当前位置: 仪器信息网 > 行业主题 > >

薄膜形貌

仪器信息网薄膜形貌专题为您整合薄膜形貌相关的最新文章,在薄膜形貌专题,您不仅可以免费浏览薄膜形貌的资讯, 同时您还可以浏览薄膜形貌的相关资料、解决方案,参与社区薄膜形貌话题讨论。

薄膜形貌相关的资讯

  • 微纳加工薄膜应力检测的国产化破局
    1.为什么要检测薄膜应力?薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,直接影响着薄膜器件的稳定性和可靠性,薄膜应力过大会引起以下问题:1.膜裂;2.膜剥离;3.膜层皱褶;4.空隙。针对薄膜应力的定量化表征是半导体制程、MEMS微纳加工、光电薄膜制备工艺流程中品检、品控和改进工艺的有效手段。(见图一)图一、薄膜拉/压内应力示意图(PIC from STI 2020: Ultraviolet to Gamma Ray, 114444N)2.薄膜应力测试方法及工作原理目前针对薄膜应力测试方法主要有两种:X射线衍射法和基片轮廓法。前者仅适用于完全结晶薄膜,对于纳米晶或非晶薄膜无法进行准确定量表征;后者几乎可以适用于所有类型的薄膜材料。关于两种测试方法使用范围及特点,请参考表一。表一、薄膜应力测试方法及特点测试方法适用范围优点局限X射线衍射法适用于结晶薄膜1.半无损检测方法;2.测量纯弹性应变;3.可测小范围表面(φ1-2mm)。1.织构材料的测量问题;2.掠射法使射线偏转角度受限;3.X射线应力常数取决于材料的杨氏模量E;4.晶粒过大、过小影响精度。基片轮廓法几乎所有类型的薄膜材料激光曲率法:1.非接触式/ 无损;2.使用基体参数,无需薄膜特性参数;3.大面积测试范围、快速、简单。1.要求试样表面平整、反射;2.变形必须在弹性范围内;3.毫米级范围内平均应力。探针曲率法(如台阶仪):1.使用基体参数,无需薄膜特性参数;2.微米级微区到毫米级范围。1.接触式/有损;2.探针微米级定位困难导致测量数据重复性不够好。速普仪器自主研发生产的FST5000薄膜应力测量仪(见图二)的测试原理属于表一中的激光曲率法,该技术源自于中国科学院金属研究所和深圳职业技术学院相关研究成果转化(专利号:CN204854624U;CN203688116U;CN100465615C)。FST5000薄膜应力测量仪利用光杠杆测量系统测定样片的曲率半径,参见图三FST5000薄膜应力测量仪技术原理图。其中l和D分别表示试片(Sample)和光学传感器(Optical Detector)的移动距离, H1和H2分别表示试片与半透镜(Pellicle Mirror),以及半透镜与光学传感器之间的光程长。 图二、速普仪器FST5000薄膜应力测量仪示意图图三、FST5000薄膜应力测量仪技术原理图3.速普仪器FST5000薄膜应力测量仪技术特点及优势a.采用双波长激光干涉法,利用Stoney公式获得薄膜残余应力。该方法是目前市面上主流测试方法,包括美、日、德等友商均采用本方法,我们也是采用该测量方法的国内唯一供应商。并且相较于进口友商更进一步,速普仪器研发出独特的光路设计和相应的算法,进一步提高了测试精度和重复性。通过一系列的改进,使我们的仪器精度在国际上处于领先地位。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)b.自动测量晶圆样品轮廓形貌、弓高、曲率半径和薄膜应力分布。我们通过改进数据算法,采用与进口友商不同的软件算法方案,最终能够获得薄膜应力面分布数据和样片整体薄膜应力平均值双输出。(参考中国软件著作权:FST5000测量软件V1.0,登记号:2022SR0436306)c.薄膜应力测试范围:1 MPa-10 GPa,曲率半径测试范围:2-20000m。基于我们多年硬质涂层应力测试经验,以及独特的样品台设计和持续改进的算法,FST5000薄膜应力测量仪可以实现同一台机器测试得到不同应用场景样品薄膜应力。具体而言,不但可以获得常规的小应力薄膜结果(应力值<1GPa,曲率半径>20m),同时我们还能够测量非常规小曲率半径/大应力数值薄膜(应力值>1GPa,曲率半径<20m)。目前即使国外友商也只能做到小应力测试结果输出。d.样品最大尺寸:≤12英寸,向下兼容8、6、4、2英寸。FST5000薄膜应力测量仪能够实现12英寸以下样品测试,主要得益于我们独特的样品台设计,光路设计及独特的算法,能够实现样品精准定位和数据结果高度重复性。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)e.样品台:电动旋转样品台。通过独特的样品台设计,我们利用两个维度的样品运动(Y轴及360°旋转),实现12英寸以下样品表面全部位置覆盖及精准定位。(参考专利:ZL201520400999.9)f.样品基片校正:可数据处理校正原始表面不平影响(对减模式)。通过分别测量样品镀膜前后表面位形变化,利用原位对减方式获得薄膜残余应力面型分布情况。同样得益于我们独特的样品台设计和光路设计,保证镀膜前后数据点位置一一对应。4.深圳市速普仪器有限公司简介速普仪器(SuPro Instruments)成立于2012年,公司总部位于深圳市南山高新科技园片区,目前拥有北京和苏州两个办事处。速普仪器是国家高新技术企业和深圳市高新技术企业。公司拥有一群热爱产品设计与仪器开发的成员,核心团队来自中国科学院体系。致力于材料表面处理和真空薄膜领域提供敏捷+精益级制备、测量和控制仪器,帮助客户提高产品的研发和生产效率,以及更好的品质和使用体验。速普仪器宗旨:致力于材料表面处理和真空薄膜领域提供一流“敏捷+精益”级制备、测量和控制仪器。速普仪器核心价值观:有用有趣。
  • 12月9日听朱永法、刘忍肖老师在线讲”纳米材料的形貌及粒度表征“!速度报名!
    p strong “纳米材料的形貌及粒度表征应用技术”网络主题研讨会 /strong /p p strong br/ /strong /p p strong 会议时间:2015年12月09日& nbsp 14:00 - 17:00 /strong /p p strong br/ /strong /p p strong 会议简介: /strong /p p strong br/ /strong /p p 纳米科学和技术是在纳米尺度上(0.1nm~100nm之间)研究物质(包括原子、分子)的特性和相互作用,并且利用这些特性的多学科的高科技。其最终目的是直接以物质在纳米尺度上表现出来的特性,制造具有特定功能的产品,实现生产方式的飞跃。纳米科技是未来高科技的基础,而科学仪器是科学研究中必不可少的实验手段。因此,纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的作用。 /p p br/ /p p span style=" color: rgb(112, 48, 160) " strong 部分报告(陆续更新中): /strong /span /p p br/ /p p strong 报告一:纳米材料的形貌和粒度分析方法及应用 /strong /p p strong br/ /strong /p p 报告人:朱永法教授(清华大学/北京电子能谱中心) /p p br/ /p p 报告概要: /p p br/ /p p 主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。 /p p br/ /p p strong 报告二:纳米材料的粒度表征 /strong /p p strong br/ /strong /p p 报告人:方瑛(HORIBA) /p p br/ /p p 报告概要: /p p br/ /p p & nbsp 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。 /p p br/ /p p strong 报名条件:只要您是仪器信息网注册用户均可参加! /strong /p p br/ /p p strong 环境配置:只要您有电脑、外加一个耳麦就能参加。 /strong /p p br/ /p p span style=" color: rgb(255, 0, 0) " strong 扫码报名!一分钟搞定! /strong /span /p p strong br/ /strong /p p strong img src=" http://img1.17img.cn/17img/images/201511/insimg/f216179f-fbda-408c-a234-8938cb9d2465.jpg" title=" 纳米材料形貌及粒度表征" / /strong /p p br/ /p p strong pc端报名,请点击链接: /strong /p p strong br/ /strong /p p strong a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target=" _blank" title=" ”纳米材料的形貌及粒度表征“网络主题研讨会" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749 /a /strong /p p br/ /p
  • 薄膜沉积工艺和设备简述
    薄膜沉积(Thin Film Deposition)是在基材上沉积一层纳米级的薄膜,再配合蚀刻和抛光等工艺的反复进行,就做出了很多堆叠起来的导电或绝缘层,而且每一层都具有设计好的线路图案。这样半导体元件和线路就被集成为具有复杂结构的芯片了。化学气相沉积(CVD)化学气相沉积(CVD)通过热分解和/或气体化合物的反应在衬底表面形成薄膜。CVD法可以制作的薄膜层材料包括碳化物、氮化物、硼化物、氧化物、硫化物、硒化物、碲化物,以及一些金属化合物、合金等。化学气相沉积是目前很重要的微观制造方法,因为它有如下的这些特点:1. 沉积物种类多: 可以沉积金属薄膜、非金属薄膜,也可以按要求制备多组分合金的薄膜,以及陶瓷或化合物层。2. CVD反应在常压或低真空进行,镀膜的绕射性好,对于形状复杂的表面或工件的深孔、细孔都能均匀镀覆。3. 能得到纯度高、致密性好、残余应力小、结晶良好的薄膜镀层。由于反应气体、反应产物和基材的相互扩散,可以得到附着力好的膜层,这对表面钝化、抗蚀及耐磨等表面增强膜是很重要的。4. 由于薄膜生长的温度比膜材料的熔点低得多,由此可以得到纯度高、结晶完全的膜层,这是有些半导体膜层所必须的。5. 利用调节沉积的参数,可以有效地控制覆层的化学成分、形貌、晶体结构和晶粒度等。6. 设备简单、操作维修方便。7. 反应温度太高,一般要850~ 1100℃下进行,许多基体材料都耐受不住CVD的高温。采用等离子或激光辅助技术可以降低沉积温度。化学气相沉积过程分为三个重要阶段:1、反应气体向基体表面扩散2、反应气体吸附于基体表面3、在基体表面发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面CVD的主要有下面几种反应过程:i). 多晶硅 PolysiliconSiH4 — Si + 2h2 (600℃)沉积速度 100 - 200 nm /min可添加磷(磷化氢)、硼(二硼烷)或砷气体。多晶硅也可以在沉积后用扩散气体掺杂。ii). 二氧化硅 DioxideSiH4 + O2→SiO2 + 2h2 (300 - 500℃)SiO2用作绝缘体或钝化层。通常添加磷是为了获得更好的电子流动性能。当硅在氧气中存在时,SiO2会热生长。氧气来自氧气或水蒸气。环境温度要求为900 ~ 1200℃。氧气和水都会通过现有的SiO2扩散,并与Si结合形成额外的SiO2。水(蒸汽)比氧气更容易扩散,因此使用蒸汽的生长速度要快得多。氧化物用于提供绝缘和钝化层,形成晶体管栅极。干氧用于形成栅极和薄氧化层。蒸汽被用来形成厚厚的氧化层。绝缘氧化层通常在1500nm左右,栅极层通常在200nm到500nm间。iii). 氮化硅 Siicon Nitride3SiH4 + 4NH3 — Si3N4 + 12H2(硅烷) (氨) (氮化物)化学气相沉积CVD 设备CVD反应器有三种基本类型:◈ 大气化学气相沉积(APCVD: Atmospheric pressure CVD)◈ 低压CVD (LPCVD:Low pressure CVD,LPCVD)◈ 超高真空化学气相沉积(UHVCVD: Ultrahigh vacuum CVD)◈ 激光化学气相沉积(LCVD: Laser CVD,)◈ 金属有机物化学气相沉积(MOCVD:Metal-organic CVD)◈ 等离子增强CVD (PECVD)物理气相沉积(PVD)在真空条件下,采用物理方法,将材料源(固体或液体) 表面材料气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积不仅可沉积金属膜、合金膜, 还可以沉积化合物、陶瓷、半导体、聚合物膜等。物理气相沉积技术基本原理可分三个工艺步骤:(1)镀料的气化:即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。(3)镀料原子、分子或离子在基体上沉积。物理气相沉积技术工艺过程无污染,耗材少。成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层 。物理气相沉积也有多种工艺方法:◈ 真空蒸度 Thin Film Vacuum Coating◈ 溅射镀膜 PVD-Sputtering◈ 离子镀膜 Ion-Coating
  • 德祥成功参加国际薄膜材料大会 Thin Film 2010
    德祥成功参加国际薄膜材料大会 Thin Film 2010 7月11日至14日,德祥科技有限公司(Tegent Technology Ltd.)一行代表参加了在哈尔滨举办的第五届国际薄膜材料大会(ThinFilms2010)和*届国际先进树脂基复合材料大会(Compo2010)。本次会议由哈尔滨工业大学与国际薄膜学会(Thin Films Society)共同主办,哈尔滨工业大学航天学院副院长赫晓东和新加坡南洋理工大学张善勇教授共同担任大会主席。大会名誉主席杜善义院士、副校长周玉、张善勇和赫晓东出席了开幕式并致辞,周玉还代表中国工程院副院长干勇院士致辞。本次会议吸引了来自中国、韩国、新加坡、印度、马来西亚、美国、德国、英国、日本、澳大利亚、俄罗斯、荷兰等100多个国家或地区的800余名专家学者参加,其中国外学者500余名,国内学者200余名,收录学术论文逾千篇,其中口头报告500余篇、墙报550余篇。 德祥与会代表与Hysitron宋博士在一起 (左起:Dr. Shuangxi Song (Application Scientist, Hysitron Inc.), Ms. Karen Zhao (Product Manager, Tegent Technology Ltd.), Mr. Daniel Liu (Sales Supervisor, Tegent Technology Ltd.)) 德祥的合作伙伴美国Hysitron(海思创)公司在大会现场进行了纳米压痕仪产品展示,得到与会代表的广泛关注。Hysitron(海思创)公司是*的纳米力学检测仪器的设计和制造商。Hysitron(海思创)的纳米力学测试仪器可以在微纳尺度下对压痕、划痕、磨损过程中的硬度、弹性模量、等力学参数进行原位成像检测,是认识和探索材料的微纳米尺度结构、形貌和性能的重要设备。 德祥是Hysitron(海思创)公司系列产品在中国大陆和香港的独家总代理商。 德祥与会代表与Hysitron宋博士在一起 左起:Dr. Shuangxi Song (Application Scientist, Hysitron Inc.), Mr. Daniel Liu (Sales Supervisor, Tegent Technology Ltd.), Ms. Karen Zhao (Product Manager, Tegent Technology Ltd.) 更多产品详情,敬请垂询: 客服热线:4008 822 822 德祥网站:www.tegent.com.cn 邮箱:info@tegent.com.cn
