当前位置: 仪器信息网 > 行业主题 > >

板表面松香

仪器信息网板表面松香专题为您整合板表面松香相关的最新文章,在板表面松香专题,您不仅可以免费浏览板表面松香的资讯, 同时您还可以浏览板表面松香的相关资料、解决方案,参与社区板表面松香话题讨论。

板表面松香相关的资讯

  • 菜场商户用工业松香褪毛 专家:含重金属等致癌物
    图为:店员正在用工业松香给鸭子褪毛   年关将近,鸡鸭家禽宰杀褪毛的生意更加活跃起来。记者在武昌和汉口多家菜场暗访发现,家禽加工市场上虽然难觅国家明令禁止的沥青,却有不少商户在用工业松香褪毛。专家表示,工业松香中的致癌物质很容易在高温状态下通过毛孔进入家禽体内。   暗访:洗个“黑水澡”鸭变白   “国家不是早就明令禁止用沥青给鸡鸭褪毛吗?怎么菜场还在用?”日前,在武昌起义门生鲜市场买禽肉的樊先生致电本报。   随后,记者来到该市场,发现有多家店面都在卖鸡鸭家禽。当记者询问店员如何给鸡鸭褪毛时,对方有些警惕地说:“这你就不用操心了,你关心这干吗咧?”   为弄清楚整个褪毛过程,记者花25元买了一只鸭子。只见店员在鸭脖子上割了一刀后,就将其投进一口热气腾腾的水锅里。待水开后,将鸭子捞出放进旁边的脱毛机,开关一按,脱毛机呼呼转动,不到一分钟,鸭子就变得“赤裸裸”的了,但身上的绒毛还依稀可见。   然后,店员拿起鸭子走出店外,去了市场最里面的一个偏僻角落。这是一个简陋的房间,里面有两口大锅,锅里是黑色糊状物,一股刺鼻的气味不断袭来。“当心,别碰那锅!”店员提醒,锅里的温度可达200℃,一不留神就会烫伤人。   店员拎着鸭的脖子,垂直着将鸭放进锅里,仅过几秒钟后又立即提起,鸭子则是全身乌黑。然后,店员将“黑鸭”放在旁边的清水里泡了一会儿,再从鸭腿开始,轻轻一刮,一层黑皮被剥了下来,鸭身上的绒毛也所剩无几了。稍后,店员又将“白鸭”重复放进黑锅里一次。他说,鸡毛易褪,只需放一次就行 鸭的绒毛难褪,所以需要两次才能褪净。   那么,锅里的黑色糊状液体是不是沥青呢?对此,一店主摇头称,沥青早就不让用了,锅里是松香,是国家允许用的。对方从塑料袋里捧出一把松香,呈块状淡黄色晶体。   紧接着,记者前往市场管理方了解情况,相关负责人称,市场商户们都是用松香甘油酯褪毛,“是国家允许的,绝对合法合规”。   溯源:为省钱用工业松香   随后,记者又来到汉口发展大道常码头生鲜市场,发现这里的家禽商户褪毛用的是一种颗粒状、黄色透明晶体。包装袋上印着“食品添加剂松香甘油酯”。店主称,这是国家允许使用的褪毛用食品添加剂。   记者暗访武昌和汉口多家菜场发现,家禽商户们为鸡鸭褪毛用的均是松香或松香甘油酯,暂未发现使用沥青的。   松香和松香甘油酯有何区别?又是从哪里进货?店主们称,在化工原料市场和家禽批发市场,都有售。   在汉口后湖中环商贸城家禽批发市场,记者现场看到,多家商户打着“松香和松香甘油酯有售”的招牌。店主们均称,这两种松香都是食用松香,国家允许用于为家禽褪毛。块状的稍差些,烟子大,每公斤卖16元 颗粒状的,几乎没什么烟味,每公斤卖20元。   就松香和松香甘油酯的区别,记者先后请教了多所高校的有关专家。   湖北省林科院有关负责人告诉记者,块状的黄色透明晶体,是松香,也叫工业松香,主要作为粘合剂,用在造纸、油漆、橡胶和肥皂等工业用品方面。颗粒状的黄色晶体为松香甘油酯,属于食品用松香,可用于家禽褪毛。   松香是黄的,为何锅里是黑的?店主称,松香刚熔化时,是黄色的,但随着褪毛次数增多后,血水、毛与其混合后,在高温下就变成黑色。专家指出,“加热时间长了,松香成分会被炭化变黑”。   据了解,松香甘油酯由松香与甘油“酯化”而成,通过真空处理后制成不规则透明的片状或颗粒状固体。根据卫生部2004年第21号公告规定,松香甘油酯可作为食品加工助剂,用于家禽脱毛处理。   工业松香与松香甘油酯,在褪毛时使用方法和效果都相似。但因为松香甘油酯价格较贵,因此一些商户为了节约成本就暗自使用工业松香。农业部2004年3月24日发布的强制性行业标准《畜禽屠宰卫生检疫规范》明文规定,“禁止吹气、打气刮毛和用松香褪毛”。   危害:重金属钻进毛孔   记者在一家餐馆了解到,一般餐馆都不自己杀鸭子,都是前一天直接从鸡鸭加工点定购杀好的鸭子,“既便宜又干净。至于他们用什么褪毛,就不知道了”。  武汉大学医学院高级营养师廖皓磊教授表示,工业松香含有重金属等有毒化合物,易致癌,反复使用毒性更强。将鸭子在高温工业松香里褪毛,松香里含有的铅等重金属和有毒化合物会通过“热透”效应,残留在鸭子被加热扩张的毛孔,以及脖子处的刀口里,甚至会进入皮下组织。   工业松香的毒性,主要是对局部组织有刺激性,人体吸收后,中枢神经先兴奋后麻痹,主要表现为消化道受刺激、肾脏受损以及神经刺激等,甚至致癌,对小孩危害尤其严重。   同时,松香甘油酯反复高温使用后,可能也会产生有害物质。因此建议有关部门,对松香甘油酯的使用次数也要加以限制。   正因为此,北京、长沙等一些地区工商部门曾于去年,就违规使用工业松香褪毛问题,展开大范围专项检查。   市民在购买家禽时,如何判断是否使用了工业松香褪毛?采访中,有正规商户告诉记者,从外表看很难区分,建议选购时尽量选择活的、现杀的,褪毛时去查看对方使用的是块状工业松香,还是颗粒状松香甘油酯。如果非要选购成品家禽,可用鼻子闻其身上,是否有一股刺鼻的味道 刺鼻的则是用的工业松香,最好不要购买。
  • 国家药监局关于发布消肿片中松香酸检查项和复方龙胆碳酸氢钠片中土大黄苷检查项2项补充检验方法的公告
    根据《中华人民共和国药品管理法》及其实施条例的有关规定,《消肿片中松香酸检查项补充检验方法》《复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。附件1消肿片中松香酸检查项补充检验方法(BJY 202111)【检查】松香酸照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验以十八烷基硅烷键合硅胶为填充剂;以乙腈-0.1%甲酸(70:30)为流动相;检测波长为241nm。理论板数按松香酸峰计算应不低于3000。对照溶液的制备(临用新制)取松香酸对照试剂适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为对照试剂溶液。另取11-羰基-β-乙酰乳香酸对照品适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为参照溶液。供试品溶液的制备取本品10片,研细,取0.2g,精密称定,精密加入乙醇20ml,称定重量,超声处理20分钟,放冷,再称定重量,用乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法分别精密吸取供试品溶液、对照试剂溶液与参照溶液各10µl,注入液相色谱仪,记录色谱图。结果判断供试品色谱中,在与松香酸对照试剂溶液色谱峰保留时间相应的位置上不得出现相同的色谱峰。若出现保留时间相同的色谱峰,采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(松香酸对照试剂色谱峰在241nm显示最大吸收);若吸收光谱相同,且该色谱峰的峰面积值大于11-羰基-β-乙酰乳香酸参照溶液色谱峰的峰面积值,则视为阳性检出。备注:必要时,可采用高效液相色谱-质谱联用方法进行验证。起草单位:连云港市食品药品检验检测中心复核单位:江苏省食品药品监督检验研究院广州市药品检验所附件2复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法(BJY 202112)【检查】土大黄苷(1)取本品细粉适量,约相当于大黄原生药0.1g,加甲醇10ml,超声处理20分钟,滤过,取滤液1ml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每1ml含10μg的溶液,作为对照品溶液(临用新制)。照薄层色谱法(中国药典2020年版通则0502)试验,吸取对照品溶液与供试品溶液各5μl,分别点于同一聚酰胺薄膜上,以甲苯甲酸乙酯丙酮甲醇甲酸(30:5:5:20:0.1)为展开剂展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。(2)照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(20:80)为流动相;二极管阵列检测器,检测波长为328nm,柱温30℃。理论板数按土大黄苷色谱峰计算应不低于3000,土大黄苷峰与相邻峰之间的分离度应符合要求。对照品溶液的制备(临用新制) 取土大黄苷对照品适量,精密称定,加甲醇制成每1ml含60μg的溶液,即得。供试品溶液的制备 取本品20片,研细,取约相当于大黄原生药0.1g,精密称定,精密加入甲醇25ml,称定重量,超声处理60分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密量取供试品溶液和对照品溶液各10μl,注入液相色谱仪,记录色谱图。结果判定 供试品色谱中,在与土大黄苷对照品色谱峰保留时间相应的位置上应不得出现相同的色谱峰。若出现保留时间相同的色谱峰,则采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(土大黄苷对照品色谱峰在219nm和325nm波长处有最大吸收);若吸收光谱相同,则视为阳性检出。备注:必要时可采用高效液相色谱-质谱联用方法进行验证。起草单位:青海省药品检验检测院复核单位:甘肃省药品检验研究院陕西省食品药品检验研究院
  • 网络研讨会| 工业清洗工艺清洗质量的量化、监控和优化-析塔清洁度仪、表面张力仪和污染度仪
    2022年5月3-5月10号,德国析塔SITA将举办网络研讨会,此次研讨会的主题是“工业清洗工艺清洗质量的量化、监控和优化”。在此次的网络研讨会中,你将了解工业清洗工艺和量化工业清洗工艺质量的解决方案,了解如何使用析塔清洁度仪、表面张力和污染度仪等仪器有效监测和控制工业清洗质量!“工业清洗工艺清洗质量的量化、监控和优化-析塔清洁度仪、表面张力仪和污染度仪”网络研讨会2022年5月3号-10号举办的"工业清洗工艺量化、监控和优化网络研讨会"涉及三大模块内容:模块1:高效控制零部件清洗质量和优化清洗工艺。在模块1中,我们将回顾工业清洗过程,通过量化测量技术监控工业清洗工艺,稳定零部件的表面清洁度,建立工业清洗质量保证标准。模块2:量化监控清洗槽污染程度。在模块2中,我们将了解工业清洗工艺对清洗槽的污染程度以及如何量化监控表面活性剂浓度,通过使用析塔SITA DynoTester+动态表面张力仪和析塔SITA ConSpector污染度仪,可以了解有关表面活性剂浓度和清洗槽的污染程度,以及高效监控表面活性剂浓度和监测清洗槽的污染度,以此有效优化清洗槽液的使用寿命。模块3:零部件表面清洁度检测技术。在模块3中,通过使用析塔SITA CleanoSpector表面清洁度仪和析塔SITA SurfaSpector接触角仪,了解量化检测零部件表面清洁度的方法和技术---荧光法。析塔SITA工业清洗工艺量化控制清洗质量网络研讨会主讲人翁开尔是德国析塔SITA在中国的独家代理商,扫码联系我们报名参加!参会人员可以收到电子版的讲义课件。德国析塔SITA表面清洁度仪介绍在涂装、粘接等过程中,金属部件表面残留污染物会严重降低涂层、粘胶结合层的附着力、牢固度。析塔表面清洁度仪通过荧光测量技术,协助稳定零部件清洗质量,有效避免附着力下降等问题。德国析塔SITA表面清洁度仪可量化检测金属表面的清洁度仪,保证焊接、涂装、电镀、粘胶前的金属部件清洁度符合后面的工艺要求。仪器通过荧光法检测出金属表面诸如油渍、油脂、冷却润滑剂、手指纹及蜡等污染物。点击了解更多关于析塔清洁度仪产品信息测试结果可为清洗时间、清洗剂选择和浸泡温度等整个清洗过程的优化提供量化依据。通过控制清洗过程金属部件表面清洁质量来确保产品的高质量要求。德国析塔SITA表面张力仪介绍德国析塔SITA的表面张力仪可以监控清洗槽液的质量,为研发和清洗工艺过程建立良好的基础进而获得高质量结果。此外,表面张力检测还能避免过量使用表面活性剂,从而降低生产成本。点击了解更多关于析塔全自动动态表面张力仪产品信息析塔SITA表面张力仪采用创新的气泡压力法原理测量液体的动态及静态表面张力,无需精确控制毛细管浸入深度,测量精度高,操作灵活。传统的表面张力测试仪采用铂金环法/铂金板法原理,而这种方式不能反映表面活性剂的迁移过程,因此也就不能测出动态表面张力。而SITA析塔公司生产的表面张力仪通过智能控制气泡年龄(bubble lifetime),可以测出液体中表面活性剂分子迁移过程中表面张力的变化过程,即连续的一系列的的动态表面张力值以及静态表面张力值。德国析塔SITA污染度仪介绍德国析塔公司研制的污染度测量仪,可检测液体的荧光物质从而判断污染程度。主要应用于工业清洗过程中,监测清洗槽的污染度。用户可根据此数量有效优化槽液的使用寿命,避免污染度过高的槽液二次污染工件造成的质量问题,并可节省成本。污染物包括:油、蜡、冷却液、松香、酯、醇等。点击了解更多关于析塔污染度仪产品信息翁开尔是德国SITA析塔在中国的独家代理商,欢迎致电咨询。
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/官网:https://www.bmftec.cn/links/10
