当前位置: 仪器信息网 > 行业主题 > >

靶向用药

仪器信息网靶向用药专题为您整合靶向用药相关的最新文章,在靶向用药专题,您不仅可以免费浏览靶向用药的资讯, 同时您还可以浏览靶向用药的相关资料、解决方案,参与社区靶向用药话题讨论。

靶向用药相关的资讯

  • 2020年全球抗肿瘤药市场规模达1500亿美元 靶向药是“明日之星”
    p    strong span style=" color: rgb(0, 112, 192) " 2020年 /span /strong strong span style=" color: rgb(0, 112, 192) " 全球抗肿瘤药市场规模达1500亿美元 /span /strong /p p   受生活环境、方式的变化和生存压力的增大等各种客观因素的影响,癌症的发病率不断上升,预计将取代心血管疾病成为全球第一大死亡原因。在此背景下,世界抗癌药物市场正在急速增长中,短短5内全球抗癌药物市场销售额已翻了一番,大大超过其他药物的增长。 /p p   IMS统计数据显示,2016年全球肿瘤药物市场规模高达1145亿美元,占全球药品销售规模的10.3% 在处方药市场肿瘤药同样“独领风骚”,2016年抗肿瘤药销售额为789亿美元,占全球处方药销售额的8.27%。预计2020年全球肿瘤药市场规模超过1500亿美元,肿瘤处方药销售额超过1100亿美元。 /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 图表1:2020年全球抗肿瘤药市场规模预测(单位:亿美元,%) /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/4b00f8ae-8ce8-46d0-935e-f0b84d65006f.jpg" title=" 1_副本.jpg" / /p p style=" text-align: right "   资料来源:前瞻产业研究院整理 /p p    strong span style=" color: rgb(0, 112, 192) " 靶向药是抗肿瘤药市场的“明日之星” /span /strong /p p   靶向药物的一大特点是针对特定靶点产生作用,每个病人的情况各不相同,可以选用的靶向药物也各有不同,一定程度上实现对肿瘤的个体化治疗。从药品的需求趋势来看,疗效明显、副作用小是未来产品发展的主要需求方向,在这种市场需求驱动下,靶向抗肿瘤药物的研发与临床应用将是抗肿瘤药物行业未来主要发展方向之一。 /p p   按照药物种类来看,过去10年全球抗肿瘤领域的用药结构从激素转向了靶向治疗:70年代金属铂类和抗生素类抗癌药物,使临床化疗技术向根治性目的迈进了一大步 90年代,植物提取物如紫杉醇、喜树碱类应用于临床,使得肿瘤细胞免疫和抑癌基因的研究进入白热化阶段 直至21世纪,真正开启了肿瘤靶向治疗的时代。 /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 图表2:抗肿瘤药市场历程:现在是靶向药时代 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/5508275a-6747-43f5-b173-d6fc3f58bc80.jpg" title=" 2_副本.jpg" / /p p style=" text-align: right "   资料来源:前瞻产业研究院整理 /p p   根据前瞻产业研究院发布的《2017-2022年中国生物制药行业技术研发与新品上市分析报告》数据显示,2003年抗肿瘤激素类药物占据了48%的市场份额,但2013年该比例已下降至24%,取而代之的是靶向治疗药物,2013年市场份额为46% 预计单克隆抗体类药物和小分子靶向药物在未来将占据最大的市场份额,其快速增长是由许多新产品进入导致的市场扩容。 /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 图表3:2003-2022肿瘤治疗药物市场结构及预测(单位:%) /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/17fa939a-65df-453c-9a16-b2b70427f268.jpg" title=" 3_副本.jpg" / /p p style=" text-align: right "   资料来源:前瞻产业研究院整理 /p p br/ /p
  • 中源协和:持续推进核酸质谱肺癌、结直肠癌靶向药筛查试剂盒临床报批工作