  • HORIBA Scientific新品系列(四):薄膜精准测量新突破
    薄膜分析专家,可精确分析薄膜各种物理、光学特性,轻松获取如下信息:● 厚度(低至1A) ● 折射率● 消光系数● …… 您也可以向我们索取产品报价、样本关应用资料超高性能的仪器,是薄膜研究佳选择! 可测低至单原子层厚度样品 可测低衬度样品,如硅上氧化硅等 高准确性、高稳定性,实验结果真实可靠,更具信服力 190nm-2100nm宽光谱范围,材料研究范围更加广阔,为您的研究方向提供无限空间先进设计理念,操作更轻松,功能更强大! 微光斑可视系统,8个尺寸可选,复杂形貌样品精准轻松定位 全自动化设计,减少人为操作失误 操作简单,初学者也可快速掌握 强大的软件平台,完美集成数据采集与建模拟合功能,满足资深科研人员的使用要求● TFT-LCD● PDP● LED, ELD, OLED● 柔性显示器● 晶体管● 高k、低k材料● 光刻胶● 数据存储● II-VI, III-V 和硅太阳能电池● 有机太阳能电池● TCO● 石墨烯, 碳纳米管● 纳米结构● 有机膜下载新的《光谱系列丛书 入门手册》关注我们邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“复合/纳米材料的形貌及粒度表征”
    p img style=" WIDTH: 600px HEIGHT: 75px" title=" sj0213xuan01_副本.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/insimg/8c21f2e9-490e-4a10-b5be-359d731bbccf.jpg" width=" 600" height=" 75" / /p p strong span style=" COLOR: rgb(0,0,0)" “复合/纳米材料的形貌及粒度表征”网络主题研讨会 /span /strong /p p br/ strong span style=" COLOR: rgb(0,0,0)" 会议时间:2015年12月9日 14:00-17:00 /span /strong /p p br/ 报告日程: /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告一:纳米材料的形貌和粒度分析方法及应用 /strong /span /p p br/ 报告人:朱永法 /p p br/ 清华大学化学系教授、博导,分析化学研究所副所长,国家电子能谱中心副主任。从事半导体薄膜材料的表面物理化学、纳米材料的合成与性能、环境催化以及光催化的研究工作。 /p p br/ 报告概要: /p p br/ 主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告二:基于PeakForce Tapping模式的纳米材料表征 /strong /span /p p br/ 报告人: 孙昊 /p p br/ 布鲁克中国北方区客户服务主管 /p p br/ 报告提纲: /p p br/ PeakForce Tapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForce Tapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。基于PeakForce Tapping模式,Bruker公司发展了一系列扩展成像技术,如智能成像(ScanAsyst),它可以轻易实现绝大部分常见样品的扫描参数自动优化,使刚入门的客户也能非常容易地得到专家级的图像;定量纳米力学成像(PeakForce QNM)可以在扫描形貌的同时实时定量地分析出样品的模量与粘滞力,为纳米力学测量带来了革新;峰值力表面电势测量(PFKPFM)与峰值力导电性测量(PFTUNA)使得在软样品表面同时的电学和力学测量成为可能。在这个Webinar中,我们将介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告三:纳米材料的粒度表征 /strong /span /p p br/ 报告人:方瑛 /p p br/ HORIBA 应用工程师 /p p br/ 报告概要: /p p br/ 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告四:尺度表征用纳米标准样品 /strong /span /p p br/ 报告人:刘忍肖 /p p br/ 博士,高级工程师,国家纳米科学中心/中科院纳米标准与检测重点实验室,主要工作领域为纳米技术标准化,承担了十余项纳米技术标准制修订、纳米标准物质/标准样品的研制工作;从事与纳米技术相关的标准化科研工作,参与两项国家重大科学研究计划项目和一项质检公益性行业科研专项,承担国家自然科学基金和北京市自然科学基金项目。 /p p br/ 报告提纲: /p p br/ 纳米标准样品概况;尺度表征用纳米标准样品;示例:粒度、台阶高度纳米标准样品。 /p p br/ 报名条件:仪器信息网个人用户,自助报名当天参会。 br/ br/ span style=" COLOR: rgb(255,0,0)" strong 报名方式:扫描下方二维码或点击链接。 /strong /span br/ br/ img title=" 12-9纳米材料研讨会.png" src=" http://img1.17img.cn/17img/images/201511/insimg/3c15c368-57fd-486a-a4ab-b1df6999103e.jpg" / br/ br/ 仪器信息网“复合/纳米材料的形貌及粒度表征”网络主题研讨会 /p p br/ a title=" “纳米材料的形貌及粒度表征应用技术”网络主题研讨会" href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target=" _blank" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749 /a /p
  • OPTON微观世界 | 第42期 制样方法对截面样品形貌的影响
    背景介绍硅橡胶是由硅氧键连接构成的高分子聚合物,硅氧键具有很强的键能,热稳定性,化学稳定性好,具有较强的耐老化性能;压缩率大,表面张力小,憎水防潮性好,比热容和导热系数小,不溶于水。填料的含量对聚合物复合材料的性能有很大的影响,还会影响混炼时的加工性能。加入过多的填料,会使混炼变得困难,还会直接影响到聚合物复合材料的力学性能,填料的含量控制在一定范围内,随着填料含量的增加,聚合物复合材料的性能是逐渐增加的,超过这个阈值,聚合物复合材料的性能则不会增加。填料在聚合物中分散越好,越容易形成网络,对聚合物复合材料的性能越佳。而填料的尺寸对其分散性有非常重要的影响:粒径越小,粒子之间越容易团聚,在聚合物中的分散更加困难,会使聚合物的力学性能急速下降;粒径过大,容易在聚合物中形成应力集中点,使其力学性能下降,因此,也不宜添加过多。所以如何控制填料的粒径和含量,需要通过SEM的实验结果来确定。本文采用了两种制样方法,使用蔡司Sigma300在低电压下不喷金直接观测硅橡胶截面形貌,对比观测氧化铝填料在硅橡胶中的分布情况。制样方法如下所示:(1)刀片切割:采用锋利的刀片切割出较薄的截面;(2)液氮淬断:剪取小块样品放入液氮中冷冻,由于橡胶韧性较好,则需冷冻较长时间。如图1所示图1不同制样方法:刀片切割(A);液氮脆断(B)不同制样方法对结果的影响:图2不同制样方法硅橡胶的截面形貌像A1,A2:刀片切割;B1,B2:液氮淬断实验结果表明:刀片切割后的样品,图中的聚合物基体有一定粘连,对判断 Al2O3填料在聚合物中的分散有一定的影响;但在液氮中淬断的样品,聚合物基体无粘连,很容易判断Al2O3填料在聚合物基体中的分散情况,如图2所示。如果聚合物薄膜较薄,直接用剪刀剪断或者刀片切割,样品的截面则会被表层覆盖,更难判断填料在基体中的分散。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 中科院物理所|新一代高通量薄膜制备及原位表征技术获进展!
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队和超导国家重点实验室金魁/袁洁团队,在新一代高通量薄膜制备及原位表征技术研发获得重大进展,该成果发表于近期的《科学仪器评论》杂志上 span style=" color: rgb(0, 0, 0) " 【Review of Scientific Instruments 91, 013904 (2020) doi: 10.1063/1.5119686】 /span a href=" http://www.iop.cas.cn/xwzx/kydt/202002/P020200212416644690060.pdf" target=" _self" span style=" color: rgb(0, 112, 192) " (文章链接) /span /a 。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/e637a6c9-3502-4446-8d0c-ea9fb16b6e59.jpg" title=" 图片4.png" alt=" 图片4.png" / /p p style=" text-align: justify text-indent: 2em " 中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发;超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。近些年来,两个团队密切合作、联合攻关,共同指导SC2组博士生何格(目前在德国做洪堡学者)、魏忠旭、冯中沛等同学 strong span style=" color: rgb(0, 0, 0) " 成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。 /span /strong 该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点: strong 1) /strong 采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性; strong 2) /strong 特殊设计的STM扫描头能够实现大范围XY移动(& gt 10 mm)和高精度定位(定位精度优于 1 μm); strong 3) /strong 完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。 /p p style=" text-align: justify text-indent: 2em " 该研发团队对系统进行了反复地设计优化和改进(研发历时4年多,设计版本多达50多个),并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。 strong 目前,该系统已用于研究高温超导机理问题和新型超导材料探索。 /strong /p p style=" text-align: justify text-indent: 2em " 作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/7b2acf06-1ac6-465d-ad0a-d76ef6f1406c.jpg" title=" 图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt=" 图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " 图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片 /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/bb46dd89-0b72-4f5e-a7d6-dd88e1baa05c.jpg" title=" 图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg" alt=" 图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg" / /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " 图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b) /span /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/ca707a08-a9a8-4ef2-8798-23266bfbc9df.jpg" title=" 图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png" alt=" 图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png" / /span /span /p p style=" text-indent: 0em text-align: center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center " span style=" font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 13.3333px text-align: -webkit-center " 图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图 /span /span /span /p
  • 仪器情报,科学家制备表征新兴高性能多晶薄膜!