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/ 官网:http://www.bmftec.cn/smart
  • 不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案表面残留油污检测仪
    不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案测试说明客户:德国Relyon Plasma公司样品:不锈钢板测量设备:析塔清洁度仪FluoScan 3D污染物:福斯溶剂型防锈油Fuchs Anticorit MKR 4目标采用荧光法测量不锈钢表面污染情况,检查等离子清洗的效果及其影响参数。操作过程首先,将不锈钢板放在60°C的超声波清洗槽中,使用碱性清洗剂清洗15分钟,然后用去离子水彻底冲洗并干燥不锈钢板。随后,在不锈钢板上滴一滴Anticorit MKR 4防腐蚀油,并用实验室用布擦拭。然后,使用析塔FluoScan 3D清洁度检测仪,采用荧光法,高分辨率扫描钢板,检测钢板上的防腐蚀油分布。荧光法是一种对油膜厚度敏感的测量,测试结果以RFU(相对荧光单位)显示,RFU值越低,表面越干净。等离子清洗对于等离子体清洗,手持等离子体设置piezobrush® PZ3被连接到析塔SITA FluoScan 3D(自动检测清洁度的测试台)的移动轴上,使得可以通过自动化进行等离子清洗处理。piezobrush® PZ3在测试板上以编程的移动路径移动,同时等离子体以恒定的移动速度开启,并与钢板表面保持恒定的距离。为了说明速度(清洗时间)的影响,首先以2.5mm/s的速度进行处理,然后在清洗时间一半的位置上,以5mm/s的速度进行处理。测量结果图1:未清洗的不锈钢板上的荧光测量结果图2:等离子清洗后的不锈钢板上的荧光测量结果结论荧光测量的结果表明,使用等离子清洗的两个区域比钢板的其他部分干净很多。清洗时间越长,清洗效果越好。荧光法适用于在等离子清洗后轻松和快速地监测清洗结果,通过测量可以确定影响等离子清洗的参数,达到最佳的清洗效果,同时降低成本。使用析塔FluoScan 3D清洁度仪自动检测测量零件清洁度,高分辨率扫描零件,最终以图像化呈现零件污染程度不同的区域。析塔FluoScan 3D自动表面清洁度检测仪广泛运用在不同的清洗工艺(水基、溶剂、激光、等离子.....),可以灵活应用在实验室或生产车间。翁开尔是德国析塔中国独家代理商,欢迎致电咨询析塔自动清洁度检测系统。
  • 《Science Advances》:仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from localreconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/
  • 轻松实现粗糙表面样品拉曼成像 ——EasyNav拉曼成像技术包
    HORIBA新推出的拉曼成像技术包——EasyNavTM,融合了NavMapTM、NavSharpTM 和 ViewSharpTM三项革命性应用设计,能够让您便捷导航、实时聚焦、自动定位,轻松实现粗糙表面样品拉曼成像。1NavMapTM快捷导航、定位样品作为一种新的视频功能,NavMapTM可同时显示全局样本和局部放大区域的显微图像,这意味着您可以直接在全局图像上移动,并在局部放大图上鉴别出感兴趣的样品区域。便捷实时导航▼NavMapTM视图2NavSharpTM实时聚焦,获取清晰导航图像在您导航定位样品的同时,NavSharpTM可实时聚焦任意形貌样品,使样品始终处于佳聚焦状态,进而获取清晰样品表面图像。佳聚焦状态,增强用户体验▼ 使用/不使用NavSharpTM的区别3ViewSharpTM构建3D表面形貌图获取焦平面拉曼成像图在粗糙表面样品拉曼成像过程中,ViewSharpTM 可以获取样品独特的3D形貌图,确保样品实时处于佳聚焦状态,反映样品处于焦平面的显微图像。由于不依赖拉曼信号进行实时聚焦,拉曼成像速度要远远快于从前。使用/不使用ViewSharpTM的区别NavMapTM、NavSharpTM及ViewSharpTM技术各有优势,不仅可以单独使用,也可以综合起来,满足用户的不同测试需求,EasyNavTM拉曼成像技术包的功能已经在多种样品上得到实验和验证。晶红石样品的3D表面形貌图晶红石样品的3D拉曼成像图全新 EasyNavpTM 能够兼容 HORIBA 的 LabRAM HR Evolution 及 XploRA 系列拉曼光谱仪,功能更强大,使用更便捷。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • FPC柔性线路板的表面润湿性能测量
    接触角测量是一种常用的表面性质测试方法,用于评估材料的润湿性和表面能。FPC是一种柔性印刷电路板,通常用于电子设备中。很多客户需要对FPC进行接触角测量解决方案,根据实际情况一般需要做好如下准备:样品准备:将FPC样品剪裁成适当的尺寸,并确保表面是干净的,没有灰尘、污渍或油脂。测量前处理:在进行测量之前,对FPC进行一些表面处理,以确保水滴能够均匀地润湿样品表面。例如,通过等离子体处理、清洁剂或特殊涂层。测量过程:将FPC样品放置在测试仪器上,并使用液滴产生器在样品表面滴下一滴液体(通常是水)。确保液滴的大小和滴落速度是一致的。图像采集与分析:使用仪器上的摄像头拍摄液滴在样品表面的图像。然后,使用图像处理软件测量液滴的接触角。接触角是液滴与样品表面之间形成的角度,可以反映样品的润湿性。结果解读:根据测量结果,您可以评估FPC样品的润湿性能。较小的接触角表示较好的润湿性,而较大的接触角表示较差的润湿性。测试结果帮助客户实际了解材料表面的润湿性能,从而进行粘合处理。 需要注意的是,接触角测量结果可能会受到环境条件(例如温度和湿度)以及样品表面处理的影响。因此,在进行比较或评估时,应确保测试条件的一致性。接触角测量仪帮助我们评估液体在FPC柔性线路板表面的润湿性能,这对于柔性线路板的性能和可靠性非常重要。当液体与固体表面接触时,会形成一个接触角,该角度测量了液体在固体表面上的润湿性。接触角测量仪可以通过测量液滴与FPC柔性线路板表面之间的接触角来确定液体在其表面上的润湿性能。
  • 磁场驱动微板阵列表面实现定向输运
    设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下) 该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。官网:https://www.bmftec.cn/links/10
  • 磁场驱动微板阵列表面实现定向输运
    设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。 近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c09648图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下) 该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。
  • PHI表面分析庆祝2014年现代催化研究方法高级讲习班顺利召开
    2014年现代催化研究方法高级讲习班与于6月30日在桂林电子科技大学顺利召开。讲习班以研究生、高等院校青年老师、企业和科研院所相关技术人员为主要对象,着重讲解当前催化研究涉及的主要现代物理方法和基本原理。 进几年来,现代催化研究方法高级讲习班先后由中国科学院大连化学物理研究所(2007)、浙江师范大学(2010年)、四川大学(2012年)、中国科学技术大学(2013年)成功举办,深受催化界同行的强烈支持和热烈欢迎。 催化领域是表面化学的主要方向之一,所涉及的化学反应都在表面进行,因此表面分析技术成为研究催化剂不可或缺的重要手段。高德英特(北京)科技有限公司中国区技术与市场经理宋维先生、鲁德凤女士代表PHI表面分析技术参与了此次会议,主要介绍了全新扫描聚焦型XPS、三聚焦式飞行时间二次离子质谱仪(Trift V nano TOF-SIMS)在催化领域的应用。 PHI开创新一代的扫描聚焦型XPS,极大的扩展了XPS的应用范围。扫描聚焦型XPS将X射线通过单色石英晶体直接聚焦至7.5μm,可观察催化剂在具有形貌载体上的分布及反应前后催化剂及产物的化学态变化。通过报告我们得知,对于一些球形载体的催化剂,催化剂的活性成分通常会分布在载体表面,研磨后活性成分会被载体信号所“淹没”。最好的表征方式为对单一颗粒进行直接表征。 同时,目前PHI 5000 Versaprobe II 推出全新的样品处理室,样品处理室保证了样品经过特殊光源、电子束、离子束、气体反应后直接送至XPS的分析腔室,不经过暴露大气的过程,减少外部环境对催化剂表征的干扰。可以看到,处理腔室可以直接连接气体反应装置,气体的流量、温度、气压控制更加准确。 高德将一如既往的支持中国表面分析事业的发展,加大参与并资助中国表面分析技术人才的培训工作。
  • 符合浸银标准IPC –4553A,避免PCB板表面氧化
    浸银是几种符合RoHS标准的表面处理方法之一,可保护基底铜免受氧化。作为一种薄浸镀镀层,它在电路板制造中的主要功能是作为可焊性防护层,为焊接处留出清洁的铜表面并可融入焊料。此外,在其整个使用寿命期间,银层有助于防止印刷电路板的铜发生氧化作用。 IPC-4553A条例详细说明了生产环境中浸银表面处理的参数,从而确保可重现的,稳定的焊接。IPC-4553A帮助制造商提高焊接的可靠性第一份浸银规范IPC-4553发布于2005年,反映了当时印刷电路板生产的主流实践,即两种可用的不同类型的商业浸银镀层指南(业内称之为“厚”和“薄”)。然而,随着时间的推移,“薄”镀层的使用逐渐减少,“厚”镀层逐渐成为行业常规。2009年,为反映这一现象,对该条例进行了更新,随后IPC-4553A便应运而生。修订后的规范的亮点在于对浸银镀层厚度规定了上限和下限要求。这对于制造过程中的质量控制和现场的部件可靠性至关重要。如果镀层厚度过薄,则铜会在焊接过程中氧化,生产中的焊接可能会失效。如果镀层太厚,焊接可能最终会被弱化并在现场失效。该条例旨在依据IPC J-STD-003针对12个月的保质期提供可靠的表面处理。除了表面厚度规格之外,IPC-4553A还提供了以下参数:孔隙率、附着力、清洁度、电解腐蚀、耐化学性和高频信号损耗。此外,由于银是一种活性物质,当其与硫结合时会失去光泽。因此,为最大限度地减少银表面与环境的接触,该规范还提供了包装和储存指南。本规范的未来版本可能会涵盖浸银表面处理的额外用途,如铝丝焊接和金属弹片触点。对XRF设备进行合规的正确校准IPC-4553A规范给出了特定焊盘尺寸(60× 60密耳)*的最大和最小银层厚度。这一点极为重要,因为镀层沉积的厚度会因镀位面积的大小而变化。镀层厚度采用X射线荧光仪器测量。但对于浸银厚度测量而言,设备的正确设置极其重要。本规范已给出了相关的详细指南,然而最重要的是对XRF设备定期进行严格校准。制造商必须使用铜上镀银的标准片校准,其镀层厚度和焊盘尺寸应与实际生产值的为同一数量级。日立分析仪器是IPC的成员,其大力推荐遵循IPC指南以实现印刷电路板表面处理的质量和可靠性,包括浸银。我们开发的XRF仪器与快速发展的PCB技术保持同步,旨在帮助您实现生产的一致性和可靠性。
  • 2020版药典四部增修17项标准 涉高效液相、形态、比表面
