有5 mmol/L甲酸铵);B:乙腈-0.1%甲酸水溶液(含有5 mmol/L甲酸铵)=95:5;流速:0.3 mL/min;柱温:40 ℃;进样量:2 µL;梯度:时间(min)流速(mL/min)流动相A(%)流动相B(%)00.3703010.37030120.30100140.3010014.10.37030160.37030质谱条件离子源:电喷雾离子源(Electrospray ionization,ESI)正离子扫描;监测方式:多反应监测模式(MRM);离子源接口电压:4.5 kV;雾化气:氮气3.0 L/min;加热气:干燥空气10.0 L/min;DL温度:250 ℃;加热模块温度:400 ℃;接口温度:300 ℃;干燥气:N2 10 L/minLC-MS/MS监测目标物注意事项:目标物定量离子CE电压参考离子CE电压氟虫腈434.9081.0015434.90249.8030氟甲腈386.90350.8010386.90281.8035氟虫腈砜450.90281.8030450.90243.8066氟虫腈亚砜419.10383.1010419.10262.1027治螟磷、甲拌磷、甲拌磷砜、特丁硫磷砜、特丁硫磷亚砜、地虫硫磷参考GC-MS/MS分析结果;为提高仪器灵敏度可采用分段采集模式进行,分段采集可设置测定时间为各目标物保留时间前后0.5 min;挥发油基质样品自动进样器托盘温度不宜过低,否则个别样品会出现分层,导致分析结果不准确,建议25 ℃为宜。五 / 实验结果花椒样品液净化后颜色对比1花椒提取液2花椒提取液过SelectCore HLB固相萃取柱500mg/6mL3花椒提取液过SelectCore HLB-C固相萃取柱500mg/6mL六 / 实验结论通过以上实验数据比对,可以看出,SelectCore HLB-C 500mg/6mL固相萃取柱,针对花椒的挥发性成分和色素成分去除效果良好,这样,不仅保护了气相柱和离子源,还消除了由于基质效应带来的检测灵敏度下降等问题。其中普遍反映GC-MS/MS中存在较大基质抑制效应的地虫硫磷、甲拌磷砜、特丁硫磷砜、特丁硫磷亚砜等农残的回收率都得以保证。另外SelectCore HLB 500mg/6mL固相萃取柱,对花椒中挥发性成分去除效果良好,减轻了由于基质中干扰物导致的LC-MS/MS上样品中目标化合物响应低等问题。两款固相萃取柱搭配使用可为花椒的农药残留实验数据的稳定性和可靠性提供良好的帮助。中药农残相关实验耗材:方法类别推荐产品货号适用品种快速样品处理法(QuEC-hERS)SelectCore QuEChERS 萃取盐包6g MgSO4, 1.5g NaOAc 50/pkgQS-002川桐皮、川赤芍、木通、通草、灯心草、白芍、麦冬、泽泻、益智、姜黄、枸杞、大枣等含碳水化合物和少量色素类SelectCore QuEChERS 净化管15mL, 900mg MgSO4, 300mg PSA, 300mg C18, 300mg Silica, 90mg GCB 50/pkgQ-15PCSG01注意事项:前处理步骤较多,提取效率较为充分,溶液颜色较深,基质标每次只能一个点,加入盐包时会放热,注意冰浴降温对杀虫脒有吸附,回收率可能偏低SelectCore QuEChERS 净化管 15mL, Pesticide Residue A06(含色素挥发油中药农残Q法) 50/pkgQ-15A06木香、厚朴、羌活等含挥发油和色素类注意事项:改良后的配方可以吸附更多的色素和挥发油基质SelectCore QuEChERS 净化管15mL, Pesticide Residue A07(丹参中药农残Q法) 50/pkgQ-15A07丹参专用注意事项:改良后的配方提高了丹参农残测定的稳定性和重现性固相萃取方法1SelectCore QuEChERS 净化管15mL, 1200mg MgSO4, 300mg PSA, 100mg C18 50/pkgQ-15PC04基质简单,色素较少如:人参、西洋参、茯苓、白芍、山药、隔山撬、浙贝母、麦冬、葛根、粉葛、川赤芍、赤芍、白附片、川木通、桑白皮、三七、黄芪、甘草、天花粉注意事项:适用于含有较多有机酸和糖干扰的样品,对磺隆类和杀虫脒化合物吸附较强固相萃取方法2SelectCore HLB固相萃取柱200mg/6mL 30/pkgHLB060-060200-1紫草、北柴胡、陈皮、山楂、大黄、柴胡、当归、党参、地黄、防风、黄芪、桔梗、苦参、益母草、黄精、灵芝、茯苓、大青叶、板蓝根、甘草等含少量色素类注意事项:吸附色素能力相比固相1要好,对滴滴滴类化合物吸附力较强故GC-MS/MS样品分析不适用,多用于LC-MS/MS样品净化SelectCore HLB-A中药农残专用柱200mg/6mL 30/pkgHLBA60-060200-1千年健、桃仁、苦杏仁、花椒、没药、紫苏叶、厚朴、金银花、艾叶、款冬花、乌梅、桑叶、牛蒡子、菟丝子、酸枣仁、莪术、槟榔、小茴香、枳实、郁金、白头翁、菊花、陈皮、白花蛇舌草、褚实子、化橘红、川防风、当归等富含挥发油和色素类气质质测定项目注意事项:对磺隆类化合物吸附力强,且对三氯杀螨醇类、滴滴滴类化合物具有一定吸附作用,故LC-MS/MS样品分析不适用,GC-MS/MS样品分析需5mL样品上柱净化SelectCore HLB-B中药农残专用柱200mg/6mL 30/pkgHLBB60-060200-1色素较多,挥发油较多如:火麻仁、菟丝子、厚朴、酸枣仁、羌活、川芎、莪术、蛇床子、紫苏叶、姜黄、干姜、陈皮、枳实、青皮s、防风、莱菔子、槟榔、当归、小茴香、豆蔻、黄连、黄柏、虎杖、大黄、马钱子、化橘红、当归注意事项:对滴滴滴类化合物具有一定吸附性,适用于LC-MS/MS样品分析,3mL样品上柱净化SelectCore HLB-C中药农残专用柱500mg/6mL 30/pkgHLBC60-060500-1血竭、补骨脂、吴茱萸、沉香、没药、蛇床子、火麻仁、小茴香、马钱子等富含挥发油、色素和生物碱类气质质测定项目适用于重油重色素和生物碱的果实和种子类中药,GC-MS/MS样品分析需2mL样品上柱净化固相萃取方法3SelectCore GCB/NH2-II 固相萃取柱500mg/500mg/6mL 30/pkgGN100-061000-2色素含量多,含少量挥发油如:金银花、菊花、款冬花、忍冬花、益母草、淫羊藿、龙胆草、大黄、虎杖、何首乌、麻黄、苦丁茶、刘寄奴、山银花、忍冬藤、川牛膝、地黄、桑叶注意事项:洗脱液中有甲苯,毒性较大,且洗脱时间较长;对磺隆类农药有一定吸附LC-MS/MS样品分析时应联合其他净化方式分析磺隆类数据SelectCore GCB/NH2-A 固相萃取柱500mg/500mg/6mL 30/pkgGNA100-061000-1紫草、黄连、黄柏、何首乌、干益母草、吴茱萸、虎杖、大黄、决明子、胡黄连、苕叶细辛、菊花、千里光、蒲公英、艾叶、荆芥、茵陈、金银花、番泻叶、龙胆草、蛇床子、川乌、草乌、车前子、地耳草、金钱草、薄荷、广藿香、老鹳草、紫苏叶、忍冬藤、栀子、连翘、莲子心、竹叶柴胡、矮地茶、红景天、麻黄、白鲜皮、赶黄草、款冬花等注意事项:适用于干扰较为严重的GC-MS/MS样品分析。若用于LC-MS/MS样品分析,应联合其他净化方式液相色谱柱ChromCore C18-MS Pesticides 2.6μm, 2.1×100mmS013-026018-02110S气相色谱柱NanoChrom BP-50+MS, 0.25μm,30m×0.25mmG5025-3002
  • 谭久彬院士:要努力建设一流的仪器产业和一流的测量体系
    9月23日,在第六届中国企业论坛科学家讲坛上,中国工程院院士谭久彬作了题为“新一代国家测量体系与质量强国建设”的主题报告。他指出,要努力建设一流的仪器产业和一流的测量体系,致力于建设质量强国。  谭久彬从建设质量强国面临的问题和困难破题,总结工业发达经济体近百年来测量科技创新与制造业相互促进、协调发展的历史经验,深入分析我国提升制造质量的迫切性与特殊性,以及当前国家测量体系存在的紧迫问题,并用一些典型案例深入浅出地讲解,阐释了加快构建新一代国家测量体系的初步构想,建设新一代国家测量体系的机遇和后发优势。  他认为,百年科技发展一般规律,科学是从测量开始的,没有测量就没有科学。工业发达国家的经验显示,没有成体系的精密和超精密测量能力,就没有充分的精准数据,就没有精度调控、性能调控和质量调控。体系完整、强大的仪器产业体系是工业测量体系建设的基础。“凡是科技强国,都是仪器强国;凡是制造强国,都是仪器强国;凡是仪器强国,都有一个强大的国家测量体系来支撑着高端制造的高质量发展。”谭久彬说。  “要想造得出,必先测得出,要想造得精,必先测得准。”谭久彬表示,构建新一代国家测量体系是实现产业高质量发展的必然选择,也是补齐我国工业短板,特别是高端装备制造质量短板的必由之路。目前我国制造业正处于由制造自动化向数字化、网络化和智能制造转型的过程中,大力推进精密和超精密测量技术发展和新一代测量体系建设比以往任何时候都更加迫切。要抢抓第四次工业革命历史机遇,切实发挥我国工业测量数据资源厚重优势,走数字化、网络化、智能化并行推进的创新之路,以精密测量、超精密测量和完整精度测量能力整体提升,推进我国高端装备制造产业能力跃升和制造业整体水平提升。  中国科技新闻学会党委副书记、副理事长兼秘书长,中国科协科学技术传播中心副主任陈锐在主持中阐述了对新质生产力的理解,他表示,这一全新概念肯定了新产业孕育的新动能,界定了新时期推动经济发展的决定力量,指明了我国经济高质量发展的主攻方向,加快发展新质生产力,必须坚持科技创新引领,实现人才强、科技强进而促进产业强、经济强。他表示,中国式现代化是在新时期、新理念和新格局下的一次伟大实践,是一场广泛而深刻的经济社会系统性变革,需要积极探索并持续推进“政产学研金介贸媒”协同联动的全社会组织动员模式,进一步开辟新赛道、增强新动能、塑造新优势,以新质生产力厚植产业经济高质量发展的沃土,在推进中国式现代化建设中谱写国资央企新篇章。
  • 河北双一流揭晓:河北科技“基因编辑”入选世界一流学科
    在国家启动双一流大学建设计划启动之际,河北省的双一流建设方案公布了入选高校和学科名单。受韩春雨“诺奖级”论文重复性争议影响而成为关注焦点的河北科技大学入选二层次大学,其中生物工程(基因编辑)入选世界一流学科建设项目。  近日,根据河北部分高校的新闻报道,《河北省人民政府关于统筹推进一流大学和一流学科建设的意见》颁布实施,河北省教育厅制定了《一流大学和一流学科建设资金分配方案》,决定分类支持、重点建设若干所一流大学和一批一流学科。其中,河北大学、河北工业大学、燕山大学、河北师范大学等4所高校成为河北省重点支持的国家一流大学建设一层次高校。河北农业大学、河北医科大学、华北理工大学等8所高校成为国家一流大学建设二层次高校。河北省高校共有17个学科获批世界一流学科建设项目,37个学科获批国家一流学科建设项目。  四所高校入选第一层次  本次共有4所高校入选河北省重点支持的国家一流大学建设一层次高校,包括河北大学、河北工业大学、燕山大学和河北师范大学。四所高校中,河北工业大学入选了国家“211”工程,河北大学、燕山大学和河北师范大学均为省部共建高校、中西部高校基础能力建设工程高校。世界一流学科建设项目方面,河北工业大学和河北师范大学各有四个学科入选,河北大学和燕山大学各有三个学科入选,均有四个学科进入国家一流学科建设项目。  八所高校入选第二层次  本次共有八所高校进入河北“双一流”建设第二层次,包括河北农业大学、河北医科大学、华北理工大学、石家庄铁道大学、河北科技大学、河北经贸大学、河北工程大学和河北中医药学院。各高校入选世界一流学科建设项目和国家一流学科建设项目如下:  入选高校将迎来重大发展机遇  根据燕山大学新闻网的消息,2016年计划拨付燕山大学“双一流”建设专项资金将达到8000万元,“十三五”期间,持续投入,滚动建设。仅一个学校每年获得专项资金就近亿元,可见此次河北省“双一流”建设投入之大。  与东部经济发达省份相比,河北省的高等教育相对比较薄弱,虽然河北省各大高校近年来均有所发展,但是和全国其他地区特别是东部地区相比,高等教育总体偏弱。在全国各省陆续发力高水平大学建设之际,河北省高校要想在未来取得更快的发展,那么更需要更大力度的支持,而此次公布实施的《河北省人民政府关于统筹推进一流大学和一流学科建设的意见》,对于入选河北省双一流建设高校来说,可谓是一场空前的机遇。