    【科学背景】随着材料科学和纳米技术的迅速发展,二维(2D)晶体材料作为一种重要的研究对象,因其独特的结构和性质而引起了科学家的广泛关注。尤其是在柔性电子、光电子以及分离等领域的应用,对于开发具有高强度、韧性和弹性的2D薄膜材料提出了迫切需求。然而,传统的2D晶体材料通常是多晶的,含有许多晶界,这导致其易碎和脆性,严重限制了其在柔性器件中的应用。共价有机框架(COF)作为一种新兴的2D晶体材料引起了人们的关注。COF由有机节点和连接物通过共价键构建而成,具有周期性和多孔结构。然而,现有的COF材料通常以不可加工的粉末形式存在,或者以部分晶化的片状材料或不连续薄膜的形式出现。这些材料存在着脆弱易碎、裂纹沿晶界传播严重等问题,严重限制了它们的应用范围。为了解决这些问题,中山大学郑治坤教授团队提出了使用线性小分子作为牺牲中介来引导2D COF的聚合和结晶的新方法。通过选择亚胺键连接的COF,并利用具有较高反应性的烷基双胺为中介,可以促进COF相邻结晶颗粒在晶界处的纠缠,从而增加薄膜的弹性。此外,选择聚丙烯酸作为聚合物表面活性剂来辅助界面合成,进一步优化了薄膜的制备过程。通过这一研究,研究者们成功地制备出了高度结晶且具有弹性的2D COF薄膜,其力学性能得到了显著改善。【科学图文】在本研究中,为了制备高度结晶且具有弹性的2D COF薄膜,研究人员采取了一系列实验步骤。首先,他们使用了5,10,15,20-四(4-氨基苯基)-21H,23H-卟啉(节点)和2,5-二羟基对苯二甲醛(连接物1)进行反应,形成了2DCOF-1(图1a)。在此过程中,通过在水中添加二乙烯三胺作为中介,以及利用聚丙烯酸在水表面促进节点的积聚和组装,最终得到了具有高度均匀性的2DCOF-1薄膜。傅立叶变换红外和拉曼光谱表明了亚胺键的形成以及节点和连接物的完全消耗。将薄膜沉积到铜网格上后,显微镜观察到除了与镊子接触导致的一个破裂区域外,其他区域均被完全覆盖(图1c)。扫描电子显微镜和原子力显微镜进一步证实了薄膜的结构和均匀性,显示了不同颗粒通过晶界连接而成的结构,晶界呈现出明亮的对比度,而整个薄膜的颗粒和边界形态非常相似。这些结果表明,通过所采取的实验方法,研究人员成功地制备了高度结晶的2DCOF-1薄膜,并且该薄膜具有较高的机械韧性和均一性。图1. 2DCOF-1薄膜的合成方案及形貌。为了了解二维COF薄膜的晶界结构和微观特性,作者首先假设形成了涉及交织结构的晶界,并计算得到了晶胞参数(图2a)。接着,通过广角X射线衍射(GIWAXS)观察到了清晰而多重的反射,表明薄膜具有高结晶度。尤其是在平面方向,反射被很好地索引,并呈现出简单的四方晶格,支持了模拟的交织结构在平面上的周期性。在垂直方向上也观察到了清晰的反射,给出了层间距的信息,进一步证实了交织结构的存在(图2b)。此外,通过缝合畸变校正的高分辨透射电子显微镜(AC-HRTEM)图像,观察到了薄膜的微观结构。图像显示,薄膜由单晶颗粒组成,并通过傅立叶滤波进一步确认了这一结论。这些结果表明,二维COF薄膜具有复杂的晶界结构和高度有序的微观排列,这为其在力学性能和应用方面的研究提供了重要参考(图2c)。图2. 2DCOF-1薄膜的结晶度和晶界结构。作者进行了一系列实验,以探究二维COF薄膜的聚合和结晶过程。首先,通过广角X射线衍射技术监测了反应过程中薄膜的结晶情况。在6小时的反应时间内,观察到了局部结晶的开始信号,但整体呈现无定形状态;而在7小时处,形成了多晶薄膜,反射环明显。随着反应时间的延长,反射的强度逐渐增加,反映了薄膜的整体结晶度逐渐提高。此外,AC-HRTEM提供了微观的图像,显示了不同颗粒重新取向的过程,以及单晶颗粒尺寸的逐渐增大和晶界数量的减少。通过对比实验,发现未使用二乙烯三胺的对照实验中形成了具有层间无序的薄膜,并且薄膜厚度在不同区域间变化较大。而使用其他化合物作为中介的对照实验也证实了交织晶界的形成。这些实验结果揭示了二维COF薄膜的聚合和结晶过程,为理解其形成机制提供了重要线索(图3)。图3. 2D COF-1 薄膜的反应时间依赖性结构分析。图4展示了2DCOF-1薄膜的力学性能。通过在悬浮的薄膜上进行AFM纳米压痕实验,结果显示薄膜具有高韧性和弹性,加载和卸载曲线之间没有明显差异,表明薄膜在铜网上没有滑动。当薄膜被压痕直至破裂时,裂纹迅速扩散并大部分区域反弹回初始位置,表明薄膜存在能量消耗路径,可能是由于交织晶格的来回滑动。与此相反,对照实验显示2DCOF-1-A薄膜遇到严重的裂纹扩展。此外,薄膜的能量损失系数在70%和80%应变时均小于10%,并且在反复加载和卸载周期中保持稳定,表明了薄膜的高稳定性和韧性。通过对六个不同样品的力-位移曲线进行拟合,计算出薄膜的弹性性能和断裂应力,结果显示其平面弹性模量和断裂强度均远高于先前报道的晶体和多孔材料。这些实验结果表明了2DCOF-1薄膜具有优异的力学性能,展示了其作为有机二维COF纯晶膜的潜在应用前景。图4. 2DCOF-1薄膜的机械性能。【科学结论】本研究为克服传统2D晶体脆弱性提供了新思路。通过引入无定形聚合物中常见的交织结构,我们成功地将高强度、高韧性和高弹性引入了亚胺键多晶膜中,实现了这些膜的整体性能的显著提升。这一研究不仅为解决2D晶体材料的脆弱性问题提供了新途径,还揭示了从无定形材料中借鉴结构和性能的潜力。这种方法为多晶材料引入新的特性和应用打开了新的可能性,不仅可以加强现有材料的性能,还有望为新型应用的发展提供有力支持。这一创新将有助于推动材料科学领域的发展,为开发更加功能强大的材料和应用打开了新的前景。参考文献:Yang, Y., Liang, B., Kreie, J. et al. Elastic films of single-crystal two-dimensional covalent organic frameworks. Nature (2024). https://doi.org/10.1038/s41586-024-07505-x
  • 宁波材料所在sp2c-COFs薄膜制备及海洋能源器件方面取得进展
    共价有机框架(COFs)材料是一类由重复有机单元通过共价键连接具有二维拓展结构的多孔晶体材料。该类材料具有高结晶度、均一孔径分布和高比表面积等特点,因此广泛应用在气体储存和分离、能源储存、光电催化等领域。   其中二维sp2碳共轭共价有机框架(sp2c-COFs)具有有序π堆叠、丰富活性位点、可调谐开放纳米孔道结构、可定制化分子构筑基元与强共价连接键等特点。并且得益于碳碳双键增强的π共轭电子跃迁、超高的化学/热稳定性及高电子迁移率等特性,sp2c-COFs的高效构建是半导体器件、能源催化、选择性分离膜等前瞻性新兴技术及苛刻环境领域内研究的热点。   然而,sp2c-COFs的构筑受阻于高度不可逆的C=C成键过程;此外,目前报道的sp2c-COFs都是以粉末形式存在的,粉末的不溶性和共价有机薄膜制备困难的问题,阻碍了这些材料在相关分离膜、能源或光电器件中的应用。   中国科学院宁波材料技术与工程研究所界面功能高分子材料团队在张涛研究员的带领下对二维sp2碳共轭共价有机框架材料可控构筑及前沿基础应用进行了深入研究。该团队前期提出多种可靠新型单体、碳碳双键构筑路径及含有稳定性增强效应sp2c-COFs的设计策略(J. Am. Chem. Soc. 2022, 144, 13953 ACS Catal. 2023, 13, 1089 Chem. Mater. 2023, 10.1021/acs.chemmater.2c03083),突破了当前缩聚策略和单体种类的局限性,实现数类高度共轭sp2c-COFs的制备。   近期,该团队提出一种表面自组装单分子层(SAM)辅助的表面引发席夫碱介导羟醛缩合反应(SI-SBMAP)技术,实现sp2c-COF薄膜(命名为TFPT-TMT和TB-TMT)在多种基底上的可控构筑(图1)。并且得益于均匀的氨基单分子层提供的反应成核位点,通过SI-SBMAP合成的sp2c-COF薄膜展现了连续均匀的形貌和高度有序的晶体结构,并拥有高的比表面积和均一的孔径分布等结构特征(图2和3)。这些优点使得该薄膜材料在海洋渗透发电装置中展现出极高功率密度和稳定性。   为了解sp2c-COF薄膜的形态演变,进一步收集了不同反应时间的样品,并通过扫描电镜对其进行了分析。已知2D COFs中的平面三嗪基团由于强的π-π相互作用有助于促进COF层沿z轴的垂直堆叠,从而导致结晶度增强并形成棒状或带状形态。   因此,与三嗪基团较少的TB-TMT薄膜相比,TFPT-TMT薄膜中大量的三嗪基团倾向于形成更长的纤维。得益于表面引发技术可适用于多种基底的优势,sp2c-COF薄膜也可以在NH2-SAM修饰的其他各种基材上制备,包括聚丙烯腈(PAN)膜、玻璃纤维、铝片等。并且在PAN基底上制备的sp2c-COF薄膜尺寸可达18cm×7cm,为大面积制备sp2c-COF薄膜提供了新的途径(图4)。   在进一步的实验中,利用TFPT-TMT薄膜高化学稳定性、明确的准一维通道、高孔隙密度的优点,将其集成到海洋渗透发电装置中。该设备在50倍盐度梯度(pH=14恶劣条件)下输出功率密度高达14.1 Wm-2,中间电阻低至17.74 kΩ,优于大多数报道的COF膜,达到商业基准(5 Wm-2)的近3倍(图5)。这项工作为sp2c-COF薄膜的合成提供了一种新型、可靠的方法,并证明了其具有在极端酸碱条件下能源相关器件中的巨大应用潜力。   该工作近期以“Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp2 Carbon-Conjugated Covalent Organic Framework Thin Films”为题发表在Journal of the American Chemical Society期刊上,本研究得到了浙江省自然科学基金(LR21E030001)、国家自然科学基金(52003279)、浙江省创新创业领军团队引进项目(2021R01005)、宁波市重点研发计划(2022ZDYF020023)的支持。
  • 扫描电镜的衬度信息与表面形貌像——安徽大学林中清33载经验谈(15)