    p   2018年11月15日,国家药典委员会发布了“关于《中国药典》2020年版四部通则增修订内容(第二批)的公示”。将于2020年出台的第11版《中华人民共和国药典》预计将收载品种数6400个左右,增订品种800个,修订品种1400个。 /p p   通知显示,《中国药典》2020年版四部通则第二批增修订5项理化分析内容,包含高效液相色谱法、相对密度测定法振荡型密度计法、汞和砷元素形态及其价态测定法、比表面积测定法、固体密度测定法。其中相对密度测定法振荡型密度计法是第二次征求意见稿。 /p p   《中国药典》2020年版四部生物检定通则第二批增修订降压物质检查法、组胺类物质检查法、肝素生物测定法。 /p p   《中国药典》2020年版四部微生物通则第二批增修订微生物计数法、抑菌效力检查法、药品微生物实验室质量管理指导原则。 /p p   《中国药典》2020年版四部制剂通则第二批增修订制剂通则、片剂、注射剂、胶囊剂、颗粒剂、鼻用制剂。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 关于《中国药典》2020年版四部通则增修订内容(第二批)的公示 /strong /span /p p 各有关单位: /p p   按照《中国药典》2020年版编制大纲有关要求,我委组织开展了2020年版《中国药典》四部通则的增修订工作。在广泛征求意见及我委组织的相关科研课题研究结果基础上,完成了四部相关通则的起草工作,并经第十一届药典委员会相关专业委员会审议,形成了征求意见稿(第二批)(详见附件1),为进一步完善药典通则内容,现在我委网站公开征求意见,公示期三个月。 /p p   请相关单位认真研核,将相关意见、修改建议及具体说明反馈我委(见附件2)。来函需注明收文单位“国家药典委员会”,加盖本单位公章,并标明联系人和联系电话 同时发送来函word版到联系邮箱,邮件标题请注明“通则反馈+单位”。 /p p   联系人及联系方式 /p p   理化:徐昕怡(电话:010-67079522) /p p   制剂:尚 悦(电话:010-67079578) /p p   微生物及生物检定:许华玉(电话:010-67079521) /p p   通讯地址:北京市东城区法华南里11号楼 国家药典委员会 办公室(收文)    邮编:100061 /p p   传真:010-67152769    E-mail: ywzhc@chp.org.cn /p p   附件:1.《中国药典》2020年版四部通则征求意见稿(第二批) /p p   strong  (1)《中国药典》2020年版四部理化分析通则增修订内容 /strong /p p style=" line-height: 16px " span style=" color: rgb(0, 176, 240) "    /span a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201811/attachment/2eadf653-9064-4d20-8cde-504cf5ce2794.pdf" title=" 0512 高效液相色谱法.pdf" span style=" color: rgb(0, 176, 240) " 0512 高效液相色谱法.pdf /span /a /p p style=" line-height: 16px " span style=" color: rgb(0, 176, 240) "    /span a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201811/attachment/1824a93e-c58a-4827-9f80-7678b4e99520.pdf" title=" 0601 相对密度测定法振荡型密度计法(第二次征求意见稿).pdf" span style=" color: rgb(0, 176, 240) " 0601 相对密度测定法振荡型密度计法(第二次征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/efef95cb-55a5-48eb-b240-ec04980c28c7.pdf" title=" 2322 汞和砷元素形态及其价态测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 2322 汞和砷元素形态及其价态测定法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/afd9f3ad-2b8f-4f13-9928-1bae81a05d66.pdf" title=" 比表面积测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 比表面积测定法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/c06d2c57-1e8b-4eb9-af47-70e7cae1fbe6.pdf" title=" 固体密度测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 固体密度测定法.pdf /span /a /p p    strong (2)《中国药典》2020年版四部生物检定通则增修订内容 /strong /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/5ec7b670-0d65-43e5-b0c5-6cdd6e484221.pdf" title=" 1145 降压物质检查法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1145 降压物质检查法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/2f63aafe-7da5-4441-b85c-15067dff3b7f.pdf" title=" 1146 组胺类物质检查法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1146 组胺类物质检查法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/635a2028-71f9-4026-9782-f8f72684eb69.pdf" title=" 1208 肝素生物测定法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1208 肝素生物测定法.pdf /span /a /p p strong   (3)《中国药典》2020年版四部微生物通则增修订内容 /strong /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/ad7aeafe-dc13-41dd-a7ab-04f7455deafd.pdf" title=" 1105 微生物计数法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1105 微生物计数法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/b3c84369-eca4-4dd6-bd2a-621de41d2bad.pdf" title=" 1121 抑菌效力检查法.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 1121 抑菌效力检查法.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/20f3779b-0efc-4309-b08d-defc2c6cdf34.pdf" title=" 9203 药品微生物实验室质量管理指导原则.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 9203 药品微生物实验室质量管理指导原则.pdf /span /a /p p strong   (4)《中国药典》2020年版四部制剂通则增修订内容 /strong /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/39415f7b-a6c9-4d96-8219-db7338d35cd2.pdf" title=" 0100 制剂通则.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0100 制剂通则.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/cf0aed1b-9413-4539-9016-3a3508be4789.pdf" title=" 0101 片剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0101 片剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/b3868ffa-b27d-4120-9ba5-b84c38c86e42.pdf" title=" 0102 注射剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0102 注射剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/fa1bd3f4-50b7-4146-936c-8c1507e1d3ab.pdf" title=" 0103 胶囊剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0103 胶囊剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/ea2fa6c7-c856-49c3-bbf1-1349bd70a91b.pdf" title=" 0104 颗粒剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0104 颗粒剂.pdf /span /a /p p span style=" color: rgb(0, 176, 240) "    /span a href=" https://img1.17img.cn/17img/files/201811/attachment/75e8b035-312d-44c9-89a2-345502f5514e.pdf" title=" 0106 鼻用制剂.pdf" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 0106 鼻用制剂.pdf /span /a /p p   2. a href=" https://img1.17img.cn/17img/files/201811/attachment/fce7031d-e271-4f89-addd-a91589a91f6b.doc" title=" 反馈意见单.doc" style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 反馈意见单.doc /span /a /p p style=" text-align: right "   国家药典委员会 /p p style=" text-align: right "   2018年11月15日 /p
  • 复享光学-R1在手性超表面非对称光学传输效率测量中的应用
    【概述】光学手性超构表面是由亚波长尺度单元所组成的平面或准平面光子器件。非对称传输是手性超表面的一大光学特性,该特性可应用于集成光路中的光学二极管,与电二极管类似,光学二极管要求器件具有单向性。目前,单层手性超材料中,非对称传输率在理论上被限制在 25% 以内,并伴随很高的吸收损耗,这成为该材料作为光学二极管的应用阻碍。而通过多层三维结构去实现非对称传输,虽然能将传输率突破 25%,但是其加工工艺更加复杂、困难,尤其是亚微米尺度以下的多层结构精准对准目前还很难实现。图1,单层手性超表面2022年,南开大学泰达应用物理学院齐继伟副教授在 Optical Express 上发表了一篇题为《Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces》的文章。作者制作了一种单层手性超表面,创新地以圆偏振光斜入射反射的形式提升了非对称传输率,获得了与三维结构相当的非对称传输率。 【样品 & 测试】作者采用电子束光刻技术与金属镀膜技术在石英基底上制备了横向周期 1000nm,纵向周期 650nm 的单层 U型分裂环,该分裂环厚度 100nm,环形宽度 200nm,环形半径 350nm。为观测不同角度倾斜入射的反射情况,作者使用了复享光学的角分辨光谱仪R1,借助设备的自动旋转模块,灵活调整入射角与接收角,实现多角度反射光谱测量。同时,得益于角分辨光谱仪中的通用光学元件插口,作者使用线性偏振片与四分之一波片形成左旋与右旋圆偏振光,轻松获得合适的实验条件。图2,测试示意图作者通过模拟和测量左旋圆偏振光与右旋圆偏振光倾斜入射时超表面的反射光谱,并对比了正向入射与反向入射在 30°~45° 之间的测量结果,如图3 所示。研究发现,在 1120nm 处,右旋圆偏光正向入射与左旋圆偏振光反向入射的反射光谱均呈现出较宽的反射峰;在 1650nm 和 1075nm 处,右旋圆偏光反向入射与左旋圆偏振光正向入射的反射光谱分别显示出相对较窄反射峰。这一结果与 COSMOL 的模拟结果一致。通过理论分析结合实测光谱,作者发现 1120nm 处的反射峰源于四极局域表面等离子体共振模式,而 1650nm 和 1075nm 处的反射峰则源于表面晶格模式。这些发现为深入理解手性超表面的光学特性提供了重要线索。图3,U型分裂环超表面30°~45°反射光谱:(a,b)COSMOL模拟结果;(c,d)角分辨光谱仪测量结果进一步研究中,作者分别对比左旋圆偏振光与右旋圆偏振光正反向反射效率差异,如图4 所示。值得注意的是,反射效率差异在 1000~1600nm 波段最高可达 40%,突破了二维非对称传输理论效率 25% 的限制。图4,圆偏振光非对称反射效率测量结果【总结】作者制备了一种基于单层手性超表面,旨在实现巨大的非对称反射,并将圆偏振光斜入射反射作为关键步骤。复享光学的角分辨光谱仪R1 具备高度适应性,能够轻松适应不同的实验条件,包括变化角度、偏振、相位延迟等参数。这一设备对研究以调控光束特性为主要功能的超表面至关重要。图5,文章对复享光学 R1 的标注【参考文献】 ✽ Fu, Xianhui, et al.Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces. Optics Express (2022).