  • 李政道获"世界杰出华人奖":继续为荣耀中华努力
    首位华裔诺贝尔物理学奖得主李政道教授11月6日在北京亲手接过“世界杰出华人奖”证书及奖杯。   “接受这个奖励,是我莫大的荣誉”,李政道表示,他将与其他杰出华人一起,继续为祖(籍)国的强大,为民族的奋起,为荣耀中华努力。   “世界杰出华人奖”由“世界华商投资基金会”于2003年创办,至今举办十二届,获奖者已超过百名,均为各行各业的佼佼者。与李政道同期获奖的其他优秀华人还有,国际巨星刘德华、华裔男高音莫华伦等人。   此前在香港举行的颁奖典礼上,李政道因纽约哥伦比亚大学有重要事务,未能前往亲自接受证书。他特意发去贺词,赞誉“第十二届世界杰出华人奖炎黄英才,情系华夏。”   近日,年逾84岁高龄的李政道再次回到中国,于北京师范大学破解“钱学森之问”。6日,李政道在他建立的中国高等科学技术中心内,亲手接过“世界杰出华人奖”,并兴致勃勃地讲解“物之道”,展示两个金原子对撞后产生的奇妙景象。   他说,作为一名华人,有机会在有生之年,用自己微薄之力,竭尽所能,为中国、为世界做一些贡献,这是自己职责所在。   记者了解到,李政道目前仍勤奋科研,对科学热情丝毫未减。他每年固定从美国回到位于北京的中国高等科学技术中心两次,指导科研项目。   颁奖方表示,“世界杰出华人奖”旨在表扬全球华人对各地华人社会及对国家的贡献和影响,藉此团结和鼓励更多华人热爱祖(籍)国,透过参与社会公益事业,促进中国与世界各国人民的和谐发展与进步。
  • Nutech发布Nutech 3000 便携式甲烷/非甲烷总烃分析仪新品
    【技术参数】检测方法:催化氧化+FID测量范围:0.1~10000ppm(CH4,C3H8等价)。检出限:≤0.07mg/m3(以碳计)转化效率:≥95%相对标准偏差:≤2% (CH4)测量精度:≤±0.2%线性误差:±2%(CH4)加标回收率:±20%分析时间:<2min 工作环境:温度:0℃~40℃;相对湿度:≤85%;大气压:(80~106)kPa电源电压:DC24V电源,可用AC(220±10%)V/(50±2%)Hz【性能特点】1、高度集成设计,前所未有的便携体验:①在满足功能需求的前提下,选用微型氢气瓶等小型化或轻量化部件,辅以高度集成设计,整机重量不到12Kg(含催化模块、氢气瓶等);②配置提手和双肩式专用背包,或拎或背,轻松搞定。2、使用方便,操作简单:①大容量电池(【45】Ah)供电,现场无需市电供应;②内嵌大屏平板电脑(可取放)、WI-FI通讯,人机交互界面友好,用户可通过平板电脑预置软件现场【10】m范围内操控仪器或取下平板、办公室内读取数据;3、测试效率高:①系统预热时间小于【5】min;②采用新型催化剂,转化效率高(≥95%)、气路清扫速度快,支持连续不间断测量;③双FID和自动化流路设计,分析周期2min。4、全过程管控,测试结果精准:①自采样口到FID检测器全程高温(>120℃)伴热,最大限度避免高温高湿气体场合下样品的冷凝损失;②采样管耐高温、防腐蚀,且内含过滤装置,有效过滤颗粒物,避免样品污染和吸附;③自主研发的高精度EPC和FID检测器,控流精准5、数据处理功能强大:具备数据文件自动记录与存储、历史数据查询、再处理与打印功能;具备显示、设置系统时间和时间标签功能;报表和报告功能。6、持续工作时间长:60L氢气瓶和大容量电池支持仪器连续工作时间超过6h。7、可扩展性:①用户根据需要适配伴热管线(规格:24V直流2m、220V交流3m和5m);②标气瓶和氢气瓶可以重复充放,活性炭净化管和FID内的点火丝等耗材可以更换。创新点:1.Nutech 最新研发便携式甲烷/非甲烷总烃分析仪,外观新颖,整体重量仅约12KG; 2.全程高温伴热,加入新型催化剂,用于双FID设计,配有WI-FI通讯。 Nutech 3000 便携式甲烷/非甲烷总烃分析仪
  • SDL Atlas推出经济、好用的PnuBurst胀破强度测试仪
    ROCK HILL, S.C. – SDL Atlas一直致力于技术创新,开发新的台式 PnuBurst测试仪器,此仪器内已预先设定好测试程序,使用便捷,非常适合只需要一般性爆破测试的客户群体,但不可代替受许多企业青眯的AutoBurst测试仪器。   不管是公司新型号PnuBurst胀破强度测试仪,还是公司原有型号AutoBurst数字式自动胀破强度测试仪,都符合国际安全与测试标准。可用于检测梭织、无纺布、纸、纸板和薄膜,具有重复性和准确性。   PnuBurst属于经济的台式爆破测试仪 主要采用气动爆破装置 彩色触摸屏 用户预先选择好测试要求、自动测试夹持杯尺寸和探测夹持环,然后按要求预先设定程序控制。 PnuBurst操作非常方便,爆破测试功率达到1500kPa (15bar, 217psi.) 。   配有USB 端口、数据线和可随身带的软件,方便用户保存和分析测试数据,通过简单地观测和记录PnuBurst显示屏上的结果,就可简化日常的工作。   对于需要更为复杂爆破测试的用户,SDL Atlas的全自动AutoBurst数字式自动胀破强度测试仪,采用传统的液压技术,功率达到6000kPa (60bar, 870psi)– 性能明显优于其他品牌同类产品。AutoBust可检测纸、服饰用纺织品、技术纺织品和其它对爆破强度要求相当重要的相关材料。   此外关于测试夹持杯的选择,SDL Atlas的爆破测试仪可测最大面积达到直径为 70mm – 对弹性织物的精确测试至关重要。   SDL Alta可为用户提供一站式的全面的纺织测试品、物料、消耗品及服务。我们在英国、美国、香港及中国均设有办事处,并在全球100多个国家设有代理处。SDL Atlas可以为全球各地的客户提供全方位的服务。我们的目标是为客户提供最优惠、最完善的解决方案。
  • 环保部:京津冀空气好转“人努力”贡献超8成
    p   近五年来,京津冀等区域空气质量改善中“人努力”超过80%,天帮忙在20%以下。下一步,京津冀及周边等重点地区将成为蓝天保卫战三年计划的主阵地,设置具体的量化性指标。 /p p   “大气十条”目标全面完成 /p p   近日,环保部召开新闻发布会。环境保护部大气环境管理司司长刘炳江介绍,2013年,党中央、国务院颁布实施“大气十条”,5年来,全国空气质量总体改善,重点区域明显好转,全面实现空气质量改善目标。 /p p   数据显示,2017年,全国地级及以上城市PM10比2013年下降22.7%,京津冀、长三角、珠三角等重点区域PM2.5分别比2013年下降39.6%、34.3%、27.7%,珠三角区域PM2.5平均浓度连续三年达标 北京市PM2.5从2013年的89.5微克/立方米降至2017年的58微克/立方米 “大气十条”确定的各项空气质量改善目标得到实现。 /p p   刘炳江说,“大气十条”收官以后,环保部正在抓紧研究起草蓝天保卫战的三年作战计划,确立具体的战役,一个战役接着一个战役打。三年计划主攻阵地包括京津冀及周边等重点地区,重点突破点就是联防联控,重点解决重污染天气。未来三年上述措施要有时间表,要有具体的量化性指标。 /p p   他表示,“京60”给我们一个很重要的经验,北京60微克/立方米的浓度目标,这是与人民群众感受直接相关的,人民群众的蓝天幸福感更多是从具体数字上看,老百姓不在乎下降比例多少,更在乎绝对值是多少,因此,下一步可能会提出一些基于不同区域的绝对值。 /p p   京津冀空气好转“人努力”超8成 /p p   近几年空气质量大幅好转,几分靠天,几分靠人?对此,国家大气污染防治攻关联合中心副主任、中国工程院院士贺克斌介绍,北京2017年PM2.5的年均浓度降到58微克/立方米,2017年的气象条件做出了有力贡献。 /p p   就北京而言,2017年的PM2.5相比2016年下降了15微克/立方米,这15微克里面,人努力大约占70%,天帮忙大约占30%。最近有关气象、环境、能源多个领域的专家、院士们对大气污染防治重点区域,比如京津冀、长三角等地开展空气质量改善中气象因素的定量分析。 /p p   初步结果显示,2013至2017年,如果按照近几十年的长周期分析,京津冀、长三角区域气象条件比较差。但这五年中,年际波动有明显变化,跟2013年相比,2014年、2015年的气象条件较差,2017年略有转好。通过模型分析显示,相对于2013年,2017年因为气象条件略有转好,导致PM2.5在京津冀下降5%,在长三角下降7%。实际上监测数据表明,这五年京津冀下降了39.6%,而长三角下降了34.3%。按照这两个数据来看,这两个重点区域在最近五年降幅当中,人努力占了80%以上,而天帮忙在20%以下。 /p
  • 美国行:Nutech® 代表性客户掠影