    【作者按】衬度指的是图像上所存在的明、暗差异,正是存在这种差异才使得我们能看到图像。同是明、暗差异,衬度与对比度的不同在于:对比度是指图像上最亮处和最暗处的差异,是以图像整体为考量对象;衬度是指图像上每一个局部的亮、暗差异,它是以图像上的局部细节为考量对象。形貌衬度、二次电子衬度和边缘效应、电位衬度、Z衬度、晶粒取向衬度是展现扫描电镜表面形貌特征的几个主要衬度信息。形貌衬度是形貌像形成的基础,其余的衬度信息叠加在这个基础之上做为形貌像的重要组成部分,充实及完善形貌像所展现的表面形貌信息。依据辩证的观点,这些衬度信息各有其适用领域,相互之间不可能被完全替代。即便是形貌像的基础“形貌衬度”也不具有完全代替其余任何一个衬度的能力。对任何衬度呈现的缺失,都会使得表面形貌像存在程度不同的缺陷,使仪器分析能力受到一定程度的影响,这些都将在下面的探讨中通过实例予以充分的展示。在前面经验谈中有大量的实例及篇幅对以上衬度予以介绍。本文是对过去零散的介绍加以归纳总结,形成体系。下面将从形貌衬度开始,通过实例,依次介绍二次电子衬度、边缘效应、电位衬度、Z衬度以及晶粒取向衬度的成因、影响因素、所展现的样品信息以及应用实例和探讨。一、形貌衬度形貌衬度:呈现样品表面形貌空间位置差异的衬度信息。影响因素:探头接收溢出样品的电子信息的角度。形成缘由:要充分表述表面形貌三维空间的位置信息,形成图像的衬度应当包含两个基本要素:方向和大小。物体图像的空间形态取决于人眼观察物体的角度:侧向观察是立方体,顶部观察为正方形。这是由于该角度包含着形成图像空间形态的两个基本要素:方向和大小。扫描电镜测试时形貌衬度的形成也是同样道理。形貌衬度的形成与探头接收溢出样品的电子信息(二次电子、背散射电子)的角度密切相关。该接收角度发生改变,形貌衬度也将发生变化,形貌像就会跟着出现变动。接收角对形貌像的影响并不单调,而是存在一个最佳范围。不同厂家的不同类型扫描电镜,由于探头位置设计上的差异,各自都存在一个最佳工作距离以形成最佳的信息接收角,呈现出各自所能表达的样品表面形貌的最大空间形态。样品的倾斜会对接收角产生较大的影响,因此倾转样品可以发现表面形貌像的空间信息也会发生改变。任何测试条件的改变都不会带来唯一且单调的结果,而是遵循辨证法的规律,即对立统一、否定之否定和量变到质变。选择测试条件时,要针对样品特性及最终目的做到取舍有度。形貌衬度是形成形貌像的基础,但并不是形貌像的全部。形貌像中许多细小的形貌细节,会受到探头所接收的电子信息(SE和BSE)溢出区大小的影响。电子信息和电子束的能量越大对这些细节的影响也越大,当量变达到一定程度就会影响某些细节的分辨,从而对表面形貌像产生影响。要形成充足的形貌衬度,又该如何选择电子信息接收角的形成方式?依据样品特性及表面形貌特征可分为:A)低倍,低于10万倍,呈现的形貌细节大于20纳米。此时,背散射电子很难完全掩盖这些细节信息,随着所需呈现的样品表面细节的增大,背散射电子对图像清晰度的影响也会减小,图像也将越渐清晰。样品仓内的探头位于样品侧上方,与样品和电子束共同形成较大的电子信息接收角。由该接收角形成的形貌衬度能充分呈现20纳米以上的样品表面形貌细节。随着工作距离、样品台倾斜和加速电压的改变,该接收角的变化幅度较大,图像所呈现的形貌变化也较为明显。镜筒内探头位于样品顶部,与样品和电子束在一条直线上。其对信息的接收角度主要形成于电子信息的溢出角,该角度较小,形成的形貌衬度也较小,不利于充分展现大于20纳米的形貌细节。工作距离、样品台倾斜以及加速电压的改变对接收角的影响较小,图像形态变化不明显。基于以上原因:低于10万倍,观察的样品表面细节大于20纳米。以样品仓探头为主获取的形貌像,空间形态更优异。B)高倍,大于20万倍,观察的形貌细节小于20纳米。表面形貌的高低差异小,形貌衬度也小,电子信息的溢出角度即可满足衬度的形成需求。此时,低角度信息的接收效果将是主导因素,低角度信息越多,图像立体感越强烈。背散射电子因能量较高对这些细节影响较大,必须加以排除。为充分呈现这类形貌信息,应采用镜筒内探头从样品顶部接收充足的二次电子,尽量排除溢出面积较大的背散射电子信息溢出区对样品细节的影响。此时形成形貌像的关键是采用小工作距离(小于2mm),以增加镜筒内探头接收到的低角度二次电子。实例展示及探讨:A )大于20纳米的细节,以样品仓探头为主(大工作距离)形成的形貌像,立体感强、细节更优异,形貌假象较少。B)样品仓探头获取的表面形貌像对工作距离的变化、样品倾斜、加速电压的改变都十分敏感,表面形貌像的形态随之改变也较为明显。镜筒探头位于样品顶端,改变以上条件对接收角的影响不大,形貌像的空间形态变化也不明显。 B1)改变工作距离对表面形貌像的影响(钴、铁、钨合金)B2)样品倾斜对形貌像立体感的影响B3)改变加速电压对形貌像立体感的影响(合金钢)C)小于10纳米的细节,形貌衬度要求较小,溢出样品的低角度电子信息就满足这类表面细节的呈现需求。此时如何避免样品中电子信息的扩散对形貌细节产生影响是首要选择,充分选用低能量的二次电子就显得极为关键。镜筒内探头因位置和结构的特别设计,使得它接收的样品信息以二次电子为主,是展现这类几纳米细节的首选。工作距离越小,镜筒内探头接收到更为丰富的多种角度的二次电子信息,对10纳米以下细节的分辨力最强。D)处于不同位置的镜筒内探头获取的形貌衬度也不相同。位于侧向的镜筒内(U)探头相较于位于顶部的镜筒内探头(T),可获取更多的低角度信息,形貌像的立体感更强。结论:形貌衬度是形成形貌像的基础,探头接收形貌信息的角度是形成形貌衬度的关键因素。不同大小的形貌细节要求的形貌衬度不同,该接收角的形成方式也不同。低倍时,形貌像的空间跨度大,要求的形貌衬度也大,需探头、样品和电子束之间形成一定的角度才能获得充分的形貌像。该角度有一个最佳值,探头位置不同,这个值也不同,形成的形貌像空间感也存在差异。高倍时,形貌空间跨度小,低角度电子信息即可满足形貌衬度的形成需求。此时避免电子信息的扩散对形貌像的影响就极为关键,充分获取低角度二次电子将成为测试时的首选。形貌衬度虽是形成表面形貌像的基础,但并不是唯一因素,要获取充足的形貌像,其他衬度的影响也不可忽视。下面将对形成形貌像的其他衬度加以探讨。二、二次电子衬度和边缘效应一直以来的主流观点都认为:二次电子衬度和边缘效应是形成扫描电镜表面形貌像的主导因素。各电镜厂家都把如何充分获取样品的二次电子做为形成高分辨形貌像的首选,对探头位置的设计,也以充分获取二次电子为目的来展开。这一理论体系的形成依据是:1. 二次电子的溢出量与样品表面斜率相对应,在边缘处的溢出最多。而表面形貌像可看成是不同斜率的平面所组成,故二次电子衬度和边缘效应含有充分的样品表面形貌信息。2. 二次电子能量低,在样品中扩散小,对样品表面那些极细小的细节影响小,分辨能力强,图像清晰度高。 但实际情况却往往于此相反。如下图:右图中二次电子衬度及边缘效应充足,但形貌信息相较左图却十分的贫乏,并在形貌像上带有极为明显的假象。为什么会出现这种与目前主流观点完全不一样的结果?原因何在?这还是要从扫描电镜形貌像的形成因素说起。表面形貌像呈现的是表面形貌高低起伏的三维信息,图像中必须含有两个重要的参数:方向与大小。表述一个斜面,需提供与该斜面相关的两个重要参数:斜率大小和斜面指向,这是向量的概念。二次电子衬度对斜率大小的呈现极为明显,亮、暗差异大;却对斜面指向的呈现极差。对形貌像来说,斜面指向形成的衬度差异对形成形貌像往往更重要。因此由二次电子衬度和边缘效应形成的图像只具二维特性,无法呈现形貌像的三维特征,失去形貌细节也在所难免。探头对样品信息的接收角所形成的形貌衬度能充分表达形貌像的指向差异。因此下探头即便接收的背散射电子较多,对斜率大小的表现较差,但呈现的形貌形态却更充足。任何信息都有其适用范围,在适用范围内总扮演着关键角色。二次电子衬度和边缘效应虽然对斜面指向不敏感,但对斜率大小却极度敏感,该特性能强化平面和斜面区域整体的衬度差异,有利于对区域整体进行区分。区域在形貌像中占比越小,被区分的优势就越大。需要注意:此时区域之间的衬度表述,并非该区域成分和密度的不同,而是各区域中斜面数量和斜率大小的差异。观察区域在图像中面积占比越低,区域中的形貌细节越难分辨,采用形貌衬度对区域进行区分也越难。此时,二次电子衬度和边缘效应对区域进行区分的作用也就越大,如下例:以上是钢铁表面的缺陷,在500倍时采用下探头是无法区分A、B两个区域有哪些不同,很容易被误认为是两块完全相同的平面。但是采用上探头(二次电子衬度优异)发现这两个区域存在非常明显的不同,放大到2万倍,可见区域A和B在形态上的差别巨大,A区域比B区域的起伏大。二次电子衬度和边缘效应的强弱可通过探头和工作距离的选择加以调整。对这一衬度的合理利用,可拓展对样品形貌特征进行分析的手段,获得更充分的形貌信息。此外,充分的运用二次电子,还有利于利用“电位衬度”来扩展对样品表面形貌信息进行分析的方法。三、电位衬度电位衬度:样品表面由于存在少量荷电场,对样品某些电子信息的溢出量产生影响而形成的衬度。影响因素:由于荷电场较弱,受影响的主要是二次电子,背散射电子的溢出量受影响较小。实用方向:样品表面存在有机物污染、局部氧化或晶体结构的改变。这些变化采用Z衬度很难观察到,而形成荷电场强度及位置的些微差异所产生的电位衬度却较明显。该特性在进行样品失效分析时对找出性能改变的区域,作用极其明显。实例展示及分析:A)智能玻璃表面的有机物污染表面镀膜的智能玻璃,通电后总是有明显的光晕出现。该部位用扫描电镜进行微观检测。结果如下:镜筒内(上)探头,SE为主,Z衬度较差。相较于样品仓(下)探头,BSE为主,出现以上类似Z衬度所形成的光斑图案的几率和强度要低,但结果却完全与常规认识相背离。原因何在?从探头的改变对结果影响判断,该图案不是Z衬度所形成,否则下探头图案将更为明显。图案形状如同液体滴在块体上所形成,怀疑为有机液滴落在薄膜表面,造成该处漏电能力减弱,形成局部的弱荷电场,影响二次电子的溢出而酿成电位衬度。背散射电子未受到荷电场的影响,薄薄的液滴层形成的Z衬度又小,故下探头无法呈现反映液滴污染的任何电子信息。能谱分析该处的碳含量略高一些。客户清洗设备,排除任何有机污染的因素,该现象消失。B)铁、钴、镍合金框架表面的氧化斑采用能谱分析颗粒物部位,多出硅和氧的成分信息,说明这里可能存在夹杂物,但含量极少用Z衬度很难区别。而硅、氧造成了其存在区域的漏电能力下降,使得该处的电位衬度极为明显。由此我们可轻松找到材料的缺陷点。通过以上实例可见,材料的缺陷,往往会由于工艺问题使某些部位局部被氧化或污染。这类缺陷采用Z衬度往往很难观察到,而采用电位衬度就会很容易找到。只有在大工作距离下,才可轻松切换样品仓和镜筒探头以分别对某个区域进行观察,针对形貌像所表现出的电位衬度差异,往往很容易找到样品的失效点并分析原因。二次电子和背散射电子都有其善于呈现的衬度信息。二次电子在二次电子衬度、边缘效应和电位衬度的展现上优势明显,上面已经充分的探讨。背散射电子在Z衬度和晶粒取向衬度(电子通衬度ECCI)的表现上更加的优异,下面将分别加以介绍。四、Z衬度Z衬度:由样品各个组成相的平均原子序数(Z)及密度差异所形成的图像衬度。形成因素:相同条件下,SE和BSE的溢出量和散射角会随组成样品的原子序数及密度的不同而不同,造成探头对其的接收量出现差异而形成Z衬度。背散射电子在量的改变上较二次电子更强烈,因此形成的Z衬度更大,灰度差异更明晰。实例展示并探讨:A)高分辨扫描电镜的样品仓探头比镜筒内探头接收到的背散射电子更多,形成的图像中Z衬度更明显。B)样品仓、镜筒、背散射电子探头的Z衬度结果对比。合金钢,能谱图中1、2、3三个区域的色彩,绿色:铁;红色:钨;绿黄:铁、铬。拟合下探头图像所展现的灰度差。低加速电压下,三种探头所形成的Z衬度差异将减弱。五、晶粒取向衬度晶粒取向衬度:晶体材料的晶粒取向差异会造成探头获取的电子信息出现差别,形成的衬度。与EBSD表述的信息有一定的对应性,但对晶粒取向变化的敏感度要远低于EBSD。也称“电子通道衬度”(ECCI),但命名原因及依据不明。形成缘由:从晶体表面溢出的电子信息会随晶粒取向的差异而不同。表现为信息的溢出量及取向上出现差别,使处于固定位置的探头所接收到的电子信息在数量上出现区别,形成表述晶粒取向差别的衬度。背散射电子受晶粒取向不同而出现的衬度差 异较二次电子更为强烈,这与两种电子信息在Z衬度上的表现基本一致。实例展示及探讨:A)zeiss电镜采用三种探头模式观察钢的表面(倍率:×5K)B)日立Regulus8230样品仓和镜筒探头的各种组合结果六、结束语扫描电镜表面形貌像是由呈现表面各种形貌信息的形貌衬度、二次电子衬度及边缘效应、电位衬度、Z衬度及晶粒取向衬度共同形成。其中形貌衬度是形成形貌像的基础,其余衬度叠加在形貌衬度之上,形成完整的表面形貌像。