  • 27项!比表面国家及行业标准荟萃 12项涉及气体吸附法
    p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" /span /p p style=" text-align: justify text-indent: 2em " 比表面积是粉体检测的重要参数之一,而气体吸附法是测量比表面和孔径分布的一种常用方法。真实表面包括不规则的表面和孔的内部表面。它们的面积无法从颗粒大小的信息中计算出来,但却可以通过在原子水平上吸附某种不活动的或惰性气体来确定。气体的吸附量,不仅仅是暴露表面总量的函数,还是温度、气体压力以及气体和固体之间发生反应强度的函数,这正是气体吸附法得以测量比表面积的基本原理。 /p p style=" text-align: justify text-indent: 2em " 无规矩不成方圆,非标准不能划一。在本文中,仪器信息网从网络搜集、汇总了我国现行涉及比表面检测及分析的国家、行业标准共23项。荟萃中共包含14项国家标准,9项行业标准。涉及有色金属、化工、建材、能源、石油天然气等行业。这其中,更含有7项国家标准和5项行业标准涉及气体吸附法、氮吸附法及BET检测法,详情汇总如下,以飨读者。 /p p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none " tbody tr class=" firstRow" td width=" 568" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 国家标准 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 编号 /span /strong /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 名称 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 主管单位 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp GB/T 21650.3-2011 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 /span & nbsp span style=" font-family:宋体" 第 /span span 3 /span span style=" font-family:宋体" 部分:气体吸附法分析微孔 /span /p p span style=" font-family:宋体" 综合 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 21650.2-2008& nbsp /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 /span & nbsp span style=" font-family:宋体" 第 /span span 2 /span span style=" font-family:宋体" 部分:气体吸附法分析介孔和大孔 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 19587-2017 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span span style=" font-family: 宋体" 气体吸附 /span span BET /span span style=" font-family:宋体" 法测定固态物质比表面积 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 3780.5-2017 /span /p p span & nbsp /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 炭黑 /span & nbsp span style=" font-family:宋体" 第 /span span 5 /span span style=" font-family:宋体" 部分:比表面积的测定 /span span CTAB /span span style=" font-family:宋体" 法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国石油和化学工业联合会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 23656-2016 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 橡胶配合剂 /span & nbsp span style=" font-family:宋体" 沉淀水合二氧化硅比表面积的测定 /span span CTAB /span span style=" font-family:宋体" 法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国石油和化学工业联合会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 14634.6-2010 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 灯用稀土三基色荧光粉试验方法 /span & nbsp span style=" font-family:宋体" 第 /span span 6 /span span style=" font-family:宋体" 部分:比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 10322.8-2009 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 铁矿石 /span & nbsp span style=" font-family:宋体" 比表面积的单点测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国钢铁工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp GB/T 7702.20-2008 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 煤质颗粒活性炭试验方法 /span & nbsp span style=" font-family:宋体" 孔容积 /span span style=" font-family:宋体" 比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国兵器工业集团公司 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 11847-2008 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 二氧化铀粉末比表面积测定 /span span BET /span span style=" font-family:宋体" 容量法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家标准化管理委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 13390-2008 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 金属粉末比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 8074-2008 /span span style=" font-family:宋体" ( /span span 11 /span span style=" font-family:宋体" ) /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 水泥比表面积测定方法 /span & nbsp span style=" font-family:宋体" 勃氏法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国建筑材料联合会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 20170.2-2006 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 稀土金属及其化合物物理性能测试方法 /span & nbsp span style=" font-family:宋体" 稀土化合物比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家发展和改革委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GB/T 11107-1989 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 金属及其化合物粉末 /span & nbsp span style=" font-family:宋体" 比表面积和粒度测定 /span & nbsp span style=" font-family:宋体" 空气透过法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp GB/T 6609.35-2009 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 氧化铝化学分析方法和物理性能测定方法 /span & nbsp span style=" font-family:宋体" 第 /span span 35 /span span style=" font-family:宋体" 部分:比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 中国有色金属工业协会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 background:white" GB/T 11107-2018 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 金属及其化合物粉末 比表面积和粒度测定 空气透过法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 全国有色金属标准化技术委员会 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GSB 14-1511-2014 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 水泥细度和比表面积标准样品 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中华人民共和国国家质量监督检验检疫总局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span span style=" font-family: 瀹嬩綋, serif" GSB 08-3387-2017 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 粒化高炉矿渣粉细度和比表面积标准样品 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中华人民共和国国家质量监督检验检疫总局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span GSB 04-3257-2015 /span /p /td td width=" 284" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 硬质合金粉末比表面积标准样品 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 color:#2B2B2B background:white" 中华人民共和国国家质量监督检验检疫总局 /span /p /td /tr tr td width=" 568" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 行业标准 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 编号 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 名称 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 行业 /span /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:宋体" 主管单位 /span /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span /p p span YS/T 1161.3-2016 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 拟薄水铝石分析方法 /span & nbsp span style=" font-family:宋体" 第 /span span 3 /span span style=" font-family:宋体" 部分:孔容和比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 有色金属 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 工信部 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span & nbsp /span /p p span SY/T 6154-1995 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 岩石比表面和孔径分布测定静态氮吸附容量法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 石油天然气 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 中国石油天然气总公司 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp HG/T 2347.8-1992 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" γ /span span .Fe2O3 /span span style=" font-family:宋体" 