    编者小记:为更好掌握产品知识、深层次理解客户应用需求,3-5月,Nutech® 中国团队成员在创始人兼首席科学家George Dai博士带领下走访美国用户,小编梳理部分代表性客户进行介绍,与诸君分享。 1.SCAQMD(南加州空气质量实验室)1976年加州政府立法建立,全称南海岸大气质量管理区(the South Coast Air Quality Management District, SCAQMD),SCAQMD及其成员的努力极大改善了南加州地区的空气质量,并成为解决区域内跨界大气环境问题的典范。近年来,包括中国在内的诸多其他国家同行前往该实验室考察、交流。SCAQMD是Nutech® 恒流采样产品的老用户,应用Nutech2701已有很长时间。截止目前,SCAQMD仍在用 Nutech® 预浓缩和自动进样产品。包括其负责人Steve在内的实验室空气监测团队对Nutech产品表示认可,并对升级款Nutech2703自动采样装置表现出的浓厚兴趣。 ▲应用SCAQMD实验室的Nutech8900DS预浓缩仪和3603自动进样器 ▲George Dai Ph.D.向SCAQMD实验室科学家演示手机APP控制2703自动采样 2.马里兰州实验室 该实验室为马里兰州政府实验室,连续多年参与美国EPA评测,使用Nutech8900DS预浓缩仪和3603自动进样器超过5年,产品的长期稳定性和可靠性得到了实验室工程师团队的认可。 ▲Dave及其团队成员仔细阅读Nutech® 产品资料 3.NIST(美国国家标准与技术研究院) NIST成立于1901年,原名美国国家标准局(NBS),1988年8月,经美国总统批准改为美国国家标准与技术研究院(National Institute of Standards and Technology,NIST),直属美国商务部,从事物理、生物和工程方面的基础和应用研究,以及测量技术和测试方法方面的研究,提供标准、标准参考数据及有关服务,在国际上享有很高的声誉。凭借过硬的产品性能和质量,Nutech® 产品赢得了近乎苛刻的NIST的认可和信任,目前,在材料测量实验室应用时间最长的一个产品是Nutech3551预浓缩仪,其服役时间已逾15年,可谓“老古董”般的存在。 ▲物理科学家(Physical Scientist)Christina在操作Nutech3551预浓缩仪▲15年“高龄”的Nutech3551预浓缩仪,亮着红光的电源开关和右上角的蓝色标签意味着他依然“健康” 4.Linde(林德) Linde是全球领先的气体和工程公司之一、国际气体市场的领导者,其所生产的VOC标准气体(TO15、TO14、PAMS等)代表着世界先进水平。预浓缩仪从最初的3550DS、3551DS到8900DS,Nutech都是Linde的唯一供应商。在过去的十年里,Linde使用“Nutech自动进样器+预浓缩仪+Agilent GC-MS”的组合,获得了数千个VOC混合标气的分析结果,确保Linde产品的高品质及质量控制的稳定可靠。 ▲正在工作中的Nutech预浓缩仪,全球数以千计的VOCs分析实验室中的混合标气大多来源于此 ▲悬挂在墙壁上的吉尼斯世界纪录证书见证着Linde实验室在混合标气研制领域的“高度” 期间,Nutech® 团队还走访了DNREC、Restek、STAT Analysis、AECOM、Air Toxics、TCEQ等合作伙伴或潜在客户。
  • Nutech3000助力青岛市西海岸新区生态环境分局完成应急监测
    近日,青岛市西海岸生态环境分局在启动突发环境事件应急监测预案中,使用到Nutech 3000便携式甲烷/非甲烷总烃分析仪,成功在最早时间完成了对事故现场周边空气质量污染因子的监测。此次应急监测工作要求监测队伍拥有高水准的业务素质,能迅速、准确地掌握事故现场的污染状况。利用Nutech便携式设备能有效保障应急监测工作,数据结果即快又准,为火灾事故的应急处置提供了准确的数据支撑。
  • 泰坦怒放年|樱花烂漫季,雷霆战爆启
    3月纯净烂漫的樱花在怒放 斗志昂扬的泰坦科研服务郎在拼命忙 22个工作日11场校园行华东、华南、华中、西南这方唱罢那方登场全国范围全力开推 ......俗话说“兵马未动,粮草先行”为了将“怒放”年打的更漂亮我们做的第一步就是各大区作战物资的准备和校园推广展台形象的升级 一切准备就绪后便开启了我们的连轴转模式titan/泰坦耗材、adamas-beta/阿达玛斯、general-reagent/通用试剂、titan/泰坦仪器、“阿达玛斯”学术论文奖等纷纷走进校园得到了高校师生们的热烈欢迎也使得泰坦科技在高校中的知名度进一步上升下面我们就一起看看泰坦科研服务郎都在哪些高校完成“打卡”了吧~华南区域1月11-12日北京大学深圳研究生院2018迎新晚会 作为晚会的赞助商,泰坦科技(titan)华南区销售代表上台为学生们颁奖。展台展示 论文奖咨询 产品咨询华中区域3月24-25日武汉大学有机化学樱花论坛(第二届)论坛现场及泰坦科技(titan)展台 现场咨询西南区域3月20日西华师范大学 展台展示 现场产品咨询、试用在西华师范大学,泰坦移液枪、泰坦手套可是诸多老师的“心头好”。3月21日西南医科大学摆展现场 产品咨询论文奖咨询西南医科大学位于泸州,泰坦服务郎是首次来到这座闻名全国的“酒城”。此次摆展现场,第五届“阿达玛斯”学术论文奖引起了来往师生们的浓厚兴趣,纷纷咨询评选详情。3月22日四川理工学院论文奖咨询 产品咨询在四川理工学院,论文奖依然很受欢迎,再加上琳琅满目的产品展示,人气不旺就没天理啦~ 苏皖区域3月19-20日安徽师范大学此次在安师大开展校园推广活动,得到了仪器供应商ika的大力支持。泰坦科技(titan)联合ika进行校园售后巡检服务的举动得到了学校师生的称赞。3月21-22日安徽工业大学探索平台&ika展台 现场咨询 在安工大,我们与ika一起进行的实验室巡检服务仍在继续...3月27日蚌埠学院展台展示3月份,与ika 联合举行的校园推广活动第三场来到了蚌埠学院。在这里,仪器供应商艾尔杰加入我们,一起奋斗,共同开拓市场。3月28日南京中医药大学产品咨询 扫码关注种类全、品质高的产品赢得了一众师生的“芳心”!!!3月29日中国药科大学摆展现场 产品咨询在药科大,泰坦科技(titan)最新上市的新仪器产品超声波清洗器、超薄磁力搅拌器,加入展品方阵。3月29日淮北师范大学展台展示淮北师范大学是我们与ika本月的第四场活动目的地。在这里,titan/泰坦仪器受到老师们的诸多喜爱,不过我们的另一自主品牌general-reagent/通用试剂也不遑多让。生命不息,奋斗不止!4月我们将继续以雷霆之姿尽展怒放拼搏的决心 第五届论文奖投稿倒计时点击“阅读原文”了解更多投稿详情
  • 有序工作 健康生活 ——Nutech® 中国12月团队活动综述
    【编者按】进入12月,在忙于客户订单交付的同时,Nutech® 中国开展了营销培训、健康体检、团建等一系列活动,以期“磨刀不误砍柴工”,让员工以专注的态度、专业的能力、良好的职业素养更好服务客户。营销培训12月2-6日,为期一周的Nutech® 中国营销培训在深圳运营中心举行。本次培训由营销部组织,包括各省区经理、市场专员、销售内勤在内的全体营销人员以及部分在深售后服务工程师参加。培训分为VOCs政策与技术标准、产品知识与实操、理论考试3个环节,在简要概述VOC背景知识的基础上,重点解读了《2019年地级及以上城市环境空气挥发性有机物监测方案》等政策规定以及HJ759-2015、USEPATO15\14等技术标准,结合具体应用案例对Nutech® 实验室分析(非甲烷总烃分析仪、苏码罐预浓缩系统、自动清罐仪、高精度静态稀释仪)、便携式分析、在线监测系统等三大VOC产品线的十余种产品逐一详尽介绍并安排部分产品的实践操作。Nutech中国市场营销培训现场体检与团建Nutech® 希望团队成员在努力工作的同时,关注自己的身体状态,以健康的体魄和积极的心态投入工作和生活。市场一线员工回深之际,12月7日,Nutech® 中国2019年度员工健康体检活动如期开展,除部分因订单交付、项目投标准备等工作原因无法到场的同事外,其他在深员工及部分员工家属参加了本次体检。体检结束转场至莲花山脚下大快朵颐(团队聚餐)后,大家前往莲花山公园、向着山顶广场进发。莲花山位于深圳市中心区、毗邻市民中心,2016年入选《全国红色旅游景点景区名录》。是日,天气晴朗,公园游人如织。大家沿着登山小径,在椰树、繁花和满目绿色中穿行,边走边聊,新员工的陌生感、不同部门员工之间的间隙消失于无形。期间,虽然经历走错路的小插曲,但是年轻就是资本,不到一个小时,全体成员完成了登顶。站在山顶广场凭栏远眺,创新、充满活力的深圳尽收眼底。Nutech® 中国部分员工在邓小平铜像前合影
  • Nutech® 应邀出席2019 VOCs China科技大会
    8月21-23日,“2019全国挥发性有机物(VOCs)污染防治科技大会暨2019全国挥发性有机物(VOCs)污染防治技术装备博览会”(简称“2019 VOCs China科技大会暨博览会”)在江苏昆山国际会展中心举行。应举办方邀请,Nutech® 在“园区(VOCs、恶臭异味)监测与达标治理及其智慧化监管”专题分论坛上做名为《美国园区厂界恶臭管控经验》的主题报告。受Nutech® 首席科学家戴各生博士委托,Nutech® 中国唐芳东从恶臭物质概述、美国对恶臭污染的监管、恶臭监测方法及WRPS项目实践、未来展望等四个方面代为阐述。戴博士认为,鉴于恶臭物质绝大多数是挥发性有机物,不稳定、易分解、易变性,在监测上具有一定的难度,传统的嗅辨法虽然经济型较好、但容易受主客观因素的干扰;电子鼻有很好的时效性,却偏差较大且不能定量。结合Nutech® 在美国WRPS项目上的监测实践,戴博士认为,采用“在线监测+实验室分析”的方法能够较好地解决恶臭污染的定性、定量监测问题。在该方案中,触发式取样是一种创新,很好地解决了恶臭污染监测的时效性问题。据悉,本次大会由中华环保联合会和昆山市人民政府主办、中华环保联合会VOCs污染防治专业委员会和昆山市环境保护局共同承办。全国工商联原副主席、中华环保联合会主席孙晓华,生态环境部原总工程师万太本,中国工程院院士刘文清、侯立安、贺泓,中国环境科学研究院柴发合等领导和专家出席本次会议。
  • 坚守与努力铸就里程碑 ——全球第300套DynaCool系统落户南方科大
    近日,全球300套DynaCool系统成功在南方科技大学安装,该套系统能够为用户提供9T磁场、0.4K低温比热和电输运测量功能,该系统可被用于研究低温磁场环境下低维强关联磁性材料中的量子临界行为以及新型量子材料的探索。匠心传承Quantum Design成立于1982年,1984年推出了代磁性测量设备SQUID,1995年推出了套PPMS系统。在那个强磁场低温设备弥足珍贵的年代,许多低温强磁场实验只有全球实验室才有条件进行,而PPMS打开了广大科学家通往低温强磁场殿堂的大门,给许多材料物理的研究者提供了便利,也推动了低温磁场环境下各种测量技术的发展。DynaCool是PPMS系统的新型号,目前全球已安装300套。PPMS系统安装总量已达1500套,正是稳定可靠的系统和优质专业的售后服务才成就了安装数量一个又一个的里程碑。这个数字背后是Quantum Design工程师们忙碌的身影和不懈的努力。十年如一日的坚守为的是保证用户使用设备时的一份安心,截止目前已有近百套PPMS设备服役10年以上,它们用光阴见证了科学家推动全球科技进步的光辉历程,并将续写未来科技的宏伟蓝图。创新发展随着氦气资源的日趋紧张,2011年Quantum Design在历时近5年的研发后终于推出了全干式的无液氦综合物性测量系统DynaCool,使设备的性能有了全面提升,其优化的制冷设计将氦气消耗量降低到前所未有的水平,系统启动仅需要1/4钢瓶氦气,大节省了用户的运行成本。DynaCool一经推出就迅速获得了广泛的好评,尤其对许多偏远地区无法获得稳定液氦供应的客户而言解决了一大麻烦。此外DynaCool延续了PPMS体系测量选件的标准化设计,甚至能够让用户将老系统的许多部件转移到新系统上重放光彩。这20余年使用统一标准的PPMS是Quantum Design薪火相传的技术积累更是给所有用户始终如一的承诺。Quantum Design也在广大科研工作者的大力支持下稳步前行。栉风沐雨的Quantum Design一线工程师也有幸见证了PPMS与我国科研共同发展的光辉历程。2001年国内台PPMS系统安装完成,2013年国内套DynaCool系统在北京大学安装完成,2015年全球100套DynaCool在复旦大学安装完成,2017年全球200套DynaCool在河南师范大学安装完成,2019年全球300套DynaCool在南方科技大学安装完成,未来值得期待… … 图文展示
  • 诺贝尔奖发了114年,还怒赚几十亿,是如何做到的?