形貌衬度:该衬度的缺失,形貌像将只具有二维特性。形成形貌衬度的关键在于探头接收样品信息的角度,而样品信息(SE\BSE)的能量会对形貌细节的分辨产生影响。背散射电子,因能量较高,在样品中扩散范围较大,对直径小于几十纳米的细节或10万倍以上高倍率图像的清晰度影响较大,对直径十纳米以下细节的辨析度影响极大。虽然二次电子能量较弱,但其对5纳米以下的样品细节或30万倍以上图像清晰度和辨析度还是有明显的影响。低密度样品,以上受影响的放大倍率阈值也会相应降低。探头对信息接收角度的形成方式应依据所需获取的样品信息的特性和样品本身特征来做出合理的选择。样品的表面形貌起伏大于20纳米,所需的形貌衬度较大,需要探头、样品和电子束之间形成一定夹角才能满足需求。背散射电子的扩散,不足以掩盖掉这些细节的展现,相对于形成充分的形貌衬度来说,处于次要地位。此时应选择大工作距离,充分利用样品仓探头对样品信息进行接收,再结合镜筒内探头接收的样品信息给予加持,才能充分展现样品的形貌特征。样品表面起伏越大,样品仓探头在形成形貌像中的占比也相应提高,才有利于充分获取样品的表面形貌信息,形成的表面形貌像也更为充盈。样品表面起伏小于20纳米,所需的形貌衬度较小,溢出样品表面的电子信息角度即能满足形成表面形貌像所需的形貌衬度。此时背散射电子对形貌细节影响将成为形成表面形貌像的主要障碍,必须加以排除。充分利用镜筒内探头,排除样品仓探头的影响将成为获取形貌像电子信息的唯一选择。此时,镜筒内探头能否充分获取低角度电子信息是形成形貌像的症结所在。在实际操作中,选择小工作距离及镜筒内探头的组合就极为关键。有些电镜厂家在物镜下部设置的低角度电子信息转换板,有助于镜筒内探头对低角度电子信息的接收,充分运用该转换板将使得表面形貌像的立体感更加充分,形貌信息更为充实。二次电子衬度与边缘效应:一直以来的主流观点都认为该衬度是形成表面形貌像的基础。但该衬度因缺失对斜面指向因素的呈现,故无法表现形貌像的空间位置信息。由其形成的形貌像对形貌斜面的斜率大小表现充分,而对斜面的指向却没有体现,故形貌像只具二维特性。该衬度容易与Z衬度相混淆而出现形貌假象,但也能够加强斜面区域的衬度,有利于低倍时对形貌不同但组成成分相近的区域进行区分,如多层膜的膜层分割等。电位衬度:该衬度是由样品表面形成的少量荷电场引起的电子信息溢出异常所形成。背散射电子能量较大,信息的溢出量不易受该荷电场影响,故不存在该衬度或存在的衬度值较小。利用不同探头在接收样品信息时,对电位衬度的呈现差异,可对样品中被污染、氧化或发生晶体结构改变而形成漏电能力出现变化的部位,进行区分及分析。这在样品的失效分析中意义重大。Z衬度:由样品组成相的平均原子序数及密度不同所形成的信息衬度。背散射电子从样品表面溢出的数量和角度受样品的组成成份和密度的影响较大,由其为主形成的表面形貌像中,Z衬度的差值更大,图像更锐利,边缘更明晰,但表面细节较差。以二次电子为主形成的形貌像,具有的Z衬度差值较小,图像锐利度不足但细节更丰富。晶粒取向衬度:晶体的晶粒取向差异所形成的信息衬度。主流的称谓是:电子通道衬度(ECCI),命名的原由不明。该衬度如同Z衬度,背散射电子对其的呈现更为明显。对各种衬度信息的充分认识,将有助于正确理解形貌像上各种形貌信息的形成缘由。是正确选择扫描电镜测试条件,获取充分且全面的表面形貌像的基础,必须加以重视。参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社作者简介:
  • 布鲁克携ContourGT非接触式三维光学形貌仪参加第14届中国光博会
    布鲁克公司纳米表面仪器部携ContourGT非接触式三维光学形貌仪参加2012年第14届中国光博会布鲁克公司纳米表面仪器在本届光博会上展出最新的ContourGT非接触式三维光学形貌仪,具有优异的抗噪声特性,能实现定标性测量的重复性和再现性,拥有业界最高垂直分辨率,适用于对各种复杂精密元器件形状的高精度质量管理工作,精确测量表面形貌、台阶高度和表面粗糙度等。 作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪和探针式表面轮廓仪系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。ContourGT 光学形貌仪广泛应用于触摸屏、高亮度LED、太阳能电池、模具、零部件测量等各种领域该系列包括基本型ContourGT-K0,桌上型ContourGT-K1,中端型号ContourGT-X3,以及旗舰型号ContourGT-X8和ContourGT-X8 PSS(该型号专为高亮度LED的质量保证/质量监控而设计)等。每一种型号为用户的不同需求提供解决方案,以满足在精密制造和特定行业的要求,如高亮度LED、触摸屏、太阳能电池、隐形眼镜、半导体、硬盘、汽车和骨科等NPFLEX 三维表面测量系统为大尺寸工件精密加工提供准确测量布鲁克的NPFLEX 三维表面测量系统为大样品表面提供了灵活的非接触式测量方案,可广泛用于医疗植入、航空航天、汽车或精密加工上的大型、异型工件的测量。 基于白光干涉原理,NPFLEX 为用户提供超过接触式方法所能达到的更大数据量、更高分辨率和更好的重复性,使它成为独立或者互补的测量方案。开放式的拱门设计克服了以往某些零件由于角度或取向造成的测量困难,可实现超过300度的测量空间。NPFLEX的超级灵活性、数据准确性和测试效率为精密加工行业提供了一种简单的方法,来实现其更苛刻的加工要求、更高效的加工工艺和更好的终端产品。 客户服务热线:400-890-5666 邮箱:sales.asia@bruker-nano.com
  • 布鲁克携ContourGT非接触式三维光学形貌仪参加第15届中国光博会
    布鲁克公司纳米表面仪器部携ContourGT非接触式三维光学形貌仪参加2013年第15届中国光博会布鲁克公司纳米表面仪器在本届光博会上展出最新的ContourGT非接触式三维光学形貌仪,具有优异的抗噪声特性,能实现定标性测量的重复性和再现性,拥有业界最高垂直分辨率,适用于对各种复杂精密元器件形状的高精度质量管理工作,精确测量表面形貌、台阶高度和表面粗糙度等。 客户服务热线:010- 5833 3252 邮箱:sales.asia@bruker-nano.com 作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪和探针式表面轮廓仪系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。ContourGT 光学形貌仪广泛应用于触摸屏、高亮度LED、太阳能电池、模具、零部件测量等各种领域该系列包括基本型ContourGT-K0,桌上型ContourGT-K1,中端型号ContourGT-X3,以及旗舰型号ContourGT-X8和ContourGT-X8 PSS(该型号专为高亮度LED的质量保证/质量监控而设计)等。每一种型号为用户的不同需求提供解决方案,以满足在精密制造和特定行业的要求,如高亮度LED、触摸屏、太阳能电池、隐形眼镜、半导体、硬盘、汽车和骨科等NPFLEX 三维表面测量系统为大尺寸工件精密加工提供准确测量布鲁克的NPFLEX 三维表面测量系统为大样品表面提供了灵活的非接触式测量方案,可广泛用于医疗植入、航空航天、汽车或精密加工上的大型、异型工件的测量。 基于白光干涉原理,NPFLEX 为用户提供超过接触式方法所能达到的更大数据量、更高分辨率和更好的重复性,使它成为独立或者互补的测量方案。开放式的拱门设计克服了以往某些零件由于角度或取向造成的测量困难,可实现超过300度的测量空间。NPFLEX的超级灵活性、数据准确性和测试效率为精密加工行业提供了一种简单的方法,来实现其更苛刻的加工要求、更高效的加工工艺和更好的终端产品。 客户服务热线:010- 5833 3252 邮箱:sales.asia@bruker-nano.com
  • 小型台式无掩膜光刻机制备微流控通道助力不同形貌酿酒酵母菌的有效分类和收集
    【引言】酿酒酵母菌是一种具有高工业附加值的菌种,其在真核和人类细胞研究等领域也有着非常重要的作用。酿酒酵母菌由于自身所在的细胞周期不同,遗传特性不同或是所处的环境不同可展现出球形单体,有芽双体或形成团簇等多种形貌。因此获得具有高纯度单一形貌的酿酒酵母菌无论是对生物学基础性研究还是对应用领域均有着非常重要的意义。 【成果简介】麦考瑞大学Ming Li课题组利用MicroWriter ML3小型台式无掩膜光刻机制备了一系列矩形微流控通道。在制备的微流控通道中,通过粘弹性流体和牛顿流体的共同作用对不同形貌的酿酒酵母菌进行了有效的分类和收集。借助MicroWirter ML3中所采用的无掩模技术,课题组轻松实现了对微流控传输通道长度的调节,优化出对不同形貌酵母菌进行分类的佳参数。 【图文导读】图1.在MicroWriter制备的微流控通道中利用粘弹性流体对不同形貌的酿酒酵母菌进行分类。(a)对不同形貌酿酒酵母菌,而非根据尺寸进行分类的原理图。微流控结构有两个入口,一个是用于注入酿酒酵母菌溶液,另一个用于注入聚氧乙烯(PEO)鞘液。除此之外,该结构还有一个微流控传输通道,一个扩展区和七个出口。所有的酵母菌初期排列在鞘液的边缘,在界面弹性升力和内在升力的共同作用下,酿酒酵母菌根据形貌在鞘液内被分类。(b)对酿酒酵母菌进行形貌分类的微流控通道设计图(左)和用MicroWirter ML3制备出的实际微流控通道(右)的对比。图中比例尺为10 μm。图2. 微流控传输通道的长度对不同形貌酿酒酵母菌分类的影响。(a)不同形貌的酿酒酵母菌在不同长度传输通道参数下的实际结果。黑色虚线代表传输通道的中心线。图中比例尺是50 μm。(b)不同形貌的酿酒酵母菌在侧向的分布结果,单体(蓝色),有芽双体(黄色)和形成团簇(紫色)。误差棒代表测量100次实验的分布结果。图3. PEO浓度1000 ppm,微流控传输通道长度15 mm,酵母菌流量为1μL/min, 鞘液流量为5μL/min的条件下不同形貌的酿酒酵母菌的分类和收集效果。(a)收集不同形貌酿酒酵母菌的七个出口。(b)不同形貌酵母菌在入口和出口的比较图。(c)实验表明不同形貌的酵母菌可在不同出口处进行收集。单体主要在O1出口,形成团簇的菌主要O4出口。(d)不同出口处对不同形貌的酿酒酵母菌的分类结果,单体(蓝色),有芽双体(黄色)和形成团簇(紫色)。(e)和(f)不同出口对不同形貌的酿酒酵母菌的分离和收集结果的柱状图。误差棒代表着三次实验的误差结果。 【结论】随着微流控在生物领域的应用逐渐增多,影响力逐渐扩大,如何快速开发出符合实验设计的原型微流控结构变得十分重要。由于实验过程中需要及时修改相应的参数,得到优化的实验结果,灵活多变的光刻手段显得尤为重要。从上文中可以看出,MicroWirter ML3小型台式无掩膜光刻机可以帮助用户快速实现原型微流控结构的开发,助力生物相关微流控领域的研究。 【参考文献】[1]. Liu P , Liu H , Yuan D , et al. Separation and Enrichment of Yeast Saccharomyces cerevisiae by Shape Using Viscoelastic Microfluidics[J]. Analytical Chemistry, 2021, 93(3):1586-1595.