磁粉比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 化工 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 化学工业部 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span YS/T 438.4-2013 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 砂状氧化铝物理性能测定方法 /span & nbsp span style=" font-family:宋体" 第 /span span 4 /span span style=" font-family:宋体" 部分:比表面积的测定 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 有色金属 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span br/ & nbsp /span span style=" font-family:宋体" 工业和信息化部 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span HG/T 3073-1999 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 橡胶配合剂 /span & nbsp span style=" font-family:宋体" 沉淀水合二氧化硅比表面积的测定 /span & nbsp span style=" font-family:宋体" 氮吸附方法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 化工 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 国家石油和化学工业局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 " DB13/T 2768.4-2018 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 石墨烯粉体材料检测方法 /span & nbsp span style=" font-family:宋体" 第 /span span 4 /span span style=" font-family:宋体" 部分:比表面积、孔容和孔径的测定 /span span BET /span span style=" font-family:宋体" 法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333 background:white" 地震 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 河北省质量技术监督局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 background:white" NB/SH/T 0959-2017 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 催化裂化催化剂比表面积的测定 /span & nbsp span style=" font-family:宋体" 静态氮吸附容量法 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 能源 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 国家能源局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 background:white" JJG (建材 span ) 107-1999 /span /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 透气法比表面积仪检定规程 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 建材 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 瀹嬩綋, serif" 国家建筑材料工业局 /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 瀹嬩綋& #39 ,& #39 serif& #39 " JC/T 995-2006 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height:21px" span style=" font-family: 瀹嬩綋, serif" 低比表面积高烧结活性氧化锆粉体 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 建材 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p span style=" font-family: 瀹嬩綋, serif" 国家发展和改革委员会 /span /p /td /tr /tbody /table p style=" text-indent: 2em " 更多比表面及孔径分析检测优质仪器点击进入 a href=" https://www.instrument.com.cn/zc/191.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong 明星专场 /strong /span /a 浏览! /p p & nbsp & nbsp & nbsp 加入仪器信息网小材子微信号:XCZ3i666,拉你进入比表面及孔径分析检测交流群。 /p
  • 赛默飞世尔科技推出全新表面表征工具
    —— 用于表面化学表征的全集成式X射线光电子能谱仪   2009年12月19日,MADISON – 服务科学的世界领导者赛默飞世尔科技近日宣布,全新Thermo Scientific Escalab 250Xi光电子能谱仪(XPS)是一种全集成式表面表征工具,专门设计用于满足从事表面,薄膜和涂层的常规表征工作,乃至前沿表面化学研发的工程师们的要求。   Escalab 250Xi是享誉世界的Thermo Scientific Escalab产品线的最新产品。该全新设备集成了出色的光谱仪性能和Thermo Scientific Avantage XPS采集和处理用户界面。这种仪器与软件的组合不仅具有高样品通量,而且具有市场领先的分析性能,尤其适用于当今表面分析领域中复合材料的表征。另外,高级平行图像监测系统的集成可对图像视场内的微小特征进行定量光谱分析。   Avantage数据系统利用一种优化的工作流程提供优异的分析效率,该流程可以指导分析人员进行数据采集,解析,处理和报告生成。Avantage在进行一系列XPS光谱和图像处理任务时,还具有全数字工具控制。只需点击一下鼠标,即可利用自定义的实验室报告模板轻松将分析报告输出到标准PC应用程序中,例如Microsoft® Office。   Escalab 250Xi平台具有非凡的灵活性,因此分析人员可以利用一系列其他表面表征工具配置该系统。仪器配备了离子散射谱(ISS)和反射电子能量损失谱(REELS),同时可选配紫外光电子能谱(UPS)和俄歇电子能谱(AES)。仪器的标准配置还包括了样品制备室。如果需要,可以利用样品制备选项和附加的实验样品室扩展该系统。   关于赛默飞世尔科技(Thermo Fisher Scientific)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过105亿美元,拥有员工约3万4千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com (英文)或www.thermo.com.cn (中文)。
  • “2013全国表面分析科学与技术应用学术会议”通知
    关于召开&ldquo 2013全国表面分析科学与技术应用学术会议&rdquo 通知   (通知)   随着我国航天、微电子、信息产业、材料科学、能源及环境领域等高新技术的迅猛发展,表面分析技术正起着越来越重要的作用。此外,随着我们科技实力的增强,各高校和研究机构购置大量新的表面分析仪器,拓展了表面分析学科的发展。为了推动表面分析学科及其应用技术的发展以及与其他学科的融合,加强同行之间交流与合作,建立表面分析学科和技术表面的交流平台,由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,国家大型科学仪器中心-北京电子能谱中心、北京师范大学分析测试中心和北京大学分析测试中心共同承办,在北京举办&ldquo 2013全国表面分析科学与技术应用学术会议&rdquo 。   研讨会将于2013年8月20-21日在北京西郊宾馆举行,热忱邀请各位表面分析专家、学者参加,期望各位专家、学者与其他参会者进行广泛交流,探讨电子能谱表面分析与材料研究的共同发展,进一步拓展电子能谱表面分析技术在材料领域内的应用。   一、 学术委员会   主 任:朱永法,教授,清华大学   副主任:梁齐,教授,上海交通大学   成 员(以姓名首字母排序):   程 斌,教授,北京化工大学   陈 建,研究员,中山大学   丁泽军,教授,中国科技大学   董林, 教授,南京大学   付晓国,研究员,核工业部表面物理与化学国家重点实验室   郭建东,教授,中科院物理所表面物理国家重点实验室   郝建薇,教授,北京理工大学   李崧,教授,北京师范大学   刘柯钊,研究员,核工业部表面物理与化学国家重点实验室   刘芬,副研究员,中科院化学所   马农农,高工,中国电子科技集团公司第四十六所   宋伟杰,研究员,中国科学院宁波材料技术与工程研究所   宋武林,教授,华中科技大学   吴正龙,教授,北京师范大学   王金淑,教授,北京工业大学   王海,副研究员,中国计量科学研究院   谢景林,高工,北京大学   姚 琲,教授,天津大学   姚文清,高工,清华大学   卓尚军,研究员,中科院上海硅酸盐所   郑遗凡,教授,浙江工业大学   朱 健,副教授,上海师范大学   张毅,高工,宝山钢铁股份有限公司研究院   二、 会议组委会: 主 任: 朱永法 北京电子能谱中心、清华大学分析中心 副主任:李崧 北京师范大学分析测试中心 谢景林 北京大学分析测试中心 秘书长: 姚文清 北京电子能谱中心、清华大学分析中心   吴正龙 北京师范大学分析测试中心 成 员: 宗瑞隆 北京电子能谱中心、清华大学分析中心   李展平 北京电子能谱中心、清华大学分析中心   张占男 北京电子能谱中心、清华大学分析中心   常崇艳 北京师范大学分析测试中心   金波 北京师范大学分析测试中心   三、 会议时间、地点:   会议时间:2013年8月20-21日   报到时间:2013年8月19日全天   会议地点:北京西郊宾馆   四、 会议网站域名:http://m2020.meeting163.com   为便于加强同行间的交流与联系,请加入表面分析研究群,QQ:141579868。(进群后将群名片改为&ldquo 单位+姓名&rdquo )   五、 征文要求   1. 论文投稿中、英文不限。   2. 论文篇幅:一页,请不要标页码。论文题目:三号黑体,居中。作者名:小四号楷体,居中。单位名、市名、邮编:小五号宋体,加圆括号,居中,下空一行。论文正文:五号宋体。   3. 正文中小标题:五号黑体。图表:图表与正文上下、左右都隔一行或一字的空隙。小五号字体。参考文献:小五号宋体,引用不超过5篇。   4. 为扩大交流会学术成果影响,优秀论文将推荐给相关核心、EI期刊发表。   六、 截稿日期   1. 截稿日期:2013年8月10日前。   2. 摘要及全文请发至zhangzn@tsinghua.edu.cn   七、 会议注册费   一般代表1000元,学生代表800元。会务费包含论文集、通讯录、专家费、会场费及会议期间餐费。住宿会务组统一安排,费用自理。   会议不组织旅游。   汇款信息如下:   开户行:工行北京分行海淀西区支行   帐号:0200004509089131550   收款单位:清华大学   备注:化学系姚文清会务费   八、 会务组联系   联 系 人:姚文清,吴正龙   联系电话:010-62783586,010-58805597   电子邮箱: yaowq@tinghua.edu.cn,wuzhenglong36@sina.com   主办单位:高校分析测试中心研究会   全国微束分析标准化技术委员会表面分析分技术委员会 承办单位:国家大型科学仪器中心-北京电子能谱中心   北京师范大学分析测试中心   北京大学分析测试中心   媒体支持:仪器信息网 我要测   北京超星数字图书馆   2013.7.25     会议日程安排 日期 日程安排 备注 8.19星期一 报到、注册 北京西郊宾馆 8.20星期二 开会 北京西郊宾馆 8.21星期三 开会 北京西郊宾馆   参会回执表 单位名称 联系人 地 址 邮 编 姓 名 性别 职务 电 话 传真/E-mail 手 机 演讲人 职 务 住宿标准 单间 ○ 合住 ○ 发言题目 是否提交会议论文: 是○ 否○ 论文题目:   注:为便于订房,请各参会者在7月10日之前将回执发送至:张占男 zhangzn@tsinghua.edu.cn。
  • 安东帕7月表面力学TriTec产品动态分享