    p   一年一度的诺贝尔奖总能吸引大家的眼球,小编的朋友圈里真是分分钟被各种刷屏的节奏。诺奖之所以举世瞩目,是因为它能够给获奖者提供足够高的荣誉,还有足够丰厚的奖金。那么大家有没有想过,诺奖发了100多年,为什么奖金不见少,反而还变多了呢?为什么会出现这种“钱生钱”的神奇现象呢? /p p   诺贝尔奖,顾名思义是以瑞典著名化学家阿尔弗雷德· 诺贝尔命名的。这位化学家生前立了一份遗嘱,用自己的部分遗产设立了一个基金。 /p p   诺奖分设物理、化学、生理或医学、文学、和平五个奖项,以基金每年的利息或投资收益授予前一年世界上在这些领域对人类作出重大贡献的人。” /p p   1诺贝尔奖是怎么来的诺贝尔奖起源于一则错误的新闻报道。1888年,一家法国报纸错误地刊登了阿尔弗雷德· 诺贝尔去世的消息,后来这家报纸不但不承认错误,还火上浇油地“黑”了一把诺贝尔:“阿尔佛雷德?诺贝尔博士,这个因找到了以史无前例的速度杀死更多人的方法而发财的人,昨天去世了。” /p p   据说,诺贝尔想到自己可能要以“死亡商人”的称号被后人铭记,十分痛心 为了防止“死后被黑”,他决心用自己的财产设立一个奖项,颁发给那些对人类作出积极贡献的人。 /p p   诺贝尔奖也因巨额奖金而引发了大批关注。毕竟,科学家们除了科研任务,也是要赚钱吃饭,养家糊口的。 /p p   2诺奖奖金为何用不完诺贝尔拿出的这部分遗产为3100万瑞典克朗,1901年首次颁奖时,奖金是按照诺贝尔当初的遗愿来的——相当于一位教授20年的工资。 /p p   上世纪90年代开始,诺奖金额开始飚升,到2001年已经上涨到1000万瑞典克朗,并一直维持到2011年。2011年,诺奖总资产仍然高达28.6亿瑞典克朗,是设立之初的92倍。 /p p   3000多万瑞典克朗花了114年还没有用完,还增值92倍。看到这个数字,小编也是惊呆了,因为这简直是投资理财界的一个奇迹。 /p p   诺贝尔基金会在不同领域的投资有着一定的分配,这种“不把鸡蛋放在同一个篮子里”的做法,降低了基金会的的投资风险,保证了诺奖奖金的盈利。 /p p   机遇总是与风险并存,投资理财不可能总是一帆风顺。2011年,由于全球经济表现不佳,股市不振,诺贝尔基金会光股票投资亏损。因此,诺奖每项奖金的金额也从1000万瑞典克朗降低到800万,相当于600多万人民币。 /p p   不过在小编看来,600万人民币也不是一个小数字。 /p p   3诺奖得主怎么用奖金如果你突然有了600万,要怎么花呢?先醒醒,小编带你看看诺贝尔奖的获奖者都是怎么使用奖金的—— /p p   根据统计数据及新闻报道,大部分诺贝尔和平奖得主通常会把奖金捐给慈善机构 科学奖得主则会被各种学术会议和讲座包围,忙得晕头转向的他们可没时间考虑怎么花钱 文学奖得主的花钱方法则是个迷——因为他们不愿意公开。 /p p   当然,大部分得奖者都会把奖金当作科研经费或者干脆在金融或者不动产领域进行投资。 /p
  • 湖北省质检院研发成功电子级硫酸产品检测新方法
    近日,湖北省产品质量监督检验研究院(以下简称“湖北省质检院”)联合赛默飞世尔仪器(中国)有限公司、美国爱博才思(AB Sciex)分析仪器中国有限公司和湖北兴福电子材料有限公司在武汉联合举办“猇亭区新材料产业园质量提升项目成果报告会”。与会单位交流电子级硫酸杂质阴离子检测技术联合攻关成果,讨论下一步技术与参数的优化方案。据了解,电子化学品是电子工业重要的支撑材料。湖北兴福电子材料有限公司是国内主要的电子化学品生产企业,其3万吨/年电子级磷酸产能规模居行业前列,开创了国产化电子级磷酸用在8英寸(1英寸=2.54厘米)及以上集成电路的先河。但由于国家标准GB/T 41881-2022《电子级硫酸》采用目视比色法等半定量方法检测,不能准确检测杂质离子含量,国内外相关技术开发也存在空白,不能满足下游芯片、集成电路客户需求,制约了该类产品的质量技术提升。湖北省质检院通过开展技术调研,联合国内外知名仪器设备制造商的技术开发专家,对电子级硫酸产品质量特点、国标要求、杂质离子检测技术等开展联合攻关,研发成功电子级硫酸产品中杂质阴离子检验检测方法,检测结果能准确反映产品质量水平,填补了国内空白。据介绍,此项技术成果为电子级硫酸产品杂质含量检测、质量技术升级和品牌提升、更好地满足下游芯片客户特别是高端芯片客户需求打下了坚实基础,对提升湖北省电子化学品产业核心竞争力,助推战略性新兴产业发展,具有重要意义。
  • Nutech发布Nutech 非甲烷总烃分析仪新品
    【主要用途】适用于环境空气/厂界中甲烷、非甲烷总烃的实验室分析(采样罐中的样品),满足《2019年地级及以上城市挥发性有机物监测方案》要求。【技术参数】检测方法:FID应答范围:除甲烷以外的全部气态有机化合物(非甲烷总烃),甲烷最低检出限:NMHC:0.5ppb;精密度:RSD<5% 准确度:±10%分析时间:<15min 进样口个数:1个(可扩展或连接自动进样器) 数据接口:4~20mA电流,0~5V直流,RS~232串口工作气体:99.999%N2(载气、补充气)、99.999%空气(助燃气)、99.999%H2(燃气)工作环境:温度:10℃~40℃;相对湿度:20%~90%电源电压:110V/60Hz或220V/50Hz±10%【性能特点】1、独创低温预浓缩技术,空气采样体积50ml~1000ml(可调),将非甲烷总烃的检出限降低至亚ppb级(普通FID对1ppm的空气有机物才有良好的响应),满足环境空气中低浓度或超低浓度NMHC的检测需求;2、独创复合性吸附填充体,辅以合适的流量、流速控制,有效预处理(脱水、分离非甲烷总烃和甲烷)并直接检测,测试数据大大优于一般气相色谱法和催化氧化差减法;3、专用FID(氢火焰离子)检测器,应答性好、线性范围宽,同时具备自动实时自检功能;4、与不同规格(1/3/6/15L)苏码罐无缝连接,并可扩展进样口或选配自动进样器,实现样品的自动连续进样分析;5、采用高精度MFC控流,精确掌控流量,有效保证测试结果精准度;6、操作简单,有效避免针筒注射等繁琐的人工操作及其可能产生的误差,降低分析者劳动强度、提高工作效率的同时保证分析数据的可靠性和准确性;7、PC控制,数据实时采集和传输,自动记录、存储,并支持报告或报表形式输出,具备历史数据(含图谱)查询和断电记忆功能。创新点:1.应答范围:除甲烷以外的全部气态有机化合物(非甲烷总烃),甲烷; 2.独创低温预浓缩技术,空气采样体积50ml~1000ml(可调); 3.独创复合性吸附填充体,辅以合适的流量、流速控制,有效预处理(脱水、分离非甲烷总烃和甲烷)并直接检测,测试数据大大优于一般气相色谱法和催化氧化差减法; 4.与不同规格(1/3/6/15L)苏码罐无缝连接,并可扩展进样口或选配自动进样器,实现样品的自动连续进样分析; 5.采用高精度MFC控流,精确掌控流量,有效保证测试结果精准度。 Nutech 非甲烷总烃分析仪
  • Nutech将首次亮相CIEPEC!
    第十九届中国国际环保展览会(CIEPEC2021)将于2021年7月13日-15日在北京中国国际展览中心(静安庄馆)举办。中国环境保护产业协会充分发挥资源优势,全面携手合作伙伴,实现展会全方位升级。展会线上线下双线融合,展出面积5万平方米,参展单位800余家,预计专业观众80000人次。Nutech中国展位号:2号馆2525Nutech在国内首次亮相CIEPEC,作为VOCs分析、检/监测和相关仪器制造的优质品牌,行业覆盖了包括政府环境监测机构、第三方检测、工业企业和高校/科研院所等。产品目录8910预浓缩仪3610自动进样器2104自动清罐仪2203高精度稀释仪2703自动采样器3000便携式甲烷/非甲烷总烃分析仪6300甲烷/非甲烷总烃在线分析仪6500VOCs组分在线分析仪6600在线预浓缩分析仪环境空气挥发性有机物分析检测解决方案手工监测Nutech是入列EPA TO-15A的样品采集与分析仪器供应商之一,其三级冷阱预浓缩系统可完整满足国内相关的方法标准。经过40余年的经验积累,无数次的优化升级,如今从产品内部结构到软件程序再到外观设计,都发生了很大的突破,自动化程序的操作让用户更省心,贴心的技术服务收获了广大客户良好的口碑。▲三级冷阱预浓缩系统自动监测针对测定环境空气非甲烷总烃值,Nutech多年来一直坚持采用直接法的技术路线,并通过各个渠道发声呼吁使用直接法的结果更准确。终于,在2021年1月29日,中国环境监测总站发布《环境空气非甲烷总烃连续自动监测技术规定(试行)》,直接法的技术路线得到了权威认可。针对测定VOCs组分,Nutech采用GC-FID/GCFID-MS的技术路线,采用独创的LTP低温预浓缩技术,有效富集浓缩待测目标化合物并快速热解析,满足低浓度或超低浓度空气VOCs组分的检测需求。▲图片来自:中国环境监测(红框内仪器为Nutech6300)▲Nutech6300非甲烷总烃自动监测系统便携式监测Nutech自主研发的双FID加高温催化原理的便携式甲烷/非甲烷总烃分析仪,其综合了固态储氢、长续航锂电池、高精度流量控制和智能人机交互等先进技术,是环境空气和废气中总烃、甲烷和非甲烷总烃便携式监测的可靠仪器。▲现场操作Nutech3000便携式分析仪今年Nutech首次亮相CIEPEC,将带来更丰富的技术和经验的分享。在现场还精心准备了礼品,就让我们在 7 月 13 日 CIEPEC2021 上不见不散。Nutech 展位号:2号馆2525
  • Tecan收购NuGEN,加快在基因组学领域的战略布局
    Tecan收购NuGEN Technologies,加快在基因组学领域的战略布局1、收购美国NuGEN,将使Tecan的专用解决方案扩展到二代测序(NGS)的试剂市场,并增加整体的重复性收入。2、NuGEN为基因组学中发展最快的领域提供创新的NGS试剂盒和基因组学样品制备试剂。3、NuGEN成为Tecan生命科学业务的一部分,充分利用Tecan的全球影响力以及在NGS样品制备自动化中的强势地位。4、收购价为5450万美元(5410万瑞士法郎),略低于2018财年NuGEN预期销售额的四倍。5、Tecan预计到2023年NuGEN的销售额将获得三倍的增长。6、预计到2023年,Tecan的基因组学战略将带来超过7500万瑞士法郎的销售额,包括NuGEN产品和新增的工作站。7、预计在未来几周内完成交易。瑞士Mannedorf,2018年8月16日 - Tecan集团(瑞士证券交易所代码:TECN)今天宣布收购总部位于美国的NuGEN Technologies, Inc.,以进一步将Tecan的专用解决方案扩展到二代测序(NGS)的试剂市场,从而进一步提高Tecan的整体重复性收入。NuGEN是创新的NGS试剂盒和基因组样品制备解决方案供应商,为基因组学领域中发展最快的部分提供服务,为生命科学研究和应用市场的客户提供服务。作为Tecan生命科学业务的一部分,NuGEN将受益于Tecan的全球覆盖、客户群以及由优化的NGS样品制备自动化平台获得的市场地位。收购价格为5450万美元(5410万瑞士法郎),将以现金全额支付,估值略低于2018财年NuGEN预期销售额的四倍。Tecan希望通过利用其全球业务和扩大关键地区的销售能力,在未来五年内将NuGEN的销售额提高三倍。由此次交易带来的广泛的基因组学战略的加速执行,包括NuGEN和新型专用工作站,Tecan预计到2023年通过该计划将产生超过7500万瑞士法郎的年度销售额。此外,Tecan预计该交易将在2022年交易相关摊销前增加每股收益(EPS)。交易预计将在未来几周内完成。此次收购对Tecan 2018年财务业绩的预期影响今日发布在另一份新闻稿中,该新闻稿公布了2018年上半年的财务业绩。Tecan首席执行官David Martyr博士评论说:“NuGEN创新的NGS试剂盒和基因组样品制备解决方案是我们行业的基因组应用自动化工作站的极大补充。通过此次收购,我们正在加速我们广泛的基因组学战略,并进一步增加我们的重复性收入。进一步为生命科学领域增长最快的市场之一提供专用解决方案,我们将能够在未来几年内提高Tecan的市场平均增长率。NuGEN将成为我们NGS试剂的卓越中心,我们很高兴欢迎新同事加入Tecan。”NuGEN首席执行官兼Tecan NGS试剂业务指定副总裁兼总经理Nitin Sood表示:“我们非常高兴与Tecan合作,将我们市场新一代测序文库制备技术与Tecan在自动化和检测方面的核心竞争力相结合,为客户提供完整的解决方案。Tecan的全球足迹和能力将加速我们的创新渠道,为我们的客户和员工带来利益。”NGS样品制备试剂的供应商NuGEN为二代测序(NGS)和微阵列提供创新的基因组样品制备,适用于广泛的样品类型,包括来自组织的RNA和DNA,预处理和保存的组织样品(FFPE,福尔马林固定-石蜡包被),单细胞和液体组织活检(如血液样本)。NuGEN创新能力的一个例子是新推出的基于NuQuant文库系统的Celero(TM)DNA-Seq,它为研究人员提供了简化的文库制备工作流程,并能对DNA测序提供整合的定量。二代测序技术由于能获得丰富的遗传信息而正在改变包括癌症研究在内的整个生命科学。NGS工作流程由多个复杂步骤组成,其中的几个需要在样本加载至测序仪之前执行。测序前最关键的步骤是所谓的文库制备,其中许多样品是并行处理的,正确的处理样本是测序成功的关键。文库制备的质量对测序数据的重复性和可用性有重大影响,从而最终影响整体测序的质量。在处理大量样品的情况下,文库制备实际上比测序本身的成本更高。文库制备市场一直在以超过10%的速度增长,估计规模超过10亿美元,占整个测序市场(约60亿美元)的重要份额。NGS的成本正在下降,使得该技术更加经济实用且可以广泛使用。 NGS的应用和快速增长的样本数量增加了对自动化的需求,这是Tecan的优势,特别是在基因组学领域。通过自动化,实验室可以提高通量并消除不必要的手动步骤和错误。 NuGEN的产品适合自动化,可提供快速简单的工作流程,旨在减少处理每个样品的时间和成本。与NuGEN一起,Tecan可以利用其自动化的专业知识和基因组学仪器市场的地位,为NGS文库制备提供完整的解决方案,包括专用的工作站、消耗品和差异化的NGS试剂。凭借公司的全球业务,Tecan具备在北美、欧洲以及中国拓展市场覆盖、提升销售能力的机会。NuGEN成立于2000年,位于美国加利福尼亚州硅谷的生物技术中心,拥有70多名员工。关于帝肯(Tecan)Tecan是全球极具竞争力的生物制药、法医学和临床诊断实验室仪器和解决方案供应商。公司专门为生命科学领域的实验室开发、生产和销售自动化工作流程解决方案。其客户包括制药和生物技术公司、科研研究部门、法医和诊断实验室。作为OEM制造商,Tecan还是开发和制造OEM仪器和组件的领导者之一,然后由合作伙伴公司分销。公司于1980年在瑞士成立,在欧洲和北美拥有制造和研发基地,并在52个国家/地区设有销售和服务网络。 2017年,Tecan的销售额为5.48亿瑞士法郎(5.6亿美元 4.94亿欧元)。 Tecan集团的注册股份在瑞士证券交易所(TECN ISIN CH0012100191)上交易。