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • OPTON微观世界 | 第40期 扫描电镜观察电化学沉积法制备的MoSi2涂层形貌
    背景介绍高温抗氧化涂层在航空航天领域是至关重要的部分。一种成功的抗氧化涂层首先必须与基体材料有着化学或者物理上的相容性;其次,在材料温度适用范围内,更能提供一层连续、致密的氧阻挡层[1];再者,涂层要有方便、经济的制备工艺等。MoSi2有着高熔点(2030℃),良好的导电性和导热性,优异的高温抗氧化特性,是一种广泛应用的高温材料。现已发展为用于高温合金和碳/碳复合材料高温抗氧化保护涂层[2]。本实验采用电化学沉积法制备钼基体表面MoSi2涂层,图(a)是在900度氧化10h的表面形貌。图(b)是钼基体表面B改性MoSi2涂层,在900度氧化10h的表面形貌。图1 相同实验条件下不同方式制备涂层表面形貌结果表明:图a涂层经过氧化后在表面形成了一层SiO2氧化膜。该涂层主要用于钼及钼合金表面防护,以提高其在高温环境下的服役时间。图b涂层经过氧化后在表面形成了一层由SiO2和B2O3构成的氧化膜。通过B的改性,可以降低MoSi2涂层在中低温段氧化时的“粉化”倾向,进而提高其抗氧化能力。参考文献[1] Thomas A Kircher,et al.Engineering limitations coatings. Mater Sci Eng. 1992. A155:67[2] 蔡作乾,等编著. 陶瓷材料辞典.北京:化学工业出版社,2002
  • 200万!山东大学高温摩擦与多功能热力学性能/形貌测试设备采购项目
    项目编号:SDSHZB2023-207项目名称:山东大学高温摩擦与多功能热力学性能/形貌测试设备采购项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。一、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业、监狱企业、残疾人福利性单位采购的项目,政府采购政策执行内容详见招标文件;3.本项目的特定资格要求:/二、获取招标文件时间:2023年02月01日 至 2023年02月07日,每天上午8:30至12:00,下午13:00至17:30。(北京时间,法定节假日除外)地点:山东盛和招标代理有限公司(济南市历城区唐冶西路868号东8区企业公馆B1号楼)方式:供应商发送邮件登记,内容为:项目名称、项目编号、公司名称、联系人、联系电话、邮箱发送至山东盛和招标代理有限公司邮箱cnshzbegs@163.com,邮件名称命名为山东大学高温摩擦与多功能热力学性能/形貌测试设备采购项目-登记-“响应单位名称”。开户单位全称:山东盛和招标代理有限公司。开户行:兴业银行济南燕山支行。账号:376060100100168341。本项目实行资格后审,获取磋商文件成功不代表资格后审通过。售价:¥300.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2023年02月21日 09点00分(北京时间)开标时间:2023年02月21日 09点00分(北京时间)地点:山东盛和招标代理有限公司(济南市历下区奥体中心西柳体育场3014房间)四、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:山东大学地址:山东大学中心校区明德楼联系方式:马老师,0531-883697972.采购代理机构信息名称:山东盛和招标代理有限公司地址:山东盛和招标代理有限公司(济南市历城区唐冶西路868号东8区企业公馆B1号楼)联系方式:王凯,151531179173.项目联系方式项目联系人:王凯电话:15153117917
  • 基于屈曲不稳定性编码的非均质磁化实现软材料结构动态形貌的调控
    拥有主动变形能力的三维可变形结构在自然界中广泛存在,可有效提高生物对复杂环境的适应性。受这一特性启发,研究人员已开发了多种基于水凝胶、液晶高分子、硅胶弹性体等的软材料体系,在外界不同条件的刺激下(如化学溶剂、温度、酸碱度、光等),实现了各式三维结构的可控形貌变换(Nature 2021, 592, 386;Nature 2019, 573, 205;Nature 2017 , 546, 632)。 但是,目前已有的方案主要基于软材料形貌的准静态调制,如何实现多种尺度下多模态各向异性形貌与结构的动态调控,非常具有挑战性。近期,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授,联合香港城市大学张甲晨教授、中国科学技术大学王柳教授,提出了一种新型的软材料结构动态形貌调控方法。该团队结合硬磁性颗粒与弹性体制备得到磁性弹性体,并使其在一端受限的条件下溶胀产生可控的屈曲结构,接着加以磁化形成各向异性的三维磁畴分布。得到的磁性弹性体在外界可编程磁场的驱动下,能够实现多模态三维形貌的动态可控变换,在微流体操纵、软体机器人等领域中具有广阔的应用前景。相关研究成果以 “Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization” 为题发表在国际著名期刊《Nature Communications》。 图 1. 条带形与晶格状磁性弹性体的动态形貌调控示意图。如图1所示,该研究首先将未充磁的钕铁硼微颗粒掺入硅胶弹性体前驱体中,在亲水修饰的玻璃基底上固化形成一端固定的条形或晶格结构。接着将其置于与硅胶极性相似的有机溶剂中(如甲苯、正己烷等),由于溶剂分子被弹性体吸收并扩散至高分子网络中,引发磁性弹性体的溶胀行为。但是,由于一端受到基板约束,磁性弹性体溶胀形成的轴向压缩力只能使其非均质变形,最终产生屈曲结构。屈曲结构的具体三维形貌可通过弹性体的三维尺寸、人造缺陷乃至晶格连接方式进行精准调控。此后,将屈曲变形的磁性弹性体置于强脉冲磁场下(约2.5T)磁化,再浸泡于不相溶的溶剂中(如乙醇)收缩至原始的条形或晶格结构,能够得到一定程度上“记忆”屈曲变形形貌的三维磁畴分布。此时,施加不同强度、方向或梯度的外加驱动磁场,磁性弹性体基于内部磁畴与外加磁场的磁偶极相互作用,便可产生如波浪、褶皱等的多模态动态三维变形。这种基于不稳定性屈曲变形设计并排布软材料内部磁畴取向(即“磁编程”)的方法,无需额外的模板设计与辅助,便可快速实现各向异性的非均匀磁化分布的。结合外加可调制磁场的精准驱动,能够产生自由度远超准静态形貌调制的多模态动态形貌变换。此外,如图2所示,为了阐明磁性弹性体的调控机制,该研究团队开发了一套分析模型与有限元计算方法,在条形和晶格结构屈曲变形、充磁乃至磁控变形的过程中,可有效反映并预测各参数对动态形貌的影响行为,可为今后磁性软体材料的设计和开发提供一定参考。 图 2. 屈曲变形编码的磁性弹性体的理论分析模型。(a-b)条带形与晶格状磁性弹性体的屈曲变形模型。(c-d)条带形磁性弹性体的理论与实际屈曲变形行为。(e)条带形磁性弹性体的磁化与磁驱动变形模型。(f-g)条带形磁性弹性体在不同几何尺寸与连接条件下的理论与实际屈曲变形行为。(h-i)条带形磁性弹性体的理论与实际磁畴取向分布。(j)条带形磁性弹性体的理论与实际磁驱动变形行为。最后,通过利用各式屈曲变形产生的不同微流体行为(如定向流体、混合流体、涡流),该研究结合高精度3D打印技术(nanoArch S130,摩方精密)制备的微型模板、微流控芯片和尺寸定制的微颗粒,成功将磁性弹性体用于液滴的可控融合与精准操控(图3),颗粒的尺寸筛选,微液滴的富集检测,微流控的混合增强,以及软体机器人的可控驱动(图4)。总之,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授提出了一种利用屈曲不稳定现象编码的新型磁编程方式,用以实现软材料结构形貌的动态调控,为今后磁性软材料跨尺度的多模态变形行为提供了一种研究手段,有助于今后更好地理解自然界中复杂形貌变换的潜在机制,拓展可变形结构在格式工程领域的应用价值。 图 3. 屈曲变形编码的条形磁性弹性体在外加驱动磁场下的动态行为。a-c. 不同磁场参数下产生的不同微流体分布。d-e. 在液滴融合与可控运输中的应用。 图 4. 屈曲变形编码的磁性弹性体在微颗粒尺寸筛选(a),微液滴富集检测(b),微流控辅助混合(c),软体机器人运动控制(d)中的应用示例。
  • 直播预告!第四届材料表征与分析检测技术网络会议之结构与形貌分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/结构与形貌分析主题专场会议日程:报告时间报告题目报告人专场三:结构与形貌分析(12月15日)09:00--09:30电子束辐照敏感材料的电子显微表征方法探索上海科技大学研究员 于奕09:30--10:00牛津仪器 EBSD 技术最新发展及应用牛津仪器科技(上海)有限公司应用科学家 杨小鹏10:00--10:304D超快电子显微镜及其在低维材料非平衡态动力学中的应用南开大学教授 付学文10:30--11:00布鲁克电子显微分析技术在材料表征中的应用布鲁克纳米分析应用工程师 韦家波11:00--11:30电子显微学在光电材料及器件开发研究中的拓展应用北京工业大学副研究员 卢岳11:30--12:00现代扫描电子显微学功能化方法研究进展和应用浙江工业大学副研究员 李永合直播抽奖:30元京东卡5个嘉宾介绍:上海科技大学研究员 于奕于奕,上海科技大学助理教授。2008年获得北京科技大学材料物理学士学位,2013年获得清华大学材料科学与工程博士学位,2013-2017年在美国加州大学伯克利分校和劳伦斯伯克利国家实验室从事博士后研究工作,2017年至今任上海科技大学助理教授、研究员、博士生导师。于奕博士从事材料微观结构的像差校正电子显微学研究,迄今发表科研论文60余篇,引用5000余次,部分重要成果以通讯或第一作者形式发表在Nature,Science,Nano Letters,J.Am.Chem.Soc等期刊。目前于奕博士的研究聚焦在辐照敏感能源材料的原子尺度电子显微分析。【摘要】 透射电子显微技术是表征和分析材料微观结构与成分的重要手段。对于不耐电子束辐照的材料,在进行显微观察的过程中,电子束会对样品的本征结构产生破坏,导致原始结构、特别是纳米和原子尺度的精细结构难以得到表征。这是一个现有技术手段还无法有效解决的难题。在本报告中,我们以辐照敏感的卤化物钙钛矿半导体材料和锂金属材料为例,介绍我们在显微样品制备、显微成像和谱学分析过程中探索到的能够缓解材料辐照损伤的一些方法,并利用这些方法实现对这两类材料的高分辨原子尺度结构解析。牛津仪器科技(上海)有限公司应用科学家 杨小鹏杨小鹏,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。【摘要】 牛津仪器一直致力于推动 EBSD 技术的发展,最新发布了第三代 Symmetry EBSD探测器 S3,最快采集速度超过5700花样/秒。同时更新的还有高性价比的C-Nano+ 和C-Swift+ EBSD探测器,最快速度分别达到 600 花样/秒及2000 花样/秒。所有三种型号探测器都可以配置高温荧光屏,满足原位加热EBSD的需求。在软件方面,新发布了花样匹配标定技术 MapSweeper,相比传统EBSD标定技术,对质量差的花样也能标定,提高标定率,改善对大变形样品和TKD样品的分析。MapSweeper还能提高EBSD数据的精度,帮助区分伪对称、相似相、倒反畴界等,这些应用需要对花样进行精细的识别。南开大学教授 付学文 付学文,南开大学物理学院教授,博士生导师,天津市杰出青年基金获得者,入选国家四青人才,南开大学“百名青年学科带头人”,担任国家重点研发计划青年项目首席科学家。2014年获北京大学凝聚态物理博士学位(导师:俞大鹏院士),曾荣获北京市优秀博士毕业生、北京大学优秀博士毕业生和优秀博士论文奖。曾先后在美国加州理工学院(诺贝尔奖得主Ahmed Zewail教授研究组)和美国布鲁克海文国家实验室 (Yimei Zhu教授研究组)做博士后和助理研究员。2019年受聘于南开大学物理科学学院担任教授,牵头建立了南开大学超快电子显微镜实验室。长期从事4D超快电子显微镜、超快阴极荧光等超高时空分辨电子成像与探测技术开发及其在低维量子功能材料的结构、载流子及自旋等动力学中的应用研究。在Science、Science Advances(3篇)、Nature Communications、Advanced Materials、PNAS、ACS Nano(5篇)、Nano Letters等知名国际期刊发表学术论文40余篇,获授权发明专利1项。研究成果多次被 Science、Phys.org、Physicsword、Nanotechweb、Advances in Engineering等科学媒体选为研究亮点进行报道。【摘要】报告将主要介绍4D超快电子显微镜及其在低维材料非平衡态动力学中的应用。布鲁克纳米分析应用工程师 韦家波韦家波,布鲁克纳米分析应用工程师,负责EDS、EBSD、TKD等产品的技术支持工作,对电子显微镜的相关应用具有多年实操经验。【摘要】 主要分享布鲁克高分辨EDS, EBSD/同轴TKD等产品的技术优势及其在材表征方面的应用。