    p   安东帕TriTec近期成功开发了一种结合原位在线磨损测量的新型真空气氛下的球盘高温摩擦磨损试验机(HV-THT+DHM),其使用数字全息显微镜(DHM)对样品磨损的痕迹进行实时测量。样品在2× 10-6 mbar的真空气氛下进行摩擦磨损的实验,同时使用数字全息显微镜(DHM)记录样品不同时间或不同区域的形貌,用以实时分析样品的磨损性能,原位数字全息显微镜(DHM)、共聚焦显微镜和扫描电子显微镜在图像之间具有极好的相关性 ,其他第三方观察设备(如拉曼或光学显微镜)也可用于代替原位数字全息显微镜(DHM)实时收集样品磨损轨迹上的化学或光学信息。 /p p strong style=" text-align: center " span style=" text-indent: 2em " 用户动态 /span /strong /p p   广东工业大学高温高真空超纳米压痕仪(UNHT3-HTV)成功顺利安装,解决了客户刀具涂层在高温下的硬度、断裂韧性、蠕变等难题,提高实际切削过程中刀具的使用寿命及加工精度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/824b21c9-292b-4b01-b67b-effc1e23d1fa.jpg" title=" 高温高真空超纳米压痕仪(UNHT3-HTV).jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/92fef36c-5335-4c0e-a1de-15ff45c7c1ac.jpg" title=" 高温高真空超纳米压痕仪曲线.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1ae78b3b-af88-455f-b783-91087f4d746a.jpg" title=" RST3大载荷划痕仪和NHT3纳米压痕仪.jpg" / /p p style=" text-align: center " strong 新产品 /strong —结合原位在线磨损测量的新型真空气氛下的球盘高温摩擦磨损试验机 /p p strong 进军汽车市场 /strong /p p   安东帕TriTec在汽车行业有很多用户和相关应用,在不同的研发中心和制造工厂成功出售了许多RST3大载荷划痕仪和NHT3纳米压痕仪等作为汽车行业的标准设备。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/cd40622f-8340-4b08-b42b-1289d526e0b5.jpg" title=" 汽车行业有很多用户和相关应用.jpg" / /p p strong 相关市场活动 /strong /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201807/insimg/f7286e54-3b49-4d55-8f76-3ff4edd2e61b.jpg" title=" 2018国际薄膜大会.jpg" / /strong /p p   2018国际薄膜大会将于2018年7月17至20日在深圳维纳斯皇家酒店隆重召开,届时600-800位来自世界各地的学者、专家和业界精英将齐聚一堂,一同探讨薄膜工艺、表征和应用相关的尖端课题。此次会议的主题涵盖了薄膜领域的前沿和热点问题,包括:工业应用涂层、生物涂层、清洁能源涂层、电化学薄膜、功能陶瓷薄膜、薄膜的力学性能、纳米和纳米复合材料薄膜、有机/ 聚合物薄膜、光催化和自洁涂层、智能材料和薄膜等。安东帕中国是会议的铂金赞助商,欢迎相关人员莅临指导。 /p p strong 最新应用进展 /strong /p p    span style=" color: rgb(0, 176, 240) text-decoration: underline " 1. /span a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/netshow/sh101011/down_890416.htm" span style=" color: rgb(0, 176, 240) " 一种结合原位在线磨损测量的新型真空气氛下的球盘高温摩擦磨损试验机(HV-THT+DHM)的介绍 /span /a /p p   简介:摩擦和磨损是摩擦系统的两个主要特征。摩擦力通常可以使用负载传感器轻松获得,并实时获得摩擦系数。磨损和磨损率的确定就较为复杂,很难实时测量获得,众所周知,在测试期间样品表面微小的变化可能导致不可预测的磨损,原位实时磨损测量是唯一的解决方案。应用报告介绍了一种新的带数字全息显微镜(DHM)的球盘式高温真空摩擦磨损试验机(HV-THT)的应用。样品在2× 10-6 mbar的真空气氛下进行摩擦磨损实验,同时使用数字全息显微镜(DHM)记录样品不同时间或不同区域的形貌,用以实时分析样品的磨损性能。 /p p   2.安东帕表面力学测试仪器在汽车行业中的应用 /p p    a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/netshow/sh101011/down_890438.htm" span style=" color: rgb(0, 176, 240) " 第一部分 纳米压痕划痕测试介绍 /span /a /p p    a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/netshow/sh101011/down_890449.htm" span style=" color: rgb(0, 176, 240) " 第二部分 摩擦摩损及涂层厚度测试介绍 /span /a /p p   简介:轴承合金的脆性研究(纳米压痕仪NHT3),轮胎等具有分级特性的聚合物材料的力学性能评价(UNHT3),不锈钢螺栓电镀涂层弹性行为(NST3),汽车不同清漆的抗划性能(NST3),雨刷器和ITO玻璃之间的临界载荷确定(NST3),汽车聚合物部件粘弹性的研究(UNHT3),在高温下测量油泵的摩擦系数(TRN),轴承部件耐磨损性能的研究(TRN),测量涂层厚度(Calotest)。 /p p    a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/netshow/sh101011/down_890482.htm" span style=" color: rgb(0, 176, 240) " 3.汽车行业中硬质涂层力学性能的评价 /span /a /p p   简介:“DLC”是英文“DIAMOND-LIKE CARBON”一词的缩写。DLC是一种由碳元素构成、在性质上和钻石类似,同时又具有石墨原子组成结构的物质。类金刚石薄膜(DLC)是一种非晶态薄膜,由于具有高硬度和高弹性模量,低摩擦因数,耐磨损以及良好的真空摩擦学特性,报告中详尽介绍了安东帕TriTec表面力学测试仪器在汽车行业的广泛应用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/a22107f9-183e-49ae-8ca3-e815045dc2f5.jpg" title=" 安东帕2018年表面表征的活动升级.jpg" / /p p style=" text-indent: 2em " 安东帕2018年表面表征的活动升级,我们为您提供相关技术支持,让您可以专注于研究本质:详细探究材料表面特性的各个方面,注册客户将免费获得定制化笔记本,其中包含材料的测量方法、参数的相关案例。 /p
  • 布鲁克纳米表面仪器部诚邀您参加在成都举办的全国表面工程大会
    由中国机械工程学会表面工程分会主办,西南交通大学和表面物理与化学重点实验室承办的第十一届全国表面工程大会暨第八届青年表面工程学术会议将于2016年10月22-25日在成都举行,将为我国表面工程学科的学术交流提供一个重要的平台。表面工程着眼于材料的表面性质,通过对材料表面的再设计和制造,使其被赋予特殊的表面性质,如表面功能化、表面强化、表面防护、表面装饰等。作为一门新兴的交叉学科,表面工程涉及面宽,应用面广。布鲁克纳米表面仪器部作为本次大会的主赞助商,将在会议现场展示三维表面测量设备和摩擦磨损测试设备。会议详情请进入官网了解www.2016ICSE.cn。值此大会之际,我们将于10月22日下午14:00-17:00在成都金牛宾馆举办用户会,诚邀您的参加。布鲁克的应用专家将向您展示表面测量分析的全系列产品及其强大的应用功能,以及最新的技术应用进展。报告人报告题目黄 鹤 博士布鲁克BNS中国区应用主管材料表面的直观观察与定量评定方法的探讨:功能材料的表层结构、结构材料的磨损前后陈苇纲 博士布鲁克AFM应用专家原子力显微镜的高级模式以及在多功能薄膜和镀层领域的应用魏岳腾 博士布鲁克TMT应用专家生物材料摩擦学研究方法若您对我们的用户会感兴趣,请致电010-58333257或发送邮件至min.cai@bruker.com报名参加。期待您的光临!更多信息或动态请关注我们的微信公众号
  • “2016全国表面分析科学与技术应用学术会议”第二轮通知
    为积极推动表面分析科学与应用技术的快速发展,加强同行之间的交流合作、仪器共享,展示相关的新成就、新进展 建立表面分析的交流平台,形成自由研讨的学术氛围,让思想碰撞出火花,并共同提升理论与技术水平,促进表面分析科学研究队伍的壮大 由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会、北京分析测试协会表面分析专业委员会主办,昆明理工大学分析测试研究中心、国家大型科学仪器中心-北京电子能谱中心及昆明红源会展有限公司协办,在昆明举办“2016年全国表面分析科学与技术应用学术会议”。会议将于2016年8月10-12日在云南省昆明市举行,热忱邀请各位表面分析专家、学者踊跃投稿并参与会议,并进行广泛深入的交流。现就会议相关事宜通知如下:  一、学术委员会  主 任:朱永法,教授,清华大学  副主任:李崧,教授,北京师范大学  成 员:(以姓名首字母排序)  程 斌,教授, 北京化工大学  陈 建,研究员,中山大学  丁泽军,教授, 中国科技大学  董 林,教授, 南京大学  伏晓国,研究员,核工业部表面物理与化学国家重点实验室  郭建东,教授, 中科院物理所表面物理国家重点实验室  郝建薇,教授, 北京理工大学  李 崧,教授, 北京师范大学  刘柯钊,研究员,核工业部表面物理与化学国家重点实验室  刘 芬,副研究员,中科院化学所  马农农,高工, 中国电子科技集团公司第四十六所  宋伟杰,研究员,中国科学院宁波材料技术与工程研究所  宋武林,教授, 华中科技大学  吴正龙,教授, 北京师范大学  王金淑,教授, 北京工业大学  王 海,副研究员,中国计量科学研究院  谢景林,教授级高工, 北京大学  姚 琲,教授, 天津大学  姚文清,高工, 清华大学  卓尚军,研究员,中科院上海硅酸盐所  郑遗凡,教授, 浙江工业大学  朱 健,副教授,上海师范大学  张 毅,高工, 宝山钢铁股份有限公司研究院  二、会议地点及日程安排  会议地点:昆明理工大学莲华校区管理经济学院MBA中心报告厅  会议日程:2016年8月10日 全天报到  2016年8月11-12日 报告、交流  2016年8月13日 专家返程  三、会议注册  (1)会议注册费:一般代表1200元/人,学生代表1000元/人。  (2)会议食宿:会务组统一安排,费用自理。  (3)会议不组织考察。  (4)本次会议委托昆明红源会展有限公司代收会务费,并开具会务费发票。  四、论文征集  本次会议将面向全国征集与会有关主题方面研究的综述、学术论文,并印刷论文集作为会议资料。符合本次会议主题的相关研究内容均可投稿。请将论文摘要投递到会务组邮箱,截止时间7月25日。论文格式不拘,但请留下联系方式。  五、厂商赞助及展示  欢迎国内外分析仪器公司、厂商赞助会议并到会介绍和展出产品。本次会议欢迎有关分析仪器公司就产品研发的相关问题和进展做学术报告。  六、会务组联系:  会务联系人:闵春刚,0871-65110975,155-5977-1773,  QQ:395931769, 邮箱:minchungang@163.com  夏艺萌,184-6808-1161,  QQ: 809798360, 邮箱:809798360@qq.com  传真: 0871-65111617  联系地址: 云南省昆明市学府路304号,650093  主办单位:高校分析测试中心研究会  全国微束分析标准化技术委员会表面分析分技术委员会  北京分析测试协会表面分析专业委员会  协办单位: 昆明理工大学-分析测试研究中心  国家大型科学仪器中心-北京电子能谱中心  昆明红源会展有限公司  2016年6月20日  参会回执及会议论文摘要模板请点击:http://www.instrument.com.cn/conference/Detail/index.asp?CName=CONF63472
  • 2013全国表面分析科学与技术应用学术会议(第二轮通知)
    关于召开&ldquo 2013全国表面分析科学与技术应用学术会议   暨表面分析国家标准宣贯及X射线光电子能谱(XPS)高端培训班&rdquo 通知   (第二轮通知)   为了推动表面分析学科及其应用技术的发展以及与其他学科的融合,加强同行之间交流与合作,建立表面分析学科和技术表面的交流平台, 进一步提升人员队伍的理论和技术水平,由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,国家大型科学仪器中心-北京电子能谱中心、北京师范大学分析测试中心和北京大学分析测试中心共同承办,在北京举办&ldquo 2013全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X射线光电子能谱(XPS)高端培训班&rdquo 。   研讨会将于2013年8月20-21日在北京西郊宾馆举行,热忱邀请各位表面分析专家、学者参加,期望各位专家、学者与其他参会者进行广泛交流。培训班将邀请国标委表面分委会委员宣讲XPS相关表面分析国家标准,国内知名XPS专家作专题学术讲座,资深仪器工程师介绍设备的维修与维护技巧。并将安排面对面答疑环节,参训人员可事先带着问题前往参加。   一、 学术委员会   主 任:朱永法,教授,清华大学   副主任:梁 齐,教授,上海交通大学   成 员(以姓名首字母排序):   程 斌,教授,北京化工大学   陈 建,研究员,中山大学   丁泽军,教授,中国科技大学   董 林,教授,南京大学   付晓国,研究员,核工业部表面物理与化学国家重点实验室   郭建东,教授,中科院物理所表面物理国家重点实验室   郝建薇,教授,北京理工大学   李 崧,教授,北京师范大学   刘柯钊,研究员,核工业部表面物理与化学国家重点实验室   刘 芬,副研究员,中科院化学所   马农农,高工,中国电子科技集团公司第四十六所   苗 伟,教授,清华大学   宋伟杰,研究员,中国科学院宁波材料技术与工程研究所   宋武林,教授,华中科技大学   吴正龙,教授,北京师范大学   王金淑,教授,北京工业大学   王 海,副研究员,中国计量科学研究院   谢景林,高工,北京大学   姚 琲,教授,天津大学   姚文清,高工,清华大学   卓尚军,研究员,中科院上海硅酸盐所   郑遗凡,教授,浙江工业大学   朱 健,副教授,上海师范大学   张 毅,高工,宝山钢铁股份有限公司研究院   二、 会议组委会:   主 任:朱永法,北京电子能谱中心、清华大学分析中心   副主任:李 崧,北京师范大学分析测试中心   谢景林,北京大学分析测试中心   秘书长:姚文清,北京电子能谱中心、清华大学分析中心   吴正龙,北京师范大学分析测试中心   成 员:   宗瑞隆,北京电子能谱中心、清华大学分析中心   李展平,北京电子能谱中心、清华大学分析中心   张占男,北京电子能谱中心、清华大学分析中心   常崇艳,北京师范大学分析测试中心   金 波,北京师范大学分析测试中心   三、 会议时间、地点:   会议时间:2013年8月20-21日   报到时间:2013年8月19日全天   会议地点:北京西郊宾馆   会议日程初步安排:   8月19日星期一 报到、注册   8月20日星期二 学术交流   8月21日星期三上午 学术交流   8月21日星期三下午 宣贯及XPS高端培训   四、 会议网站域名:http://m2020.meeting163.com   为便于加强同行间的交流与联系,请加入表面分析研究群,QQ:141579868。该群为实名群,申请时请说明单位和姓名,为方便交流,请加入后自行将群名片改为&ldquo 单位+姓名&rdquo )   五、 征文要求   1. 论文投稿中、英文不限。   2. 论文篇幅:一页,请不要标页码。论文题目:三号黑体,居中。作者名:小四号楷体,居中。单位名、市名、邮编:小五号宋体,加圆括号,居中,下空一行。论文正文:五号宋体。   3. 正文中小标题:五号黑体。图表:图表与正文上下、左右都隔一行或一字的空隙。小五号字体。参考文献:小五号宋体,引用不超过5篇。   4. 为了扩大交流会学术成果影响,优秀论文将推荐给相关核心、EI期刊发表。   六、 截稿日期   1. 截稿日期:2013年8月10日前。   2. 摘要及全文请发至zhangzn@tsinghua.edu.cn   七、 会议注册费   一般代表1000元,学生代表800元。会务费包含论文集、通讯录、专家费、会场费及会议期间餐费。住宿会务组统一安排,费用自理。   会议不组织旅游。   汇款信息如下:   开户行:工行北京分行海淀西区支行   帐号:0200004509089131550   收款单位:清华大学   备注:化学系姚文清会务费   八、 会务组联系   联 系 人:姚文清,吴正龙   联系电话:010-62783586,010-58805597   电子邮箱: yaowq@tinghua.edu.cn,wuzhenglong36@sina.com   主办单位:高校分析测试中心研究会   全国微束分析标准化技术委员会表面分析分技术委员会   承办单位:国家大型科学仪器中心-北京电子能谱中心   北京师范大学分析测试中心   北京大学分析测试中心   媒体支持:仪器信息网 我要测   北京超星数字图书馆   2013年7月30日   参 会 回 执 表 单位名称 联系人 地 址 邮 编 姓 名 性别 职务 电 话 传真/E-mail 手 机 演讲人 职 务 住宿标准 单间□ 合住□ 发言题目 是否提交会议论文: 是□ 否□ 论文题目:   注:为便于订房,请各参会者在8月10日之前将回执发送至:   张占男 zhangzn@tsinghua.edu.cn。