  • Nutech® 为环境检/监测提供有力支持
    2019年6月26日,生态环境部印发《重点行业挥发性有机物综合治理方案》(以下简称《方案》),要求石化、化工、工业涂装、包装印刷、油品储运销等重点行业,全面加强VOCs综合治理。《方案》指出,作为细颗粒物(PM2.5)和臭氧(O3)的重要前体物,当前我国VOCs污染排放对大气环境影响突出,其形成对气候变化也有影响。与之相对应的是,我国VOCs管理基础薄弱,已成为大气环境管理短板。其中VOCs监测监控不到位”是《方案》着重提及的五个问题之一。具体表现在:我国VOCs监测工作尚处于起步阶段,企业自行监测质量普遍不高,点位设置不合理、采样方式不规范、监测时段代表性不强等问题突出。部分重点企业未按要求配备自动监控设施。涉VOCs排放工业园区和产业集群缺乏有效的监测溯源与预警措施。从监管方面来看,缺乏现场快速检测等有效手段,走航监测、网格化监测等应用不足。针对上述问题,生态环境部对症下药,要求“加强监测监控”。一方面,要求排污许可管理已有规定的石化、炼焦、原料药、农药、汽车制造、制革、纺织印染等行业严格按照相关规定开展自行监测工作。“鼓励企业配备便携式VOCs监测仪器,及时了解掌握排污状况”;另一方面,强化监测数据质量控制和监督执法,要求数据传输有效率达到 90%并通过“开展重点行业专项执法行动”等方式严厉打击违法排污行为。Nutech® 致力于成为全球领 先的VOCs分析测试解决方案专家,数十年来,一直是VOC分析、检/监测和相关仪器制造的优质品牌,拥有VOC实验分析和在线监测两大产品线、十余种规格型号的产品,用户遍布世界各地,在美国乃至全球享有盛誉。近年来,Nutech® 进入中国,积极参与推动相关标准的建立,为环境检/监测提供专业的解决方案。目前,行业已覆盖政府环境监测机构、第三方检测、工业企业和高校/科研院所等,先后参与2017厦门金砖国家峰会VOCs监测保障、国家光化学监测网-13个点位挥发性有机物手工监测等业内标志性项目。随着国家政策对环境生态治理的加大重视,Nutech® 以高质量服务做保障,通过不断创新,增强产品的用户体验,更高效地解决VOCs监测问题,为环境监测事业发光发热。
  • 央视怒批河北有机肥黑幕,土壤重金属污染如何检测?
    2024年8月26日,据据中央广播电视总台中国之声报道,记者在河北石家庄的调查中发现,一些有机肥厂为了追求更高的利润,竟然使用皮革厂的污泥作为原料,这种行为不仅违反了相关法规,还对环境和人体健康构成了严重威胁。近些年,有机肥料因其能提高农作物产量、改良土壤并减少化肥使用而受到农民的欢迎。政府也通过招标采购的方式大力推广有机肥,以推动农业的绿色发展。有机肥厂之所以选择使用皮革厂的污泥,主要是因为这种污泥含有有机成分,能够显著提高有机肥的有机质含量。而且,皮革厂为了节省处理这些污泥的费用,往往愿意将污泥交给有机肥厂,这样有机肥厂就能以几乎零成本获得原料,从而降低生产成本,提高利润。但是,皮革污泥中含有的重金属铬(皮革生产过程中会使用铬鞣剂进行铬鞣和复鞣工艺)是一个严重的问题。铬是一种有毒的重金属,对生态环境和人体健康都会产生有害影响。如果含有铬的有机肥被播撒到地里,会给耕地带来不可逆的影响。例如,使用这种肥料的土地温度会升高,导致土壤中的种子和幼苗被烧毁。此外,铬还可能通过食物链进入人体,对人体健康造成长期危害。根据中国的相关法律法规,皮革污泥属于危险废物,其收集、贮存、转移、利用和处置都要遵循严格的规定。然而,一些有机肥厂和中间商通过虚开危险废物转移五联单等手段,绕开了监管部门的视线,非法获取和使用这些污泥。除了铬之外,这种污泥中可能含有以下有害物质:(1)其他重金属:皮革加工过程中可能使用多种化学物质,包括其他重金属如铅、汞、镉和砷等,这些重金属对环境和人体健康都有潜在的危害。(2)有机物:皮革污泥中可能含有未反应的化学制剂、染料、油脂和其他有机化合物,这些物质可能对土壤和水体造成污染。(3)持久性有机污染物(POPs):某些用于皮革加工的化学物质可能属于持久性有机污染物,这类物质在环境中不易分解,可以通过食物链累积并放大其毒性。(4)放射性物质:在某些情况下,皮革污泥中可能含有微量的放射性物质,这些物质可能来源于皮革原料或加工过程中使用的某些材料。这种行为的存在,反映出当地在污泥处置方面的监管存在漏洞。尽管中央生态环境保护督察曾多次反馈河北污泥处置不当的问题,但当地违规处置危废污泥的行为仍然屡禁不止。这背后可能存在“表面整改”、“虚假整改”和“敷衍整改”的问题。中央广播电视总台表示中国之声将继续关注,也欢迎仪器信息网的读者继续关注重金属污染以及检测话题。仪器信息网曾经组织土壤重金属检测网络研讨会议:https://www.instrument.com.cn/webinar/meetings/turang0521,https://www.instrument.com.cn/webinar/meetings/soilheavymetal2022/,也推出了食品重金属检测专题:https://www.instrument.com.cn/zt/zjswrjc,欢迎关注。点击图片即达研讨会点击图片即达研讨会点击图片即达专题重金属检测相关仪器:原子荧光光谱、原子吸收光谱、电感耦合等离子体发射光谱、电感耦合等离子体质谱、X射线荧光光谱等。参考资料:中国之声特别报道丨危废污泥变身有机肥原材料 石家庄危废处置关口为何会层层失守?央广网,2024年8月26日
  • 生态环境部:我国形成重点河流环境应急准备“一张图”
    生态环境部生态环境应急指挥领导小组办公室主任李天威24日介绍,目前,全国重点河流环境应急准备“一张图”总体形成。在生态环境部当天举行的新闻发布会上,李天威表示,近年来,我国突发环境事件从数量来看总体呈下降趋势。在强化环境应急方面,生态环境部按照“以空间换时间”的理念思路,将重点河流环境应急“一河一策一图”作为战略性、基础性、兜底性的重大举措,加快推进形成具有中国特色环境应急准备体系。目前,全国已完成2365条重点河流“一河一策一图”应急方案,摸清了20余万处环境应急空间和设施点位,总体上形成了全国重点河流环境应急准备“一张图”。同时,生态环境部探索开展化工园区“一园一策一图”的试点,指导第一批17个试点园区按照污水“一级防控不出厂区,二级防控不进内河,三级防控不出园区”的总体思路,开展化工园区三级防控体系建设,稳步推进环境应急物资信息库建设,指导浙江省开展环境应急物资储备调用智能化管理试点工作。李天威介绍,突发环境事件风险防控取得实效的同时,环境应急基础能力不断提升。组建了生态环境部环境应急研究所,打造环境应急“国家队”,研发突发环境事件应急技术工具包,建立健全重大敏感突发环境事件信息报告三项制度等。他表示,当前,我国环境保护结构性、根源性、趋势性的压力总体尚未根本缓解,突发环境事件仍呈多发、频发的高风险态势。下一步,生态环境部将严密防控环境风险,持续强化应急准备,不断夯实应急能力基础,及时妥善科学处置各类突发环境事件,加快推进环境应急管理体系和能力的现代化建设,为美丽中国建设提供坚实的环境安全保障。
  • 赋能宝山先导产业集群建设!北裕仪器参加宝山区第四期民营经济圆桌会
    9月27日上午,以“先导产业聚势能,科创宝山谱新篇”为主题的宝山区民营经济圆桌会(第四期)暨宝山区民营经济发展联席会议召开,邀请9家具有代表性企业代表,聚焦裉节难题,倾听发展诉求,更好巩固“企业敢于讲、党政认真听、限期抓落实”的良好氛围。上海市副市长、宝山区委书记陈杰出席会议并讲话,区领导沈伟民、王鼐出席会议。北裕仪器董事长陈凡参加会议并做了发言。陈杰强调,要主动融入大局,不断增强发展信心。民营经济是推进中国式现代化的生力军,宝山始终高度重视民营企业和民营企业家的发展,对科技成果转化、产业培育、土地保障、金融投资、人才引育、政务服务等工作做出了进一步深化部署。民营经济进一步发展壮大,其时已至、其势已成。希望广大民营企业家能登高望远、把握大势,更好以自身发展提升产业链的韧性和安全性,更好赋能产业集群发展的大格局。要从发展势能的不断积蓄中增强信心,充分发挥自身优势,善于借势借力,勇于探索创新,进一步构筑企业核心竞争力、提升优势转化力、形成集聚爆发力,努力争当“行业翘楚”,打造“百年老店”。陈杰强调,要加快科技创新,走好未来产业发展之路。宝山一直有创新的基因、文化和土壤,围绕“北转型”战略部署,对标上海市发展壮大未来产业集群行动方案,以未来健康、未来材料、未来智能三大未来产业为重点,形成了区级行动方案,明确了未来产业发展的目标、路径和抓手。希望各位企业家紧紧围绕高水平科技自立自强要求,不断推动企业发展壮大。要瞄准科技前沿,加强核心技术产品研发,不断向价值链高端攀升。要把握市场规律,顺应科技变革趋势,加快形成要素完备的产业生态,塑造发展新动能新优势。要弘扬企业家精神,砥砺强烈的进取意识,在科技产业变革中敢于承担风险、引领潮流,努力当好蝶变跃升的先行者,在打造一流企业上找准坐标、创造辉煌。陈杰强调,要用心用情服务,持续打造最优营商环境。当前,民营经济正处在一个增长转型、跨越发展的关键时期,更要对民营经济高看一眼、厚爱三分。要进一步做好政策引导落实,把企业发展过程中的新需求新问题,作为政策创新的突破点,加强创新赋能,提升服务质效,努力把政策红利和优质服务转化为发展效能。要进一步抓好创新生态优化,针对新兴产业特点,“一企一策”“一业一策”量身定制服务方案,助力企业在宝山更好更快发展。要进一步构建亲清政商关系,聚焦企业发展中的难点堵点,以个别困难化解促进共性问题解决,推动个性化政策转化为普惠性政策。通过联系服务企业机制,及时了解企业家所思所想,制定更加务实管用的解决办法。王鼐通报第三期圆桌会企业反映诉求建议解决采纳情况及进行下一步工作部署,区经委、区科委、区税务局等相关部门结合政策、需求等实际情况进行答疑解惑,并就企业关心关注的具体事宜深入对接。同时,9家企业代表进行了交流发言。北裕仪器董事长陈凡立足企业发展实际,结合国家宏观政策和行业发展出现的新趋势、新需求、新问题进行了交流发言,并就创新知识产权保护、智慧系统产品推广等提出建议诉求。北裕仪器将持续以推动宝山区经济高质量发展为主题,以技术创新为发展动力,不断提升公司竞争力、创新力和影响力,坚持走“智能制造+优质服务”的发展之路,以AI智慧无人分析系统作为企业战略性先导发展产业,将传统分析仪器与人工智能、物联网、区块链等前沿技术进行有效融合,为用户打造更高效、准确和可靠的水质监测高端装备一站式解决方案,为水质分析领域的可持续发展贡献自身的智慧和力量。
  • Nat. Protoc. 南京大学刘震教授团队实现单个活细胞内低拷贝数蛋白质的分析 | 前沿用户报道