北京工业大学副研究员 卢岳 卢岳,北京工业大学固体微结构与性能研究所副研究员、博士研究生导师。长期从事原位电子显微学、光电及光电催化材料与器件研究。作为项目负责人,承担多项国家自然科学基金和省部级以上科研基金,以第一作者或通讯作者在Joule, Nat. Commun., Adv. Mater., Appl. Catal. B-Environ., ACS Nano, Chem. Eng. J., Adv. Funct. Mater., J. Mater. Chem. A等国际期刊发表SCI论文40余篇。【摘要】报告中主要介绍电子显微学在光电材料及器件开发研究中的拓展应用。浙江工业大学副研究员 李永合李永合,男,副研究员,北京工业大学工学博士学位,德国卡尔斯鲁厄理工学院 (KIT)电子显微学研究室博士后。近年来,针对电池离子输运和催化剂活性反应的基础问题,集中发展工况材料动态结构演变的原位电子显微学可视化方法。以此研究基础,主持承担科技部重点研发子任务、国家自然科学基金青年项目、浙江省自然基金探索项目3项,完成德国洪堡基金项目1项,曾入选德国“洪堡学者”和校高层次人才培育计划。【摘要】 扫描电子显微镜长期以来在材料介观尺度表面形貌、成分、结构表征方面具有举足轻重的作用。然而随着对材料研究的深入,对扫描电镜的技术方法的要求也日益苛刻。扫描电镜透射化可以实现扫描电镜的透射成像功能(STEM-in-SEM)来获得体相二维投影信息,FIB-SEM重构进一步实现材料形貌的三维重构可视化,同时原位技术装置引入又可以实现材料外场下的动态形貌结构演变观察,这些最新方法极大地丰富和发展了现代先进扫描电子显微学。基于此,本报告将着重介绍1)发展的STEM-in-SEM方法和FIB-SEM三维重构在弱衬度材料表征应用,以及2)循环条件下,全固态电池失效行为的原位研究等工作。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • OPTON微观世界 | 第41期 扫描电镜观察不同电解液温度下纯铜粉末表面形貌变化
    背景介绍铜粉是粉末冶金中基础原料之一。也是我国大量生产和消费的有色金属粉末,在现在工业生产中起着不可替代的作用,由于铜及其粉末具有良好的导电导热性能,耐腐蚀性能,表面光洁和无磁性等特点。因而被广泛应用于摩擦材料,金刚石工具,电碳制品,含油轴承,电触头材料,导电材料,机械零件等行业。铜粉的制备方法主要有电解法,雾化法,氧化还原法等。本实验采用电解法制备纯铜粉末,电解液采用0.06mol/L硫酸铜溶液和0.2mol/L硫酸,用铜或者不锈钢做阴极,铜做阳极。制取铜粉的基本工艺:本实验通过改变电解液温度来研究铜粉表面形貌变化。采用ZEISS的Sigma500型号电镜拍摄并观察其表面形貌,对比图片如图1: 图1 不同电解液温度铜粉形貌结果表明:电解法制备的铜粉比表面积大,结晶粉末一般为树枝状,压制性较好。图a1、a2,b1、b2,c1、c2三组图片,电解液温度分别为15°、30°、45°,为了观察整体铜粉形貌以及局部形貌,每组都是在2000X,5000X进行拍摄,通过对比三组图片,能够看出提高电解液温度,扩散速度增加,晶粒长大速度也增大,树枝晶逐渐变大变粗。
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
  • 用户见证|飞纳电镜助力 PTFE 薄膜研发与生产
    PTFE 材料表面具有蜘蛛网式的微孔结构,在三维结构上呈现网状连通、孔镶套、孔道弯曲等非常复杂的变化,具备优异的表面过滤功能。利用该材料生产的纳米口罩,阻隔效率高、使用寿命长、轻薄透气,是未来口罩发展的新方向。 2021 年 6 月,山东森荣新材料股份有限公司购置并验收了飞纳台式扫描电镜高分辨率专业版 Phenom Pro,首次将扫描电镜应用于 PTFE 材料的研发和生产。其购置的扫描电镜抽真空速度快,配备了全自动马达台和位置导航系统,操作简单,可对多种样品进行观察。 除了原配的反映样品成分很在行的背散射探测器(BSD)以外,Phenom Pro 还配备了对表面形貌相当敏感的二次电子探测器(SED),更让人兴奋的是这两种探测器可以同时使用,在观察样品的过程中不仅能得到成分信息还可以同时得到表面形貌信息。 山东森荣在 PTFE 膜材料膜生产的过程中需要检测材料的拉伸情况,包括横向拉伸和纵向拉伸。使用飞纳电镜观察后,可以更加容易地找到生产过程中横向或纵向的拉伸是否合适,并做出相应调整,使生产技术更上一层楼。 基于飞纳电镜良好的性能,高性价比,简单易学的操作以及用户的口碑,客户选择了飞纳电镜,相信飞纳电镜也会帮助客户在 PTFE 膜材料的生产和研发方面取得质和量的双突破。 飞纳电镜下的 PTFE 膜材料
  • 腐蚀在激光共聚焦扫描显微镜眼中的璀璨形貌
    p    strong 腐蚀形貌常用表征方法 /strong /p p   在腐蚀研究和工程中,腐蚀形貌是判断各种腐蚀类型、评价腐蚀程度、研究腐蚀规律与特征的重要依据。腐蚀形貌表征最常用的方法便是宏观观察、扫描电子显微镜观察和金相显微镜观察等,这些方法容易受主观因素影响。 /p p    strong 激光共聚焦扫描显微镜 /strong /p p   激光共聚焦扫描显微镜(LSCM)以激光作为光源,采用共轭成像原理,沿x、y方向逐点扫描试样表面,合成图像切片,再移动z周,采集多层切片,形成图像栈,将所有图像栈的信息进行合成,形成可以测量垂直高度和表面粗糙度及轮廓的三维表面形貌图像,是一种高敏感度与高分辨率的显微镜技术。 /p p   该技术已广泛应用于形态学、生理学、免疫学、遗传学等分子细胞生物学领域。由于采用激光共聚焦扫描显微镜表征腐蚀形貌具有较好的客观性,因此其在材料腐蚀中也有较好的应用前景。 /p p    strong 试验材料 /strong /p p   试验试剂为乙醇、丙酮(分析纯,国药集团化学试剂有限公司)。试验钢为油田现场用N80钢管,其化学成分(质量分数)为:0.22%C,1.17%Mn,0.21%Si,0.003%S,0.010%P,0.036%Cr,0.021%Mo,0.028%Ni,0.018%V,0.012%Ti,0.019%Cu,0.006%Nb,余量Fe。 /p p    strong 试验仪器 /strong /p p   红外碳硫分析仪,直读光谱仪,电子天平,M273A恒电位仪,扫描电镜,激光共聚焦扫描显微镜。 /p p    strong 腐蚀试验 /strong /p p    span style=" color: rgb(0, 176, 240) " (1)全面腐蚀 /span /p p   将N80钢管加工成挂片试样,用350号金相试纸对试样进行打磨,然后再用丙酮除油和乙醇清洗,最后吹干。 /p p   依据标准ASTM G170-06(R2012)《实验室中对油田及炼油厂缓蚀剂评价及鉴定的标准指南》和SY/T 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》,采用静态腐蚀挂片法对N80钢进行全面腐蚀试验。 /p p   试验在高温高压反应釜中进行。试验介质为15%(质量分数)的N,N& #39 -二醛基哌嗪缓蚀剂,试验温度90℃,试验时间为4h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的缓蚀剂膜和腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    span style=" color: rgb(0, 176, 240) " (2)沟槽腐蚀 /span /p p   将N80钢管加工成15mm× 5mm圆片试样,焊缝位于试样的中央,试验前采用350号金相砂纸打磨试样,再用丙酮除油和乙醇清洗,最后吹干,并采用光栅尺测量圆片尺寸。 /p p   依据标准Q/SY-TGRC 26-2011《ERW 钢管沟腐蚀实验室测试方法》,对N80钢进行沟槽腐蚀试验,得到沟槽腐蚀的试样。 /p p   试验采用电化学极化法(三电极体系),在1000mL玻璃电解池(带石英窗口)内进行。试验介质为3.5%(质量分数)的NaCl溶液。饱和甘汞电极为参比电极,N80钢为工作电极,铂电极为辅助电极。 /p p   试验时对试样施加-550 mV的恒电位(相对于参比电极),极化144h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    strong 结果与讨论 /strong /p p    span style=" color: rgb(0, 176, 240) " 1 全面腐蚀 /span /p p   全面腐蚀试验后试样的宏观照片、扫描电镜图和LSCM图分别如图1—3所示。对比这三幅图可以看到:宏观和扫描电镜观察显示试样表面均匀腐蚀,无点蚀坑 LSCM观察显示,试样表面有两处点蚀坑,两处点蚀坑的直径分别为10.24,11.65μm,深度分别为13.78μm和19.83μm。由此可见,LSCM不仅可获得试样的表面三维图,还可客观迅速地找到局部腐蚀处,并可对局部腐蚀处进行简单测量处理。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8531e939-7799-465b-a201-8006f8ee75f1.jpg" title=" 图1 全面腐蚀试验后试样的宏观照片.jpg" alt=" 图1 全面腐蚀试验后试样的宏观照片.jpg" / br/ br/ /strong strong 图1 全面腐蚀试验后试样的宏观照片 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/9fc9d4b0-37e5-4403-bc07-0e25c5a3291f.jpg" title=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" alt=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" width=" 378" height=" 406" border=" 0" vspace=" 0" style=" width: 378px height: 406px " / /strong /p p style=" text-align: center " strong 图2 全面腐蚀试验后试样的扫描电镜图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/c4ecb6b1-a0e5-4322-b1de-903eca0143be.jpg" title=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" alt=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" width=" 400" height=" 271" border=" 0" vspace=" 0" style=" width: 400px height: 271px " / /strong /p p style=" text-align: center " strong 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图 /strong /p p    span style=" color: rgb(0, 176, 240) " 2 沟槽腐蚀 /span /p p   由于N80钢管为焊管,其母材与焊缝的显微组织不一样,在腐蚀环境中易产生电位差,使得焊缝熔合线处易出现深谷状的凹槽,如图4所示。沟槽腐蚀敏感系数α是判断焊管焊缝抗腐蚀的一个重要参数,其计算方法如式(1)所示。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/3507e746-8170-4721-a27d-d203442685a6.jpg" title=" 式(1).png" alt=" 式(1).png" / /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/613be5a5-5c15-45e0-a6d8-6ee416278e9d.jpg" title=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" alt=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" / /strong /p p style=" text-align: center " strong 图4 沟槽腐蚀试验后试样的宏观照片 /strong /p p   式中:h1为原始表面和腐蚀后表面的高度差 h2为原始表面和点蚀坑坑底的高度差,如图5所示。h1和h2均取3次测量的平均值,当α& lt 1.3时,表示焊管焊缝对沟槽腐蚀不敏感 当α≥1.3时,表示焊管焊缝对沟槽腐蚀敏感,需采取措施减少沟槽腐蚀。