  • 世界顶端的表面表征工具(来自美国赛默飞世尔) —— 用于表面化学表征的全集成式X射线光电子能谱仪
    世界顶端的表面表征工具(来自美国赛默飞世尔)—— 用于表面化学表征的全集成式X射线光电子能谱仪品牌: 赛默飞世尔型号:制造商:美国赛默飞世尔经销商:朗铎投资控股(北京)有限公司免费咨询电话:800-8900-558 全新Thermo Scientific Escalab 250Xi光电子能谱仪(XPS)是一种全集成式表面表征工具,专门设计用于满足从事表面,薄膜和涂层的常规表征工作,乃至前沿表面化学研发的工程师们的要求。 Escalab 250Xi是享誉世界的Thermo Scientific Escalab产品线的最新产品。该全新设备集成了出色的光谱仪性能和Thermo Scientific Avantage XPS采集和处理用户界面。这种仪器与软件的组合不仅具有高样品通量,而且具有市场领先的分析性能,尤其适用于当今表面分析领域中复合材料的表征。另外,高级平行图像监测系统的集成可对图像视场内的微小特征进行定量光谱分析。 Avantage数据系统利用一种优化的工作流程提供优异的分析效率,该流程可以指导分析人员进行数据采集,解析,处理和报告生成。Avantage在进行一系列XPS光谱和图像处理任务时,还具有全数字工具控制。只需点击一下鼠标,即可利用自定义的实验室报告模板轻松将分析报告输出到标准PC应用程序中,例如Microsoft? Office。 Escalab 250Xi平台具有非凡的灵活性,因此分析人员可以利用一系列其他表面表征工具配置该系统。仪器配备了离子散射谱(ISS)和反射电子能量损失谱(REELS),同时可选配紫外光电子能谱(UPS)和俄歇电子能谱(AES)。仪器的标准配置还包括了样品制备室。如果需要,可以利用样品制备选项和附加的实验样品室扩展该系统。
  • 如何使用Phasics SID4相位成像相机进行表面测量?
    使用Phasics SID4相位成像相机进行表面测量Phasics SID4相位成像相机,可以集成在商业或者自制的光学显微镜装置上。为了提高样品的整体性能,测量物体表面特性是一种有效的方法。对于此类应用,Phasics的软件可以分析光程差,并且实时转化为物体表面的形貌。硬件方面,Phasics相机体积小、结构紧凑,并且易于使用。事实上,Phasics的波前分析仪能够与实验室常用的相机一样易于集成。整个相机可以轻松集成到生产线或者实验室中。表面测量结构Phasic SID4相位相机利用的是一种四波横向剪切技术,将入射光分成剪切的4束,然后再互相干涉形成干涉图,通过傅立叶逆变换可以得到入射光的相位谱和强度信息,这是一种消色差的技术,因此白光和LED光源非常适合。此外,可以使用任何显微镜进行测量,并且不依赖于偏振。如上图光路所示,SID4相机位于被测物体的成像面进行探测,使用简单。SID4相位成像相机可以集成在商业反射显微镜或专用光学系统上。SID 和 AFM 测量比较图中红线部分是Phasics测量结果,黑线位AFM测量结果。使用AFM测量表面缺陷,和使用SID4相位成像相机一次测量成型的结果对比。SID4 与 光学轮廓测量仪 对比使用SID4 HR定量测量,以及白光光学轮廓仪测量结果的对比。两个报告中,第yi个侧重于轮廓,第二个侧重于深度测量。测量结果Phasics是一家专门从事相位测量的法国公司。Phasics向其客户提供全系列的产品,所有这些都是基于独特的技术,即四波侧向剪切干涉技术。Phasics公司的专长在于对这项技术的深刻理解,以及将其应用于从激光和光学计量到生物样品成像等多个领域的能力。对于每一个领域,Phasics都提供了专门的硬件和软件的解决方案。在生物学方面,Phasics提供了SID4Bio,这是一种独特的用于活细胞成像的设备,依赖于定量相位成像。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 新技术可将光信号变成沿金属表面行进的波
    有助于下一代单芯片光子互联的实现   据物理学家组织网4月22日报道,美国科学家制造出一种新的纳米尺度的连接设备,能将光学信号转变成沿金属表面行进的波。更为重要的是,新设备还能识别偏振光的偏振方向,并据此朝不同的方向发送信号。研究发表在4月19日出版的《科学》杂志上。   科学家们表示,最新研究提供了一种新的方式,让人们能在亚波长尺度下精确地操控光,而不会破坏可能携带有数据的信号,这为有效地从光子设备传递信息给电子设备从而实现下一代单芯片光子互联打开了大门。   该研究的合作者、哈佛大学工程和应用科学学院的研究生巴尔萨泽穆勒说:“如果你想朝一块拥有很多元件的小芯片周围发送一个数据信号,那么,你需要能精确地控制信号的行进方向。如果你无法做到这一点,信号就有可能丢失。方向是信号能否成功传递的重要因素。”   过去,科学家们也能通过改变光射入连接设备表面的角度来控制这些波的行进方向。但就像穆勒所说的:“这实在很麻烦,光学电路很难成一条直线,因此,为了给信号设定方向而不断重新调整角度非常不实际。”   新连接设备由一层薄薄的金组成,其上布满小孔,科学家们设计的天才之处正在于这些切口形成的像鲱鱼鱼骨(箭尾形)一样的图案。该研究的主要作者、哈佛大学工程与应用科学学院的费德里科卡帕索教授指出:“迄今为止,科学家们一直采用一系列平行的沟槽(格栅)来做这类事情,虽然它也能完成,但很多信号会丢失,而新设备上的新结构则能采用一种非常简单和优雅的方式来控制信号的行进方向。”   现在,光只需要垂直地射入即可,新设备会做其他事情。它会将入射光变成表面等离子体激元(在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的疏密波)。它也会阅读入射光波的偏振方向——直线、左旋圆极化还是右旋圆极化,然后为其安排合适的路径。新设备甚至能将一束光分成两部分并朝不同方向发送不同的部分,这就使得多通路信息传送成为可能。   新结构非常微小,每个图案单元比可见光的波长还要小,因此,科学家们认为,新结构应该很容易同平面光学等新奇技术整合。然而,卡帕索表示,新设备最有可能用于未来的高速信息网络内——纳米尺度的电子设备(目前已经出现)、光子设备和等离子体有望集成在一块微芯片上,从而实现下一代单芯片光子互联。
  • 德祥公司顺利参展第十一届全国表面工程大会
    2016年10月22-25日,由中国机械工程学会表面工程分会主办的第11届全国表面工程大会在成都金牛宾馆举行,德祥公司携手美国Hysitron & Protochips成功参展此次盛会。  美国Hysitron(海思创)公司自1992年成立至今在纳米力学研究领域始终处于全球领先地位。其旗下的产品主要包括TI独立纳米力学测试系统和PI电镜专用原位纳米力学测试系统。除了纳米压痕和微米压痕,其仪器功能还包括划痕、摩擦磨损、模量成像、DMA、电学测量和原位SEM/TEM纳米力学检测等。  美国Protochips公司成立于2002年,致力于将电子显微镜和芯片技术完美结合,将电子显微镜转变为真正的纳米实验室,可以对小尺度材料进行原位电和热性能测试、原位液体环境和电化学测试及原位气体环境测试,从而实现电镜在各种条件下原位观测样品反应过程的目标。  会议现场,相关技术人员与众多表面领域的专家进行了深入交流,并为广大客户详细介绍了表面工程产业所涉及到的纳米力学行为表征方法、原位电镜领域的最新进展应用范例,并现场解答了表面工程领域会遇到的一些实际应用问题,引起了广泛关注。客户与工程技术人员交流大会主席周仲容教授为德祥公司颁发荣誉证书大会主席薛群基院士(右)莅临德祥公司展位并留影
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 国产热表面电离质谱仪通过仪器性能鉴定
    2023年9月18日,西安交通大学组织专家在西安对西安交通大学、西北核技术研究院等联合研制的国产热表面电离质谱仪进行了仪器性能鉴定。鉴定委员会由来自中国核学会、中国计量科学院研究院、中核四〇四有限公司、中国工程物理研究院、中国原子能研究院、中核建中核燃料元件有限公司、中国核动力研究设计院、西北大学、暨南大学、西安交通大学、中国科学院青海盐湖研究所、中国科学院地球环境研究所等单位的14名国内专家组成,其中中国质谱学会原理事长、中国核学会李金英研究员为专家组组长,中国计量科学研究院首席科学家王军研究员为副组长。西安交通大学电气工程学院党委书记梁得亮教授、仪器科学与技术学院党委书记韦学勇教授、仪器科学与技术学院院长赵立波教授、科研院处长陈黎教授及项目组成员等30余人参加会议。科研院陈黎处长主持鉴定会。西安交通大学电气工程学院梁得亮教授首先代表学院感谢各位专家长期以来对国产质谱仪器的关心,质谱仪作为分析仪器皇冠上的“明珠”,国产化问题一直备受关注,希望各位专家多提宝贵建议,对国产仪器客观评价,帮助项目组进一步做好仪器迭代升级。中国质谱学会原理事长、中国核学会李金英研究员在线上主持仪器研制汇报与指标测试汇报环节。项目组技术骨干袁祥龙工程师对国产热表面电离质谱仪的研制目标、关键技术、工程化、未来展望等方面进行了汇报。项目组在国家重大科学仪器设备开发专项、国家重点研发计划等多项重点项目支持下,开展了离子光学理论研究、关键部件研制、测控软件开发、仪器工艺及可靠性迭代等多项工作,取得系列创新成果。中国计量科学研究院王松副研究员在国产热表面电离质谱仪上开展了为期三天的现场测试,会议上介绍了仪器指标测试大纲与测试报告,并分享了个人在国产仪器方面的使用感受。在听取了项目组和第三方测试单位的汇报后,鉴定委员会进行了热烈的讨论,认为国产磁质谱仪器十年磨一剑,取得了令人瞩目的成果、令人振奋,向项目组表示祝贺。专家们结合实际应用场景,就特定核素同时测量、探测器技术方案、微弱信号检测等与项目组进行了深入技术探讨;最后,还对仪器长期稳定性考核、自动化样品处理、知识产权布局等方面提出了具体建议。研究团队学术带头人李志明教授最后总结了团队磁质谱仪器研发历程、目前面临的挑战和未来研发计划,表示研究团队将以本次鉴定会为契机,“咬定青山不放松”,持续做好性能指标先进、“皮实耐用”的国产化质谱仪器。18日下午,鉴定委员会及其他与会专家到现场实地考察了国产热表面电离质谱仪,观看了仪器功能演示、软件操作和关键零部件研制情况,并现场开展样品测试。项目组现场还对在研的高分辨辉光放电质谱仪、高分辨气体质谱仪等仪器的关键部件进行了介绍。鉴定委员会一致认为:该仪器主要技术指标与国外先进商业仪器相当,其中峰形系数、系统稳定性和丰度灵敏度(带阻滞过滤器)指标优于国外仪器;突破了多工位热离子源、磁-电双聚焦离子光学设计、高稳定磁场控制、多接收离子探测等关键技术,在仪器设计与关键部件研制方面有多项创新,实现了同位素丰度高精密测量;自主开发了点样仪、样品带成型及焊接装置、样品带去气装置等全套辅助设备,可满足日常分析要求。热表面电离质谱是被公认为同位素分析最精确的分析方法之一,是一种准确的、可用于校准其他分析方法的参考技术,被广泛应用于核工业、同位素地球化学、计量标准、油气勘探、海洋学等领域。国产热表面电离质谱仪成功通过鉴定将推动我国高端磁质谱仪器向国产化替代迈进,打破关键领域仪器设备“受制于人”的被动局面,具有里程碑意义。
  • 扫描电镜的衬度信息与表面形貌像——安徽大学林中清33载经验谈(15)
    【作者按】衬度指的是图像上所存在的明、暗差异,正是存在这种差异才使得我们能看到图像。同是明、暗差异,衬度与对比度的不同在于:对比度是指图像上最亮处和最暗处的差异,是以图像整体为考量对象;衬度是指图像上每一个局部的亮、暗差异,它是以图像上的局部细节为考量对象。形貌衬度、二次电子衬度和边缘效应、电位衬度、Z衬度、晶粒取向衬度是展现扫描电镜表面形貌特征的几个主要衬度信息。形貌衬度是形貌像形成的基础,其余的衬度信息叠加在这个基础之上做为形貌像的重要组成部分,充实及完善形貌像所展现的表面形貌信息。依据辩证的观点,这些衬度信息各有其适用领域,相互之间不可能被完全替代。即便是形貌像的基础“形貌衬度”也不具有完全代替其余任何一个衬度的能力。对任何衬度呈现的缺失,都会使得表面形貌像存在程度不同的缺陷,使仪器分析能力受到一定程度的影响,这些都将在下面的探讨中通过实例予以充分的展示。在前面经验谈中有大量的实例及篇幅对以上衬度予以介绍。本文是对过去零散的介绍加以归纳总结,形成体系。下面将从形貌衬度开始,通过实例,依次介绍二次电子衬度、边缘效应、电位衬度、Z衬度以及晶粒取向衬度的成因、影响因素、所展现的样品信息以及应用实例和探讨。一、形貌衬度形貌衬度:呈现样品表面形貌空间位置差异的衬度信息。影响因素:探头接收溢出样品的电子信息的角度。形成缘由:要充分表述表面形貌三维空间的位置信息,形成图像的衬度应当包含两个基本要素:方向和大小。物体图像的空间形态取决于人眼观察物体的角度:侧向观察是立方体,顶部观察为正方形。这是由于该角度包含着形成图像空间形态的两个基本要素:方向和大小。扫描电镜测试时形貌衬度的形成也是同样道理。形貌衬度的形成与探头接收溢出样品的电子信息(二次电子、背散射电子)的角度密切相关。该接收角度发生改变,形貌衬度也将发生变化,形貌像就会跟着出现变动。接收角对形貌像的影响并不单调,而是存在一个最佳范围。不同厂家的不同类型扫描电镜,由于探头位置设计上的差异,各自都存在一个最佳工作距离以形成最佳的信息接收角,呈现出各自所能表达的样品表面形貌的最大空间形态。样品的倾斜会对接收角产生较大的影响,因此倾转样品可以发现表面形貌像的空间信息也会发生改变。任何测试条件的改变都不会带来唯一且单调的结果,而是遵循辨证法的规律,即对立统一、否定之否定和量变到质变。选择测试条件时,要针对样品特性及最终目的做到取舍有度。形貌衬度是形成形貌像的基础,但并不是形貌像的全部。形貌像中许多细小的形貌细节,会受到探头所接收的电子信息(SE和BSE)溢出区大小的影响。电子信息和电子束的能量越大对这些细节的影响也越大,当量变达到一定程度就会影响某些细节的分辨,从而对表面形貌像产生影响。要形成充足的形貌衬度,又该如何选择电子信息接收角的形成方式?依据样品特性及表面形貌特征可分为:A)低倍,低于10万倍,呈现的形貌细节大于20纳米。