    供稿:温艳蓉成果简介2021年6月,南京大学刘震教授团队在Nature子刊Nature Protocols上发表了题为 “Probing low-copy-number proteins in single living cells using single-cell plasmonic immunosandwich assays”的论文,创新性地发展了单细胞等离激元免疫夹心法,成功实现了单个活细胞及活体动物内多种低拷贝数蛋白质的分析。背景介绍细胞是生物体结构和生命活动的基本单位,基于细胞的研究是生命科学的基础。其中,基于单细胞分析的生命科学研究能够从更深的层次上揭示生命活动的本质和规律,为探究重大疾病的起因、发展和治疗提供更可靠的科学依据。蛋白质是生物学功能的直接执行分子,在单个细胞内分子数目少于1000个拷贝数的蛋白质被称为低拷贝数蛋白质。虽然低拷贝数蛋白质的丰度极低,但它们在多种重要的生物学过程中起着关键的调控作用。纵观整个单细胞分析技术领域,蛋白质的分析手段远远滞后于基因组和转录组的分析方法,其最根本的原因是蛋白质的研究缺少类似于PCR的扩增工具,导致很多低丰度的蛋白质十分难以检测。因此,发展适用于单细胞内低拷贝数蛋白质的检测技术具有重要的科学意义和应用价值。刘震教授团队将免疫识别与等离激元拉曼检测技术相结合,创新性地发展了一种等离激元免疫夹心法(Plasmonic immunosandwich assays, PISA),成功实现了单个活细胞及活体动物内多种低拷贝数蛋白质的分析(Angewandte Chemie International Edition, 2016, 55, 13215)。此后,该方法还扩展到单个活细胞中的microRNA的分析(Chemical Science, 2018, 9, 7241)以及基于生理样品中的蛋白质和microRNA标志物的疾病诊断分析(Analytical Chemistry, 2016, 88, 12363;Analytical Chemistry, 2019, 2019, 91, 4831;Analytical Chemistry, 2019, 91, 9993;Biosensors and Bioelectronics, 2019, 145, 111729)。同时,该技术还被成功应用于单细胞信号通路研究和抗癌药物活性评价(Analytical Chemistry, 2020, 92, 12498)等应用。图文导读单细胞等离激元免疫夹心法(scPISA)的工作流程示意图如图1所示。包括三个主要步骤:细胞内萃取、标记和检测。1.将固定有亲和配基的金基微萃取探针在显微操作系统的控制下,准确地插入单个活细胞内特定部位进行目标蛋白的富集。2.萃取一定的时间后将微萃取探针从细胞内拔出,经过适当的清洗步骤降低微萃取探针表面的非特异性吸附,再用亲和配基功能化的银基纳米拉曼标签对富集到的目标蛋白质进行标记,从而在微萃取探针表面形成类似三明治夹心结构的微萃取探针-目标蛋白质-纳米拉曼标签免疫复合物。图1. 单细胞等离激元免疫夹心法的工作示意图3.将共聚焦拉曼光谱仪和细胞显微操作平台耦合(图2 c),使用拉曼光谱仪的DuoScan功能对悬挂在细胞显微操作臂上的微探针进行分析(图2 d),从拉曼的强度信息中得出细胞内低拷贝数蛋白的丰度,细胞内分布等信息(图2 f)。HORIBA共聚焦拉曼光谱仪的DuoScan功能可以对微萃取探针的各个区域进行原位分析,所得到的信号强度变化反应细胞内蛋白的相应变化,能够实现“所见即所得”。当激光照射在该免疫复合物的表面,金基微萃取探针和银基纳米拉曼标签之间纳米级间隙内由于等离激元耦合作用产生“热点”,显著地增强纳米标签的表面增强拉曼散射(SERS)信号,灵敏度达单分子水平,从而能够实现低拷贝数生物分子的检测。图2. 拉曼光谱采集与分析HORIBA XploRA INV多功能拉曼成像光谱仪集成研究级倒置显微镜,专为生命科学研究而设计。不仅具备通常的拉曼光谱测量功能,而且可以实现超快速拉曼光谱成像、荧光成像、超快速PL光谱成像等。HORIBA Scientific 创新的DuoScan™ 技术,将拉曼仪器的成像能力从亚微米级扩展到宏观尺度,从深紫外到红外,扫描共焦图像变得更快、更容易、更灵活。HORIBA XploRA INV多功能拉曼成像光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息Probing low-copy-number proteins in single living cells using single-cell plasmonic immunosandwich assays文章署名作者:JiaLiu, Hui He, Dan Xie, Yanrong Wen, Zhen Liu文章链接:https://doi.org/10.1038/s41596-021-00547-9刘震教授简介南京大学特聘教授,博士生导师,国家杰出青年基金获得者。英国皇家化学会会士、中国化学会高级会员、美国化学会会员,兼任国际分子印迹学会理事会理事、中国质谱学会常务理事、中国化学会质谱专业委员会委员、中国生物化学与分子生物学会蛋白质组学专业委员会委员、《Analytica Methods》副主编、《Electrophoresis》、《Separation Science Plus》等杂志编委。主要从事分子识别、亲和分离、疾病诊断、单细胞分析和癌症纳米治疗等研究,主持国家重大科研仪器项目和基金委重点项目等国家级科研项目10余项,已在Chemical Society Review,Accounts of Chemical Research,Angewandte Chemie International Edition,Nature Protocols,Chemical Science等期刊上发表论文150余篇,目前h因子49(谷歌学术),主编及合著著作2部,出版专章7章,获授权专利15项。
  • 【自传】像差校正电镜技术先驱之Knut Urban
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【简介】 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " span style=" font-size: 18px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/d0dc0dbb-1e74-46e2-b64b-1356a6ea1c91.jpg" title=" 图片1.png" alt=" 图片1.png" / /span strong span style=" font-size: 18px " br/ /span /strong /span /p p span style=" color: rgb(0, 112, 192) font-size: 18px " /span /p p style=" text-align: justify text-indent: 2em " Knut Urban,德国物理学家。曾就读于斯图加特大学,并于1972年获得物理学博士学位,之后前往斯图加特的马克斯· 普朗克金属研究所。 /p p style=" text-align: justify text-indent: 2em " 1986年,Knut Urban被任命为德国埃尔兰根-纽伦堡大学材料性能教授,一年后,成为亚琛工业大学实验物理系主任和尤利希奥地利维也纳大学微结构研究所所长。在此期间,Knut Urban与Harald Rose和Maximilian Haider合作获得了第一个像差校正的透射电子显微镜结果,该成果于1998年发表。 /p p style=" text-align: justify text-indent: 2em " 随后, span style=" text-align: justify text-indent: 32px " Knut& nbsp /span Urban致力于将像差校正的透射电子显微镜应用于材料科学,尤其专注于晶格内原子的精确排列与材料物理特性之间的联系。 /p p style=" text-align: justify text-indent: 2em " 2004年,Knut Urban被选为厄恩斯特· 鲁斯卡电子显微镜和光谱学中心的主任之一,自2012年以来,一直是亚琛工业大学的JARA高级教授。 span style=" text-align: justify text-indent: 32px " Knut& nbsp /span Urban已获得多项荣誉,这些奖项包括美国材料研究学会的冯· 希佩尔奖,并与 span style=" text-align: justify text-indent: 32px " Harald& nbsp /span Rose和 span style=" text-align: justify text-indent: 32px " Maximilian& nbsp /span Haider共同获得了沃尔夫物理学奖,本田生态技术奖和BBVA基础科学知识前沿奖。Knut Urban还是包括美国材料研究学会,德国物理学会和日本金属与材料学会在内的多个科学机构的荣誉会员。 /p p style=" text-align: justify text-indent: 2em " 2020年,Knut Urban与Maximilian Haider、Harald Rose、Ondrej L. Krivanek一起获得了科维理纳米科学奖。科维理纳米科学奖评审委员会认为,Knut Urban为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/noimg/faf1d133-0893-47d3-88dd-7cec59b90830.gif" title=" 1.gif" alt=" 1.gif" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 从左至右:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek /span /p p span style=" color: rgb(127, 127, 127) " br/ /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【 span style=" text-align: justify text-indent: 32px " Knut Urban& nbsp /span 自传】 /span /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 我在战后初期的德国斯图加特长大,这个城市因汽车工业和众多中小型工企而闻名。 /p p style=" text-align: justify text-indent: 2em " 我的父亲是一名电气工程师,经营着一家小型电动机公司。在过去的几十年里,父亲的一系列研发成了公司的主要产品。在我的家里,有很多关于科学和技术的思考、阅读和讨论。除了感谢父母的关心,我还感谢他们的一种批判、开放、合作的思维方式,这对我后来的发展非常有益,尤其是在职业上。 /p p style=" text-align: justify text-indent: 2em " 当我还是个小学生的时候,就利用学到的技术和祖父一起建造了我的第一台光学望远镜,这台仪器连接着一台反射望远镜,可用于更进一步的观察。几年后,我成为斯图加特天文台最年轻的成员。这就是我如何从天文学进入物理学的过程。 /p p style=" text-align: justify text-indent: 2em " 高中毕业后,我加入了西门子(Siemens)公司,在电气工程领域做了为期一年的学徒,这是六十年代进入大学学习物理的先决条件。这段时期对我来说很重要,通过与工人们一起学习生产和设计等电子工程技术,不仅让我获得了重要的专业知识,还增强了社交能力。 /p p style=" text-align: justify text-indent: 2em " 随后,我进入斯图加特技术大学(the Technical Univercity of Stuttgart)学习物理。期间,我受到博世(Bosch)公司在半导体领域工作的启发,在大学期间完成了半导体领域的实验文凭论文。在这里,我学到了很多有关低温、半导体的光学特性以及晶格缺陷如何影响半导体的光学特性等知识。这是我进入固态物理学,特别是进入晶体缺陷物理学的过程。 /p p style=" text-align: justify text-indent: 2em " 我的整个职业生涯进一步决定性因素是Alfred Seeger(斯图加特大学固体物理学教授,Max Planck金属研究所所长)对我在低温下塑性变形锗光学性质的研究结果感兴趣,并帮助我完成了博士学位论文。Seeger因在晶体缺陷领域的开拓性工作而享誉国际,并且是当时最灵活变通的固态物理学家之一,他所研究的领域和所使用的实验和理论方法都是非常多样的。 /p p style=" text-align: justify text-indent: 2em " Seeger向他的博士生介绍了具有挑战性的课题,并相信他们会成功。根据他的提议,我不得不跳入冷水中,为Max Planck研究所的新型高压电子显微镜搭建一个物镜台。难点在于,该平台应允许在不影响显微镜分辨率的情况下将样品冷却至液氦温度(-269℃),以便研究金属中的原子晶格缺陷。别的团队尝试了大约十年,都没有成功。用于冷却的沸腾氦的振动和低温的不稳定性破坏了光学分辨率。Seeger为我提供了在柏林的Fritz Haber研究所为Ernst Ruska进行系统设计和建造的机会。(Ruska后来因电子显微镜的研发而获得了诺贝尔奖。) /p p style=" text-align: justify text-indent: 2em " 作为一名彻头彻尾的工程师,Ruska一开始对我这个年轻的物理学家持怀疑态度。