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8e59d50c-bea6-49da-8f6a-d2448171379f.jpg" title=" 图5 沟槽腐蚀试验参数测定.png" alt=" 图5 沟槽腐蚀试验参数测定.png" / /strong /p p style=" text-align: center " strong 图5 沟槽腐蚀试验参数测定 /strong br/ /p p   沟槽腐蚀试验后试样的金相图和LSCM图分别如图6和图7所示。通过金相图和LSCM图得到参数h1和h2,并根据式(1)计算沟槽腐蚀敏感系数,结果如表1所示。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/75c010b6-db01-472f-ae3d-cff23f615d7c.jpg" title=" 图6 沟槽腐蚀试验后试样的金相图.jpg" alt=" 图6 沟槽腐蚀试验后试样的金相图.jpg" / /strong /p p style=" text-align: center " strong 图6 沟槽腐蚀试验后试样的金相图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/467f4cb3-f842-418c-af0d-e067c5e4ee20.jpg" title=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" alt=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" / /strong /p p style=" text-align: center " strong 图7 沟槽腐蚀试验后试样的LSCM图 /strong /p p style=" text-align: center " strong 表1 不同方法得到的沟槽腐蚀敏感系数 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/15d8299e-3916-4241-bf81-692270f87d04.jpg" title=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" alt=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" / /strong /p p   采用金相显微镜测h2和h1时,需根据主观判断找到3个深度最深的腐蚀坑,然后将其局部放大,并采用仪器标尺测量h2和h1 而采用LSCM测h2和h1时,沟底层处便是腐蚀坑深度,且测量标尺为LSCM自带,因此该方法更便捷、直观和客观,由此计算的α也更可靠。 br/ /p p    strong 结论 /strong /p p   (1)激光共聚焦扫描显微镜表征腐蚀形貌以三维图方式显示,局部腐蚀处可一眼看到,更直观。 /p p   (2)用激光共聚焦扫描显微镜表征沟槽腐蚀,可以直观和客观地找到腐蚀坑深处,仪器自带标尺可直接测量坑深,数据测量更便捷,由此计算的敏感系数也更可靠。 /p
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 康塔仪器“薄膜孔径分析技术网络研讨会”
    膜过滤技术作为目前分离技术中最为便捷可行的手段之一,在全球范围内应用极为广泛。膜材料的表征有非常多的项目:拉伸强度、爆破强度、耐酸碱腐蚀性、孔径分布、孔隙率、通量、使用寿命等等。康塔仪器膜孔径分析测试目前常用的有压汞法、液体排驱技术和气体渗孔法(泡压法)孔径分析技术,适用于不同的压力(即孔径)和流速范围,以实现材料特性和仪器性能(灵敏度、准确度、再现性)的最佳匹配,来测定薄膜孔径、孔隙结构、渗透率及膜的力学性能。 为使更多科研人员能更深入的学习孔径分析仪器在膜材料分析检测领域的应用技术,帮助大家了解薄膜孔径分析仪的最新进展和应用中的注意事项,美国康塔仪器公司将安排科学家举办此次“薄膜孔径分析技术网络研讨会”,邀请全球客户共同研讨和分享。 讲座时间:北京时间2016年1月26日22:30主讲人:康塔仪器资深产品经理Steve Hubbard讲座语言:英文网络研讨会链接: http://www.quantachrome.com/webinars/webinars.html(点击注册) 薄膜孔径分析仪Porometer系列测量原理:采用泡压法,即气体渗透法,测定被侵润样品在气流作用下的压力变化。该方法同样以表面张力引起毛细孔中液体上升理论为依据.当毛细孔浸在某种液体中时,在表面张力的作用下,毛细孔中的液体将会上升到某一高度,当毛细孔中的表面张力与毛细孔中液柱重力达到力平衡,此时可按此计算薄膜孔径及渗透率( Washburn方程)。 薄膜孔径分析仪Porometer系列遵循标准:ASTM D6767-02 用毛管流测定土工织物开孔特征方法 ASTM F316-03 通过起泡点和平均流动孔试验描述膜过滤器的孔大小特征的试验万法 ASTM E1288-99 测量气体透过样品的透过率 ASTM C-522 ASTM D-726 ASTM D-6539 ASTM E 1294-89 (1999) 用自动液体孔率计检验薄膜过滤器的孔径特性的测试万法 BS 7591-4: 1993 材料的孔隙度和孔隙尺寸第4部分-去水评定法 BS 3321-1986 织物的等效孔径测量万法(气泡压力试验) BS EN240003 : 1993 测量气体透过样品的透过率 HY/T 051-1999 中空纤维微孔滤膜测试万法 HY/T 064-2002 管式陶瓷微孔滤膜测试万法 HY/T 20061-2002 中空纤维微滤膜组件 GB/T 14041. 1-2007 液压传动、滤芯、结构完整性的验证和初始冒泡点的确定 GB/T 24219-2009 机织过滤布泡点孔径的测定 美国康塔仪器美国康塔仪器(Quantachrome Instruments)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及极佳的性能价格比。康塔公司不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、竞争性气体吸附、真密度、堆密度、开/闭孔率、粒度粒形、Zeta电位、孔隙率、压汞仪、大孔分析、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问题的根源通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 月旭科技-专家讲座系列之色谱固定相的形貌与特征
    本期“月旭科技-专家讲座”的嘉宾是华东理工大学特聘教授,也是我们月旭科技分离纯化技术中心总工——张维冰教授。本周六上午,张维冰教授将与大家分享讨论“色谱固定相的形貌与特征”的相关内容。我们的讲座分为两大部分,zui后有互动答疑环节,来跟大家交流相关主题的内容,解决大家的实际问题,敬请关注!一、主讲人简介现为华东理工大学特聘教授,南昌大学、齐齐哈尔大学讲座教授。月旭科技分离纯化技术中心总工。主要从事包括色谱、毛细管电泳的理论与实践研究工作。张维冰教授师承张玉奎院士,于1999年在中国科学院大连化学物理研究所获理学博士学位,并在台湾中兴大学进行博士后研究工作,后赴德国Max Planck Institute for Dynamics of Complex Technical Systems作访问学者。已发表学术论文600余篇,著作七部,申请及授权专利百余项。负责或参加完成国家自然科学基金 、“973”、“863”及国家“攻关”、“支撑计划”等项目多项。二、讲座主题《色谱固定相的形貌与特征》内容摘要1、对色谱分离介质的基本要求;2、固定相的制备;3、月旭固定相基质的特征;4、创新固定相修饰技术;5、特殊固定相的应用。三、讲座时间2021年12月18日(周六) 10:00-11:00《色谱固定相的形貌与特征》主题讲座 11:00-12:00 专家互动答疑环节四、参与方式关注月旭科技视频号,点击卡片“预约”,届时进入月旭科技视频号直播间观看即可。
  • OPTON的微观世界|第7期 性能形貌学的实际应用
    ——锂离子电池负极材料的改性 序 言通常商用的锂离子电池都选用碳来做负极材料。但是碳材料作为锂离子电池负极材料,脱锂嵌锂电位比较低,容易引起金属锂的析出,且碳材料热稳定性较差,很容易发生安全事故,大大降低了锂离子电池的安全性能。氧化钛由于其良好的循环稳定性及较安全的充放电电压(1.5V),丰富的储量以及无毒、对环境无污染等特性,是一种最有潜力替代碳材料的负极电池活性材料。 金红石型氧化钛脱锂嵌锂模型图 如上图,在很多金红石氧化钛脱锂嵌锂机理的研究中都提到了锂离子在金红石晶体内的扩散只有沿着[001]方向(上图蓝色区域)才能进行。而锂离子在(110)晶面上(上图红色区域)只是以界面吸附的情况进行储锂的,这种在(110)晶面上的储锂只在表面浅层的钛氧八面体上发生,而晶体体相内部是不具备嵌锂脱锂活性的,这也意味着微米级的金红石型氧化钛在作为锂离子电池负极材料时具有很低的电池比容量,如何通过暴露更多的(001)面来提高金红石的比容量是研发氧化钛基负极电极材料首先要解决的问题。 1. 金红石型纳米材料的生长机理 金红石纳米颗粒生长机理图如上图所示,由于金红石型晶体{110}晶面的表面能远远低于{001}晶面的表面能,因此金红石纳米晶体在沿不同晶向上的生长速度大不相同,且生长过程中为了保持晶体结构的稳定,会选择性的暴露更多的表面能更低的{110}系晶面。根据这个原理只要我们在【Step1】步骤中加入合适的晶面生长抑制剂,降低晶体沿{001}晶面方向的生长速度,则可以暴露出更多的金红石{001}晶面,同时也增加了纳米晶体的孔隙率,为锂离子电池的脱离嵌锂提供更多的活性位点。2. 不同生长速度的纳米晶体的微观结构表征不同晶向上晶体生长速度快但不均匀(a)、速度慢(b)、快且均匀(c)的形貌及比表面积图 由上图【C】可以看到,当选择合适的工艺及条件时,可以合成出暴露{001}晶面族更多的纳米颗粒,且相对于另外两种颗粒来说,它有更高的比表面积。 3. 锂电性能测试评价 不同晶向上晶体生长速度快但不均匀(a)、速度慢(b)、快且均匀(c)的电池性能测试 如上图所示,同样一种材料通过形貌调控后,锂电池的比容量由90-100mAh/g升高到了220mAh/g,比容量提升了一倍还多。由此可见通过不同的材料合成工艺可以合成出性能千差万别的材料出来。 后记 随着纳米技术越来越贴近人们的日常生活,显微形貌分析不再仅仅局限于对微观材料形貌的观察与模仿,在对材料的改性及生产过程管控中也起到了越来越重要的作用。为新材料、新产品的研发提供了强有力的技术支持。
  • 岛津积极参与福建省光电薄膜科技茶会
    近日,由福州大学和福建省发改委6.18组委会办公室主办、福建省平板显示技术工程实验室和6.18项目成果交易服务中心承办、岛津国际贸易(上海)有限公司赞助的福建省光电薄膜科技茶会于福州大学召开。参会来宾有福建省发改委和福州大学的领导、福建省光电薄膜行业的相关专家和上下游企业领导。岛津公司积极参与了本次科技茶会。 茶会会场情景 大会由福州大学的郭守良教授主持,福州大学的领导首先致欢迎词、福州大学郭守良教授介绍了福建省平板显示技术工程实验室功能及技术成果;福州大学于光龙博士介绍了光电薄膜技术;福州大学李福山博士介绍了有机光电薄膜技术及其应用。 岛津国际贸易(上海)有限公司上海分析中心王娟娟介绍了题为《岛津紫外可见近红外分光光度计在光学镀膜、半导体等行业的应用》,介绍了岛津UV3600和SoldSpec-3700特点以及在光学镀膜、半导体等行业的应用实例。近年来,随着光学材料的发展,对近红外波段的反射和透过的测量也越来越重视。岛津UV-3600是具有世界领先水平的高性能的紫外可见近红外分光光度计,具备高灵敏度的世界上独一无二的三检测器系统,保证了整个测量范围的高灵敏度,并采用高性能的双单色器实现了超高的分辨率和超低的杂散光。测量范围覆盖紫外、可见和近红外区域,满足多种领域的测量要求。岛津的紫外可见分光光度计产品线非常丰富,从最普通的单光束分光光度计到测量范围可以扩展到深紫外、近红外区域的UV-VIS-NIR分光光度计。岛津高端产品SolidSpec-3700/3700DUV采用了PMT/InGaAs/PbS三个检测器,新加入的InGaAs实现了近红外区的超高灵敏度;并重新设计光路,设计了超大的样品室,实现了大样品的无损测试,同时在主机标准配置了积分球装置;通过使用最新设计的检测器,光源,以及积分球,使得SolidSpec-3700DUV的测试范围可以扩展到165nm。岛津紫外产品的先进性和其独特的应用引起与会者的高度关注。 岛津公司上海分析中心王娟娟 介绍岛津紫外可见近红外分光光度计在光学镀膜、半导体等行业的应用 会议最后,福建省发改委项目成果推进处的聂秉丰对大会做了总结发言。会后,会代表参观了福州大学的福建省平板显示技术工程实验室,并在参观过程中进行了热烈的讨论。 与会者参观福州大学的福建省平板显示技术工程实验室 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制