此时,背散射电子很难完全掩盖这些细节信息,随着所需呈现的样品表面细节的增大,背散射电子对图像清晰度的影响也会减小,图像也将越渐清晰。样品仓内的探头位于样品侧上方,与样品和电子束共同形成较大的电子信息接收角。由该接收角形成的形貌衬度能充分呈现20纳米以上的样品表面形貌细节。随着工作距离、样品台倾斜和加速电压的改变,该接收角的变化幅度较大,图像所呈现的形貌变化也较为明显。镜筒内探头位于样品顶部,与样品和电子束在一条直线上。其对信息的接收角度主要形成于电子信息的溢出角,该角度较小,形成的形貌衬度也较小,不利于充分展现大于20纳米的形貌细节。工作距离、样品台倾斜以及加速电压的改变对接收角的影响较小,图像形态变化不明显。基于以上原因:低于10万倍,观察的样品表面细节大于20纳米。以样品仓探头为主获取的形貌像,空间形态更优异。B)高倍,大于20万倍,观察的形貌细节小于20纳米。表面形貌的高低差异小,形貌衬度也小,电子信息的溢出角度即可满足衬度的形成需求。此时,低角度信息的接收效果将是主导因素,低角度信息越多,图像立体感越强烈。背散射电子因能量较高对这些细节影响较大,必须加以排除。为充分呈现这类形貌信息,应采用镜筒内探头从样品顶部接收充足的二次电子,尽量排除溢出面积较大的背散射电子信息溢出区对样品细节的影响。此时形成形貌像的关键是采用小工作距离(小于2mm),以增加镜筒内探头接收到的低角度二次电子。实例展示及探讨:A )大于20纳米的细节,以样品仓探头为主(大工作距离)形成的形貌像,立体感强、细节更优异,形貌假象较少。B)样品仓探头获取的表面形貌像对工作距离的变化、样品倾斜、加速电压的改变都十分敏感,表面形貌像的形态随之改变也较为明显。镜筒探头位于样品顶端,改变以上条件对接收角的影响不大,形貌像的空间形态变化也不明显。 B1)改变工作距离对表面形貌像的影响(钴、铁、钨合金)B2)样品倾斜对形貌像立体感的影响B3)改变加速电压对形貌像立体感的影响(合金钢)C)小于10纳米的细节,形貌衬度要求较小,溢出样品的低角度电子信息就满足这类表面细节的呈现需求。此时如何避免样品中电子信息的扩散对形貌细节产生影响是首要选择,充分选用低能量的二次电子就显得极为关键。镜筒内探头因位置和结构的特别设计,使得它接收的样品信息以二次电子为主,是展现这类几纳米细节的首选。工作距离越小,镜筒内探头接收到更为丰富的多种角度的二次电子信息,对10纳米以下细节的分辨力最强。D)处于不同位置的镜筒内探头获取的形貌衬度也不相同。位于侧向的镜筒内(U)探头相较于位于顶部的镜筒内探头(T),可获取更多的低角度信息,形貌像的立体感更强。结论:形貌衬度是形成形貌像的基础,探头接收形貌信息的角度是形成形貌衬度的关键因素。不同大小的形貌细节要求的形貌衬度不同,该接收角的形成方式也不同。低倍时,形貌像的空间跨度大,要求的形貌衬度也大,需探头、样品和电子束之间形成一定的角度才能获得充分的形貌像。该角度有一个最佳值,探头位置不同,这个值也不同,形成的形貌像空间感也存在差异。高倍时,形貌空间跨度小,低角度电子信息即可满足形貌衬度的形成需求。此时避免电子信息的扩散对形貌像的影响就极为关键,充分获取低角度二次电子将成为测试时的首选。形貌衬度虽是形成表面形貌像的基础,但并不是唯一因素,要获取充足的形貌像,其他衬度的影响也不可忽视。下面将对形成形貌像的其他衬度加以探讨。二、二次电子衬度和边缘效应一直以来的主流观点都认为:二次电子衬度和边缘效应是形成扫描电镜表面形貌像的主导因素。各电镜厂家都把如何充分获取样品的二次电子做为形成高分辨形貌像的首选,对探头位置的设计,也以充分获取二次电子为目的来展开。这一理论体系的形成依据是:1. 二次电子的溢出量与样品表面斜率相对应,在边缘处的溢出最多。而表面形貌像可看成是不同斜率的平面所组成,故二次电子衬度和边缘效应含有充分的样品表面形貌信息。2. 二次电子能量低,在样品中扩散小,对样品表面那些极细小的细节影响小,分辨能力强,图像清晰度高。 但实际情况却往往于此相反。如下图:右图中二次电子衬度及边缘效应充足,但形貌信息相较左图却十分的贫乏,并在形貌像上带有极为明显的假象。为什么会出现这种与目前主流观点完全不一样的结果?原因何在?这还是要从扫描电镜形貌像的形成因素说起。表面形貌像呈现的是表面形貌高低起伏的三维信息,图像中必须含有两个重要的参数:方向与大小。表述一个斜面,需提供与该斜面相关的两个重要参数:斜率大小和斜面指向,这是向量的概念。二次电子衬度对斜率大小的呈现极为明显,亮、暗差异大;却对斜面指向的呈现极差。对形貌像来说,斜面指向形成的衬度差异对形成形貌像往往更重要。因此由二次电子衬度和边缘效应形成的图像只具二维特性,无法呈现形貌像的三维特征,失去形貌细节也在所难免。探头对样品信息的接收角所形成的形貌衬度能充分表达形貌像的指向差异。因此下探头即便接收的背散射电子较多,对斜率大小的表现较差,但呈现的形貌形态却更充足。任何信息都有其适用范围,在适用范围内总扮演着关键角色。二次电子衬度和边缘效应虽然对斜面指向不敏感,但对斜率大小却极度敏感,该特性能强化平面和斜面区域整体的衬度差异,有利于对区域整体进行区分。区域在形貌像中占比越小,被区分的优势就越大。需要注意:此时区域之间的衬度表述,并非该区域成分和密度的不同,而是各区域中斜面数量和斜率大小的差异。观察区域在图像中面积占比越低,区域中的形貌细节越难分辨,采用形貌衬度对区域进行区分也越难。此时,二次电子衬度和边缘效应对区域进行区分的作用也就越大,如下例:以上是钢铁表面的缺陷,在500倍时采用下探头是无法区分A、B两个区域有哪些不同,很容易被误认为是两块完全相同的平面。但是采用上探头(二次电子衬度优异)发现这两个区域存在非常明显的不同,放大到2万倍,可见区域A和B在形态上的差别巨大,A区域比B区域的起伏大。二次电子衬度和边缘效应的强弱可通过探头和工作距离的选择加以调整。对这一衬度的合理利用,可拓展对样品形貌特征进行分析的手段,获得更充分的形貌信息。此外,充分的运用二次电子,还有利于利用“电位衬度”来扩展对样品表面形貌信息进行分析的方法。三、电位衬度电位衬度:样品表面由于存在少量荷电场,对样品某些电子信息的溢出量产生影响而形成的衬度。影响因素:由于荷电场较弱,受影响的主要是二次电子,背散射电子的溢出量受影响较小。实用方向:样品表面存在有机物污染、局部氧化或晶体结构的改变。这些变化采用Z衬度很难观察到,而形成荷电场强度及位置的些微差异所产生的电位衬度却较明显。该特性在进行样品失效分析时对找出性能改变的区域,作用极其明显。实例展示及分析:A)智能玻璃表面的有机物污染表面镀膜的智能玻璃,通电后总是有明显的光晕出现。该部位用扫描电镜进行微观检测。结果如下:镜筒内(上)探头,SE为主,Z衬度较差。相较于样品仓(下)探头,BSE为主,出现以上类似Z衬度所形成的光斑图案的几率和强度要低,但结果却完全与常规认识相背离。原因何在?从探头的改变对结果影响判断,该图案不是Z衬度所形成,否则下探头图案将更为明显。图案形状如同液体滴在块体上所形成,怀疑为有机液滴落在薄膜表面,造成该处漏电能力减弱,形成局部的弱荷电场,影响二次电子的溢出而酿成电位衬度。背散射电子未受到荷电场的影响,薄薄的液滴层形成的Z衬度又小,故下探头无法呈现反映液滴污染的任何电子信息。能谱分析该处的碳含量略高一些。客户清洗设备,排除任何有机污染的因素,该现象消失。B)铁、钴、镍合金框架表面的氧化斑采用能谱分析颗粒物部位,多出硅和氧的成分信息,说明这里可能存在夹杂物,但含量极少用Z衬度很难区别。而硅、氧造成了其存在区域的漏电能力下降,使得该处的电位衬度极为明显。由此我们可轻松找到材料的缺陷点。通过以上实例可见,材料的缺陷,往往会由于工艺问题使某些部位局部被氧化或污染。这类缺陷采用Z衬度往往很难观察到,而采用电位衬度就会很容易找到。只有在大工作距离下,才可轻松切换样品仓和镜筒探头以分别对某个区域进行观察,针对形貌像所表现出的电位衬度差异,往往很容易找到样品的失效点并分析原因。二次电子和背散射电子都有其善于呈现的衬度信息。二次电子在二次电子衬度、边缘效应和电位衬度的展现上优势明显,上面已经充分的探讨。背散射电子在Z衬度和晶粒取向衬度(电子通衬度ECCI)的表现上更加的优异,下面将分别加以介绍。四、Z衬度Z衬度:由样品各个组成相的平均原子序数(Z)及密度差异所形成的图像衬度。形成因素:相同条件下,SE和BSE的溢出量和散射角会随组成样品的原子序数及密度的不同而不同,造成探头对其的接收量出现差异而形成Z衬度。背散射电子在量的改变上较二次电子更强烈,因此形成的Z衬度更大,灰度差异更明晰。实例展示并探讨:A)高分辨扫描电镜的样品仓探头比镜筒内探头接收到的背散射电子更多,形成的图像中Z衬度更明显。B)样品仓、镜筒、背散射电子探头的Z衬度结果对比。合金钢,能谱图中1、2、3三个区域的色彩,绿色:铁;红色:钨;绿黄:铁、铬。拟合下探头图像所展现的灰度差。低加速电压下,三种探头所形成的Z衬度差异将减弱。五、晶粒取向衬度晶粒取向衬度:晶体材料的晶粒取向差异会造成探头获取的电子信息出现差别,形成的衬度。与EBSD表述的信息有一定的对应性,但对晶粒取向变化的敏感度要远低于EBSD。也称“电子通道衬度”(ECCI),但命名原因及依据不明。形成缘由:从晶体表面溢出的电子信息会随晶粒取向的差异而不同。表现为信息的溢出量及取向上出现差别,使处于固定位置的探头所接收到的电子信息在数量上出现区别,形成表述晶粒取向差别的衬度。背散射电子受晶粒取向不同而出现的衬度差 异较二次电子更为强烈,这与两种电子信息在Z衬度上的表现基本一致。实例展示及探讨:A)zeiss电镜采用三种探头模式观察钢的表面(倍率:×5K)B)日立Regulus8230样品仓和镜筒探头的各种组合结果六、结束语扫描电镜表面形貌像是由呈现表面各种形貌信息的形貌衬度、二次电子衬度及边缘效应、电位衬度、Z衬度及晶粒取向衬度共同形成。其中形貌衬度是形成形貌像的基础,其余衬度叠加在形貌衬度之上,形成完整的表面形貌像。形貌衬度:该衬度的缺失,形貌像将只具有二维特性。形成形貌衬度的关键在于探头接收样品信息的角度,而样品信息(SE\BSE)的能量会对形貌细节的分辨产生影响。背散射电子,因能量较高,在样品中扩散范围较大,对直径小于几十纳米的细节或10万倍以上高倍率图像的清晰度影响较大,对直径十纳米以下细节的辨析度影响极大。虽然二次电子能量较弱,但其对5纳米以下的样品细节或30万倍以上图像清晰度和辨析度还是有明显的影响。低密度样品,以上受影响的放大倍率阈值也会相应降低。探头对信息接收角度的形成方式应依据所需获取的样品信息的特性和样品本身特征来做出合理的选择。样品的表面形貌起伏大于20纳米,所需的形貌衬度较大,需要探头、样品和电子束之间形成一定夹角才能满足需求。背散射电子的扩散,不足以掩盖掉这些细节的展现,相对于形成充分的形貌衬度来说,处于次要地位。此时应选择大工作距离,充分利用样品仓探头对样品信息进行接收,再结合镜筒内探头接收的样品信息给予加持,才能充分展现样品的形貌特征。样品表面起伏越大,样品仓探头在形成形貌像中的占比也相应提高,才有利于充分获取样品的表面形貌信息,形成的表面形貌像也更为充盈。样品表面起伏小于20纳米,所需的形貌衬度较小,溢出样品表面的电子信息角度即能满足形成表面形貌像所需的形貌衬度。此时背散射电子对形貌细节影响将成为形成表面形貌像的主要障碍,必须加以排除。充分利用镜筒内探头,排除样品仓探头的影响将成为获取形貌像电子信息的唯一选择。此时,镜筒内探头能否充分获取低角度电子信息是形成形貌像的症结所在。在实际操作中,选择小工作距离及镜筒内探头的组合就极为关键。有些电镜厂家在物镜下部设置的低角度电子信息转换板,有助于镜筒内探头对低角度电子信息的接收,充分运用该转换板将使得表面形貌像的立体感更加充分,形貌信息更为充实。二次电子衬度与边缘效应:一直以来的主流观点都认为该衬度是形成表面形貌像的基础。但该衬度因缺失对斜面指向因素的呈现,故无法表现形貌像的空间位置信息。由其形成的形貌像对形貌斜面的斜率大小表现充分,而对斜面的指向却没有体现,故形貌像只具二维特性。该衬度容易与Z衬度相混淆而出现形貌假象,但也能够加强斜面区域的衬度,有利于低倍时对形貌不同但组成成分相近的区域进行区分,如多层膜的膜层分割等。电位衬度:该衬度是由样品表面形成的少量荷电场引起的电子信息溢出异常所形成。背散射电子能量较大,信息的溢出量不易受该荷电场影响,故不存在该衬度或存在的衬度值较小。利用不同探头在接收样品信息时,对电位衬度的呈现差异,可对样品中被污染、氧化或发生晶体结构改变而形成漏电能力出现变化的部位,进行区分及分析。这在样品的失效分析中意义重大。Z衬度:由样品组成相的平均原子序数及密度不同所形成的信息衬度。背散射电子从样品表面溢出的数量和角度受样品的组成成份和密度的影响较大,由其为主形成的表面形貌像中,Z衬度的差值更大,图像更锐利,边缘更明晰,但表面细节较差。以二次电子为主形成的形貌像,具有的Z衬度差值较小,图像锐利度不足但细节更丰富。晶粒取向衬度:晶体的晶粒取向差异所形成的信息衬度。主流的称谓是:电子通道衬度(ECCI),命名的原由不明。该衬度如同Z衬度,背散射电子对其的呈现更为明显。对各种衬度信息的充分认识,将有助于正确理解形貌像上各种形貌信息的形成缘由。是正确选择扫描电镜测试条件,获取充分且全面的表面形貌像的基础,必须加以重视。参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社作者简介:
  • 新品上市 | 比表面和孔径分析仪 Nova系列
    新品上市比表面和孔径分析仪Nova系列速度精准简洁长久以来,使用气体吸附仪分析比表面积和孔径时,速度和精度始终是一个非此即彼的选择。告别以往!新一代比表面和孔径分析仪Nova系列问世,预示着比表面和孔径分析进入一个新时代,也为表面积和孔径表征方面树立新的基准。和我们一起,了解 Nova 系列如何展现效率 : 精准且高效。Nova这个名字来源于拉丁语novus,意思是全新的。这非常适合Nova 600/800系列,因为它从内到外经过了彻底的重新设计:新Nova系列有什么优势?新Nova系列,专为速度而生- 在短短20分钟内对4个样品进行5点BET分析,重复性Nova 系列硬件上有哪些改进?在熟悉的触摸屏背后是一整套全新的、更坚固的设计,包括真空钎焊歧管和整体不锈钢管路。采用了全新的高等级电磁阀和电子元器件,提高了系统真空密封性能,保证了测试的稳定性。多台主机是否需要多台电脑控制?无需,仅需点击连接。功能强大的Kaomi 软件可以轻松实现1台电脑连接和控制4台Nova。设备使用地发生变更需要服务怎么办?服务触手可及。 我们的销售网络涉及全球86个区域和国家,并有超过350个服务工程师为您随时提供服务。无论您在何处,安东帕总在您的身边。总有一款 Nova 满足您的需求!_600 BET800 BET600800比表面积分析✔✔✔✔孔径分析——✔✔脱气站4444分析站2424优势阀门:高性能、更耐用。可通过触摸屏控制和监测阀门状态传感器:高精度的压力传感器与24位 A/D 转换器结合,提供了一流的绝对压力测量,分辨率可达 1.15 x 10-4 Torr 加热包:技术升级。快速连接,空间容量更大,温度高达425°C电子器件:单集成、多层电路板提供所有测量和控制功能,可靠性高触摸屏:高清10英寸触摸屏,更易监测系统状态符合ROHS3:符合最严格的有害物质限制标准,更加环保安全Dosing算法套件 :一套扩展的智能算法,包括: VectorDose, DoseWizard,Initial Fill 和 dVMax,创建测试方法更便捷扩展模型范围:Nova600/800系列为快速准确的BET分析提供了一个优化的分析模型系统Kaomi软件:全新软件,优化工作流程和开发了新的功能,如孔径合并
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制