但在Siemens和Bosch车间的工作让我为这份高要求的工作做好了准备,几个月后,我联系Ruska进行面试,腋下夹着一大捆图纸走近他时,令他印象深刻。从那时起,他就怀着极大的兴趣关注了我的工作,并向我提供了研究所的所有设施。一个有新的、独立想法的新人可以取得别人所无法接受的突破,这种情况并不少见。 /p p style=" text-align: justify text-indent: 2em " 高压电子显微镜中的氦冷却物装置成为我们多年来直接在高分辨率观察下进行实验的平台。这种显微镜有一个吸引人的优点,即在高电子能量下,可以通过电子-原子位移产生原子缺陷,而在低能量下,可以在任何所需温度下观察它们的二次反应。我自己也得到了一些新的研究结果,其中最重要的就是发现了辐射引起的原子缺陷扩散(由电子缺陷相互作用引起)以及合金中旋节线有序性的证明,这是一种基于特殊晶格对称性的复杂工艺,经过多年的理论讨论,但是从未经过实验证明。 /p p style=" text-align: justify text-indent: 2em " 80年代后期,我离开了Max Planck研究所,成为埃朗根大学材料科学教授。几年后,我搬到了Jü lich研究中心,担任固态科学研究所所长,并兼任亚琛工业大学实验物理教席。在此期间,我开始对准晶体这一新兴领域产生了兴趣,之后不久,Dan Shechtman因其发现获得了诺贝尔奖。 /p p style=" text-align: justify text-indent: 2em " 结合低温和高温原位电子显微镜技术,我首次证明了合金中的准晶体相是由高温时非晶态自行形成(之前认为进入准晶相的唯一途径是从熔体中骤冷),并发表了论文,这篇论文成为我进入准晶体科学家“俱乐部”的“入场券”。 /p p style=" text-align: justify text-indent: 2em " 几年后,当偶然发现其中一张图像中的位错是一种与晶体塑性行为密切相关的晶格缺陷时,我开始对准晶体塑性感兴趣,并在这一领域工作了很多年。位错的发现非常令人兴奋,因为它出乎意料。准晶体是基于六维晶格的,要了解这些晶格缺陷的拓扑结构非常困难。同样复杂的是,在电子显微镜中对这些缺陷进行定量表征的对比理论的提出,让我们忙了很长一段时间。另外,位错的观察表明,准晶体材料一般来说很脆,可能会发生塑性变形,我们通过在高压电子显微镜下进行原位实验证明了这一点。 /p p style=" text-align: justify text-indent: 2em " 80年代是固态物理学和材料科学令人振奋的年代,尤其是氧化物材料高温超导性的发现以及扫描隧道显微镜(STM)的发明。我们从Alfred Seeger那里学到的很多新固态物理学内容,以及他为我们提供的例证,伴随了我的整个职业生涯中。当时,我刚刚接管了德国国家研究中心的一个研究所,该研究所拥有合理的设备和人员资源,于是我就全身心地投入了另外两个工作组的建设,一个是STM,另一个是氧化物超导体的研究。 /p p style=" text-align: justify text-indent: 2em " STM最初是作为表面物理技术引入的,由于我对晶格缺陷感兴趣,我们建立了一个新的STM,成为第一个研究半导体中单掺杂原子以及其电场、扩散和在器件pn结中行为的团队;而先进半导体技术,则是一个非常有趣的研究。对于氧化物超导体,有两件事被证明是对我们有利的。为了实现自己的想法,我们建造了用于沉积超导薄膜及器件的设施,并使用我们最先进的电子显微镜直接检查膜沉积结果的质量并对其不断改进。我们在Josephson装置和高频性能方面突破了国际记录,我们的超导微波谐振器被用于国际通信卫星项目。 /p p style=" text-align: justify text-indent: 2em " 当时的电子显微镜比以往任何时候都功能强大,我们为能够在80年代末投入使用新仪器而感到自豪,它们在200 kV时的分辨率约2.4埃,300 kV时的分辨率约1.7埃,这非常出色。另一方面,它们仍未达到原子尺寸,这在包括我在内的固态物理学家看来像“圣杯”一样。 /p p style=" text-align: justify text-indent: 2em " 1989年9月的“DreiLä ndertagung”(奥地利、德国和瑞士的电子显微镜学会四年一次的传统会议)上,Maximilian Haider和Harald Rose告诉我,有一个项目将决定性地改变我们未来的职业生涯,当然也将改变电子显微镜的“职业生涯”,这是一个大事件。Harald Rose刚刚完成了一项新的像差校正电子显微镜物镜的理论研究,保守估计,在目前的电子技术水平下,这种物镜有可能实现。几个月后,我们同意向大众基金会提交一份联合申请。目的是在海德堡欧洲分子生物学实验室的Haider实验室研制新的半平面校正透镜(即现在的“Rose 校正透镜”),并实现将其应用到经过适当改进的商用常规透射电子显微镜(CTEM)中。 /p p style=" text-align: justify text-indent: 2em " 由于在CTEM中还必须校正离轴像差,这是比较常见的情况,它自动包括扫描透射电子显微镜(STEM)的校正情况。由于该领域数十年的失败以及行业缺乏兴趣,美国资助机构决定不再资助像差校正电子光学系统的研发,因此全球相应的工作组开始解散。 /p p style=" text-align: justify text-indent: 2em " 大众基金会一般不为纯仪器的研发提供资金,但我们认为我们的项目有机会获得资助。作为一个由专门研究电子光学的理论和实验物理学家以及对不同领域具有研究兴趣的材料学家组成的团队,我们能从材料科学应用的角度来证明此项目的合理性。在经过一次真正的范式改变之后,今天,现在,电子光学中的像差校正问题得到了解决,并且原子副原子材料科学研究成为了我们日常生活的一部分,且几乎不可能使自己回到科学显然没有为原子分辨电子显微镜做准备的那个年代。 /p p style=" text-align: justify text-indent: 2em " 在材料科学即将进入纳米技术的时代,人们非常希望能达到原子范围的尺寸。但是几十年来电子光学无法实现,校正电子透镜像差的问题实在太困难了,这打击了材料科学家认为电子光学将能够帮助他们的信心。因此,最大的问题是说服我的同事——材料学家:我们的理论更好,比之前的尝试有更大的机会能取得突破。 /p p style=" text-align: justify text-indent: 2em " 在这种情况下,我决定在德国以及国外的材料科学的机构中举办多次演讲,并且组织了一些专门的会议来宣传材料科学对原子电光分辨率的需求。后来,我们的提案在最终审核会议上一票险胜,获得了资助。1997年,世界上第一台经过像差校正的透射电子显微镜的分辨率显示超过了1.4aiq(200 kV),几乎是未经校正仪器分辨率的两倍,这使我们能够在锗晶体中显示原子分辨率。 /p p style=" text-align: justify text-indent: 2em " 每个物理学家在大学的前几年都会学到原子世界遵守的量子物理,而这在很多方面与我们在日常生活中习惯的经典物理学有很大不同。所以如果我们想掌握原子尺寸获得的图像,还有很多东西需要学习。与外行人(直观地)看到高分辨率图像时的假设相反,原子不能被直接看到。电子对原子的电场起反应,因此需要特殊的光学操作才能获得图像。我们到底看到了什么,是我们接下来几个月的重点问题。努力最终得到了丰厚的回报,期间,仪器已移至Jü lich,在前人没有想到的特殊的新成像条件下,我们第一次成功地看到了氧化物中的氧原子。 /p p style=" text-align: justify text-indent: 2em " 氧化物正在成为最重要的材料类别之一,但是,由于其低散射能力,之前电子显微镜观测不到氧及其它轻原子,现在,这种情况突然改变了,氧化物化学家们非常热情,我们也已经从事材料中氧的研究许多年了。 /p p style=" text-align: justify text-indent: 2em " 通过原子像差校正电子显微镜解决的第一个重要的材料科学问题是证明了YBaCuO铜链平面中氧原子的顺序,这对高温超导理论非常重要,以前没有人能直接看到这些材料中的氧。此外,我们可以证明且测量BaTiO(和其他钙钛矿)晶格缺陷中氧原子的化学计量,从而解决了氧化物化学领域的一个长期争论。这再次证明了我们材料科学研究团队在这些领域以及电子显微对比理论方面的能力,使我们能够充分利用与电子光学同事同研发的新仪器。从一开始吸引我的是,我们发现通过将定量像差校正电子显微镜和测量与计算机中的量子物理和光学图像模拟相结合,可以测量原子位置和原子位移,且精确度比皮米计还高。这实际上是一个无法想象的维度,它相当于氢原子玻尔直径的百分之一,进入这些微小的维度意味着可以进入大量物理现象发生的领域。此外,显微镜和计算机模拟的结合为我们提供了有关所成像原子化学性质和浓度的分析信息。 /p p style=" text-align: justify text-indent: 2em " 2004年,我当选为德国物理学会主席,该学会是世界上历史最悠久,也是最大的物理学会,拥有超6万名会员。能够为这个协会服务,我一直感到特别的荣幸。该学会有很多非常文明的会长,是值得我们钦佩的人物,但是他们对物理学发展的巨大贡献却是我们所无法超越的。 /p p style=" text-align: justify text-indent: 2em " 科学领域是国际性的,能够遇见各国志同道合的人并跨越国界进行合作,是我的荣幸,我和许多同事也成为了一生挚友。以上这段简短的叙述是我整个科学生涯的摘录,没有提到我在法国巴黎附近的Saclay研究中心,在日本仙台东北大学担任客座教授,以及在中国的学校(清华大学和西安交通大学)多年的工作经历。 /p p br/ /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Maximilian Haider /span /a /p p a href=" https://www.instrument.com.cn/news/20201104/563818.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Harald Rose /span /a /p p a href=" https://www.instrument.com.cn/news/20201112/564599.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek /span /a /p p br/ /p
  • 综述硬度计的应用领域,包括布氏、洛氏、维氏、努氏,以及布洛维硬度计等
    硬度测试重要性&应用布、洛、维、努氏硬度是材料抵抗弹性变形,塑性变形或破坏的能力。对于被检测的材料而言,硬度代表着在一定的压头和力的作用下所反映出的弹性、塑性、强度、韧性,以及抗摩擦性能等一系列不同物理量的综合性能指标。01硬度测试两种材质的物体相互划磨,软的材质会产生划痕,人类最早就是根据材料抵抗划磨的能力来比较材料的软与硬。随着科学技术的发展,测定材料硬度的方法有了很大的进步,硬度试验法有十几种,按施加试验力的方法分为静载压入法和动载试验法。 常用的布氏、洛氏及维氏硬度试验等属静载试验法;肖氏、里氏硬度属动载试验法。硬度试验具有以下特点:非破坏实验硬度试验对工件的损伤极小,一般不影响使用 方法不复杂试验方法方便不复杂,对大小部件均可直接测量;操作简单、快速硬度试验操作简单、效率高;换算关系硬度值与其他机械性能,如强度极限有近似的换算关系;应用广泛硬度试验是理化分析,金相试验及材料科学的重要手段。02硬度检测的重要性硬度是衡量金属材料力学性能的重要参数,硬度检测能反映金属材料的显微组织和结构变化,通过硬度检测可以发现材料的微观结构和相组成,从而评估其力学性能和加工性能。硬度检测是质量控制和生产过程控制的重要手段之一,在铸造、锻造、焊接和热处理等加工过程中,通过硬度检测可以监测工艺参数和产品质量,及时发现并解决潜在问题,确保生产过程的稳定性和产品质量的一致性。洛氏硬度计洛氏硬度测试通过测量压痕深度来计算硬度值,在成批生产和大量检测的机械、冶金热加工过程中以及半成品或成品检验中得到广泛应用,特别适用于刃具、模具、量具、工具等的成品制件检测。常用于测试金属和硬质塑胶材料的硬度,如钢、合金钢、不锈钢等。全自动洛氏硬度计,推荐轶诺的NEMESIS 6200.维氏硬度计维氏硬度测试通过测量压痕对角线的长度来计算硬度值,具有较高的精度和分辨率,测量范围可覆盖所有金属。适用范围:热处理、碳化、淬火硬化层,表面覆层,钢,有色金属和微小及薄形零件等。配备努氏压头后能测玻璃、陶瓷、玛瑙、人造宝石等较脆而又硬的材料的努氏硬度。全自动维氏硬度计,推荐轶诺的FALCON600 G2.布氏硬度计常用于测试金属材料零件的硬度,如铸铁、锻件、轧制件等。通过测量压痕直径来计算硬度值,具有较大的测试压痕和较高的测试精度,适用于大型零件检测。全自动布氏硬度计,推荐轶诺的NEXUS3400FA.03硬度计的应用领域硬度计在材料测试、研发、失效分析和预防、质量控制、工艺优化等领域有着广泛的应用,遍及汽车、航空航天、钢铁、机械、高校、科研、船舶、铁路、交通、电子、能源、医疗、石化等行业。汽车零部件的硬度检测,如发动机活塞、曲轴、缸体、刹车盘、齿轮、紧固件、轴承等,确保零件的耐磨性、耐久性和可靠性,从而提高汽车的整体性能和安全性;检测航空发动机零部件的硬度,如涡轮叶片、涡轮等硬度,可以及时发现材料内部的缺陷和问题,为发动机的维护和修复提供重要依据;能源行业通过硬度测试,及时发现设备内部的损伤和缺陷,预防事故的发生;医疗行业需要测试医疗器械和人工假体的硬度;电子行业需要测试材料的硬度,以确保其在使用过程中的可靠性和耐久性;石化行业检测管道的硬度,可以预防管道腐蚀和泄漏等安全问题,等等。质量控制硬度计用于生产过程中的监控与质量控制,确保产品符合质量标准和客户要求。通过定期对产品进行硬度测试,及时发现材料的质量问题,预防不合格品的产生。硬度计还可用于生产过程中的快速筛选和分类,提高生产效率和产品质量。轴承的硬度检测通过硬度测试可以评估轴承材料的硬度和质量,确保轴承具有足够的耐磨性和耐久性。以及,监测轴承在使用过程中的硬度变化,预测其寿命和可靠性,预防早期失效的发生。失效分析通过测量材料硬度,并与标准值进行比较,提供失效原因的线索。例如,如果材料过度磨损或腐蚀,其硬度可能会降低。通过分析硬度变化,分析失效的原因,提出相应的改进措施,减少材料的失效可能性,提高产品的质量和可靠性。工艺过程控制在工艺过程中,材料经过各种处理,如热处理、加工、焊接等,可能会影响材料的硬度。通过对材料硬度的测量,可以监测工艺过程对材料的影响,从而控制和优化工艺过程,减少失效的可能性。焊接结构的失效预防:检测焊缝的硬度和热影响区的范围,分析焊接接头的机械性能。通过了解焊缝和热影响区的硬度分布,评估焊接结构的可靠性和安全性,避免因硬度分布不均或热影响区过宽导而致焊接结构失效。复合材料的失效预防复合材料是由两种或多种材料组成的新型材料,具有优良的力学性能和多功能性。在复合材料的研发和应用中,硬度计被用于评估复合材料的硬度和相关机械性能,预测其在不同环境和使用条件下的适用性和可靠性,预防因材料不匹配或性能不稳定导致的失效问题。材料研发通过对比不同材料的硬度值,可以评估材料的性能优劣,为新材料的研发提供依据。例如,研究新型材料的硬度特性、比较不同材料的硬度差异、分析材料的微观结构和硬度之间的关系等。硬度计为这些研究提供重要的实验数据和结果。教学科研主要体现在实验操作与演示、比较不同材料的硬度、研究材料的微观结构、实践应用与案例分析,以及实验数据处理与分析等方面。学生可以更好地理解硬度的概念、测试方法和实际应用,培养实验技能和科学素养,也有助于提高教学质量和学生的综合素质。科研人员也经常使用硬度计进行科研项目,研究新型材料的硬度特性、材料的微观结构和硬度之间的关系等,推动材料科学的发展。表面硬度检测通过表面硬度检测,可以评估热处理工件的耐磨性、耐久性和抗疲劳性能等,为后续的热处理工艺调整提供依据,提高热处理工件的质量和性能。热处理工艺控制在热处理过程中,硬度是衡量材料内部组织结构变化的重要参数。通过硬度检测,可以了解热处理过程中材料的硬化程度和相变过程,从而优化热处理工艺参数,提高热处理工件的质量和性能。总之,硬度测试广泛应用于各种材料,包括金属、非金属、硬质塑料、复合材料和新材料等。用硬度计进行材料性能检测,对于评估材料性能、控制产品质量、实效分析、优化工艺参数、教育和科学研究等方面都具有重要意义。轶诺INNOVATEST品质硬度计荷兰INNOVATEST轶诺高品质硬度计,涵盖布、洛、维、努氏等多种测试方法,具有创新性的技术和工艺、高精度和可靠性、自动化和智能化、人性化的软件系统,以及全面的售后服务等优势,满足不同的硬度测试需求。轶诺为全球诸多用户提供了先进的硬度测试解决方案,行业遍及汽车、航空航天、钢铁、机械、高校、科研、船舶、铁路、交通、电子、能源、医疗、石化、桥梁、建筑、骨科/牙科实验室等领域。
  • 新版生物信息学软件发布——BioNumerics7.1
    新版生物信息学软件发布&mdash &mdash BioNumerics7.1 尊敬的BioNumerics软件用户:   我公司代理的生物信息学软件已更新至BioNumerics7.1。此次更新,进一步提高了BioNumerics 7.0的整体性能,带来更好的用户体验和更快的运算速度。   新版软件可对我公司BioNumerics 7.0软件的客户进行一次免费升级。其他客户可通过我公司的官方网站了解更多详情。如果您想免费试用BioNumerics 7.1软件,欢迎致电申请。   在此次升级中如果有任何问题和意见,请联系我们。   电话:021-50550642-8012    18918616827      北京创新思成科技有限公司   2013年06月07日
  • 环境空气非甲烷总烃(NMHC)的测定方法及Nutech的选择
    《2021年度国家生态环境监测方案》中明确“全国地级及以上城市开展环境空气NMHC监测工作”,且要求“自动监测”。目前,市场上常见的NMHC浓度的测定方法有两种,一种是差减法,另一种是直测法(又称“直接法”)。前者为我国早些年广泛采用,后者则是近两年被关注、重视并实践应用,且将成为监管趋势。NMHC的浓度特征和两种检测方法在介绍NMHC两个具体监测方法之前,其低浓度(ppb级,通常在几十到几百个ppb不等、甚至十几ppb)的特征理应被人所知。某种意义上来说,因为这一特征,“差减”成了无奈之举、因差减而出现的NMHC“0”值乃至“负值”俨然成为“必然”;也正是因为这一特征,即便是采用直测法的仪器,检测数据出现“ND(未检出)”亦纯属正常,在检测器前端增加预增浓处理环节成为必然选择。差减法按照传统定义,总烃指标准规定的测定条件下在气相色谱仪氢火焰离子化检测器(FID)上有响应的气态有机化合物的总和。nmhc则指上述条件下,从总烃中扣除甲烷以后其他气态有机化合物的总和。所谓“差减法”即自nmhc的这一概念界定而衍生:分别测定总烃和甲烷的浓度值,前者减去后者的差值即为NMHC浓度。理论上,差减法毫无逻辑漏洞。然而,理想很丰满、现实则骨干。在实践中,实际不尽如人意。众所周知,环境空气中甲烷的浓度值是ppm级(全球略有地域差,但通常在2ppm上下),而NMHC浓度,如前所述,为ppb级。这意味着,总烃和甲烷值相差甚微。这个“微”确实小,小到被减数(总烃值)和减数(甲烷值)两者任一数值在得出过程中稍有差池,就可能导致它“消失”(0)或者呈“负值”。而作为严谨、专业的分析测试人员,我们都知道,分析实验过程中的误差是不可避免的,只要它在可接受范围内。有时候,这个可接受范围甚至可以达到30%以内的偏差。然而对于差减法而言,这样的偏差简直是灾难。试想下,假定总烃浓度值为2.02ppm、甲烷浓度值是1.98ppm,它们中的任意一个出现30%哪怕10%的偏差都可能远远大于NMHC的真实浓度值。至此,分析实践中出现“0”值乃至“负值”就很好解释了。而这,也许正是《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》(HJ 604-2017)中将NMHC检出限设为0.07mg/m³(以碳计)、测定下限设为0.28mg/m³(以碳计)的原因。因此,差减法在实践中具有显而易见的局限性。直接法直接法这一称谓是相对于差减法而言的。顾名思义,采用该方法,NMHC是直接实测所得的数值。简单来说,样品经过预处理(预增浓+甲烷分离)后进入FID检测器,直接分析出NMHC浓度值。近两年,这一分析方法在学术界、监管层被广泛关注、重视,并最终为《环境空气非甲烷总烃连续自动监测技术规范(试行)》(总站气字(2021)61号文)所采纳。事实上,上个世纪90年代,“预处理+FID”技术路线直接测定NMHC即为美国EPA TO12方法所采用,Nutech是该标准方法的参与者并贡献了型号为8548的非甲烷总烃分析仪(该标准原文第7.5.1对此进行了列示),其时该产品使用制冷剂进行预处理。而这,也许正是《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》(HJ 604-2017)中将NMHC检出限设为0.07mg/m³(以碳计)、测定下限设为0.28mg/m³(以碳计)的原因。因此,差减法在实践中具有显而易见的局限性。图片转自美国epa to12标准方法Nutech的选择如上所述,Nutech是业内率先采用直接法的机构,并推动该技术路线为美国epa标准方法所采纳。在其后的发展过程中,基于技术应用的进步、实践经验的积累,Nutech不断对该技术方法进行优化改进(采用电子制冷取代制冷剂、并研制成功复合型吸附填充体等),将仪器的检出限降至0.5ppbc,以满足空气质量日渐改善背景下的NMHC监测需要。在中国,本着科学精神,Nutech采取发表技术论文、参与技术交流等不同方式在各个层面、各种场合推动NMHC直测法的应用。2016-17年,采用直测法的6000c先后在深圳、广州被采用;2018年,该型号产品在山东某化工园区厂届的nmhc监测中应用; 2019年,6000c在中国环境监测总站以及山东、上海、山西等省市环境监测部门、科研机构使用,直测法开始被学界、环境监管部门所关注; 2020年,新一代产品(6300)进入中国并参与相关标准的方法验证; 2021年,国家事权层面7个城市/国家级新区(北京、天津、石家庄、太原、济南、郑州、雄安新区)的7个点位开展挥发性有机物自动监测,其中nhmc监测项目的仪器为nutech6300。图片转自中国环境监测中心官方新闻展望2021年1月29日,《环境空气非甲烷总烃连续自动监测技术规范(试行)》(总站气字[2021]61号文,以下简称《规范》)发布,NMHC的直测法首次有了方法依据。在《规范》中,NMHC的检测限明确为更加符合实际的≤ 20 ppbc。虽然《规范》尚在试行阶段,但据悉相关标准正在编制中。
  • 沃特世发售NuGenesis SDMS 7.1
    沃特世发售已经验证可支持Windows 7和Empower 3 CDS的NuGenesis SDMS 7.1   米尔福德, 马萨诸塞州, - 2011年1月27日   沃特世公司(纽约证劵交易所代码:WAT)今天宣布开始发售NuGenesis® 科学数据管理系统7.1 Service Release 7(SR-7) 经结构性验证,本产品同时支持32位的微软Windows 7专业版和企业版操作系统,以及沃特世的Empower™ 3色谱数据系统(CDS)。   此外,NuGenesis SDMS 7.1 Service Release还具有以下全新特点:增强的SOP管理、新的仪器列表管理能力,以及用于Vision Publisher和SAP-QM或其它LIMS系统间的接口程序的新技术基础。   “不论是为了提高效率还是法规遵从性的要求,我们的客户正在越来越多地将需要将一系列仪器使用的标准操作规程(SOP)整合至其实验室的信息技术环境中,”沃特世公司信息科学部高级产品经理Maren Fiege博士说,“在促进工作流程的简化方面,SDMS 7.1是已推出的可支持Windows 7和沃特世全新Empower 3色谱数据系统的首款产品。客户可通过使用基于先进平台的SDMS和Vision Publisher而取得进展,并受益于QA/QC工作流程的精简,从而使产能和效率得到优化并可对精益六西格玛计划提供支持。”   NuGenesis SDMS是一种自动化的电子仓库,可将各类科学数据存储至中心数据库并对其进行管理,从而提供了整合大量研究应用的能力。   制药、生物技术和化学/工业领域内领先公司的科研人员已将SDMS视为一个标准,因为它能加快研究速度、提高科研协作水平,长期保存研究数据,并能提供知识产权保护和美国联邦法规21章第11款(21 CFR Part11)法规遵从性所要求的文本记录。通过使用自动化的“文件和打印采集”技术,SDMS可采集并存储任何仪器或应用所产生的特定科研数据。所有数据均使用高级函数设置,从而自动具备可检索性。   关于NuGenesis SDMS 7.1的更多信息,请点击此处.   关于沃特世公司(www.waters.com)   沃特世通过提供实用、可持续的科学创新为那些基于实验室工作的机构建立了商业优势,能使他们在提供健康、环境保护、食品安全和水质量方面取得杰出成就。   五十年来,沃特世已帮助客户进行意义深远的研究探索、优化操作、提供产品性能、及保证法规遵从等。   沃特世是上市公司(NYSE:WAT),总部设在马萨诸塞州的米尔福德市。它还是标准普尔500指数成员单位之一。现有近4,700 名雇员人。其生产企业位于马萨诸塞州米尔福德和陶顿,以及爱尔兰的维克斯福德,新加坡和英国的曼彻斯特。   在大多数国家,沃特世采取直接销售的方式,以便能与使用其产品的客户保持最紧密的联系。   ###   Waters, NuGenesis和Empower是沃特世公司商标.   联系人:   张林海   沃特世公司市场部   86(21) 61562642   lin_hai__zhang@waters.com   周瑞琳 (Grace Chow)   泰信策略(PMC)   020-83569288   grace.chow@pmc.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制