    有投资者向中源协和(600645)提问, 请问中源维康试剂盒临床试验,截止目前进展如何?  公司回答表示,投资者,您好。北京中源维康基因科技有限公司持续推进核酸质谱肺癌、结直肠癌靶向药筛查试剂盒临床报批工作。目前人循环肿瘤DNA多基因突变联合检测试剂盒于2020年通过注册检验后,完成入组样本近70%,进展顺利,该试剂盒核心技术于2021年获得发明专利授权 人6基因突变组织样本试剂盒于2021年4月19日取得注册检验合格报告 由中国医学科学院肿瘤医院牵头、北京市胸科医院、南京市鼓楼医院、河南省肿瘤医院4个临床中心均获得委员会批准和临床协议签署,并已获得人类遗传办公室审批,现已启动临床试验。  中源协和公司主要业务包括“精准预防”领域的细胞检测制备及存储 “精准诊断”领域的体外诊断原料、体外诊断试剂和器械的研产销,生物基因、蛋白、抗体等科研试剂产品,以及基因检测服务 “精准治疗”领域的干细胞、免疫细胞临床应用的研发等 形成“精准医疗”产业链。公司主要产品和服务包括:(1)细胞检测制备和存储服务:包括脐带血造血干细胞、脐带间充质干细胞、胎盘亚全能干细胞、免疫细胞、脂肪干细胞及牙源干细胞的检测、制备与存储服务。(2)体外诊断业务:包括单克隆抗体及多克隆抗体产品等的体外诊断原料 以及Ⅰ类、Ⅱ类、 Ⅲ类体外诊断试剂和医疗器械的研发、生产、销售。覆盖了生化诊断、免疫诊断、分子诊断、POCT 等。(3)生物基因、蛋白、抗体,医药中间体、实验用综合剂的研发、生产、销售。(4)基因检测服务:包括针对孕期的无创产前基因检测 针对儿童及成人的安全用药指导基因检测、疾病遗传基因检测、疾病易感基因检测等。  精准诊断板块,公司继续加大抗体和蛋白产品的研发,推出新产品,加大市场推广力度,美国科研市场抗体产品和蛋白产品增长较快,病理诊断方面,继续推动全自动免疫染色系统 UltraPATH 装机,报告期内新装机 47 台,促进业务实现快速增长。分子诊断方面,北京中源维康基因科技有限公司持续推进核酸质谱肺癌、结直肠癌靶向药筛查试剂盒临床报批工作。目前人循环肿瘤 DNA 多基因突变联合检测试剂盒于 2020 年通过注册检验后,完成入组样本近 70%,进展顺利,该试剂盒核心技术于 2021 年获得发明专利授权 人 6 基因突变组织样本试剂盒于 2021 年 4 月 19 日取得注册检验合格报告 由中国医学科学院肿瘤医院牵头、北京市胸科医院、南京市鼓楼医院、河南省肿瘤医院 4 个临床中心均获得伦理委员会批准和临床协议签署,并已完成人类遗传办公室审批,现已启动临床试验。
  • Orbitrap助力非靶向代谢组学在临床研究中取得新进展
    近日,Metabolomics杂志以封面文章形式,发表了基于Orbitrap的非靶代谢组学在新生儿先天性心脏病手术预后评价方面的研究成果。该研究首次报道了受心脏手术影响的关键代谢通路,并筛选出潜在的新生物标志物,有望应用于筛查手术预后不良风险较高的新生儿。早期识别手术致残风险较高的新生儿,可提示为患儿及时制定个性化长期治疗方案,提高患者术后生存质量,在未来具有重要的应用价值。图片来源:Metabolomics杂志 开创新篇非靶向代谢组学TGA应用新前景大动脉转位(Transposition of the Great Arteries,TGA)是一种致死率极高的先天性心脏病,需在新生儿出生3周内及时进行心肺转流术(Cardiopulmonary-bypass ,CPB)予以矫正。由于手术中使用的药物会对患者术后代谢图谱造成严重扰动,研究者首先建立了术中涉及的1255种药物及术后可从尿液中二次检出的药物相关的代谢物清单,将此清单在代谢分析时予以背景扣除。该项目对比分析了TGA患者术前和CPB术后尿液中的代谢物,共检测到39,000多种特异化合物,其中371种可预测注释的差异代谢物。最终准确注释的13种差异代谢物通路分析表明,犬尿氨酸代谢通路中色氨酸降解与手术干预相关性最强。 立意新颖创新数据分析流程克服基质干扰此次研究中,来自意大利的研究团队应用了一种全新的思路,同时也是这项研究的一项重要优势:即建立了克服基质干扰因素的数据分析工作流程,这使可靠地测定目标代谢物的变化成为可能。而这一创新思路和研究进展,是基于QE高分辨质谱的超高分辨率和Compound Discoverer这一强大的数据分析软件完成的。 文中显示,作者首先使用Compound Discoverer™ 2.1(Thermo Fisher Scientific)的“生成预期化合物”功能建立了给药药物及其内源性代谢物的列表。该列表包括母体化合物、术中用药成分,及它们可能的转化产物。接着在两步“生成预期化合物”功能生成的化合物离子列表中使用“寻找预期化合物”功能进一步搜索化合物,最终建立了一份“外源药物”相关的化合物质谱列表。研究者使用该方法,成功排除了外源药物对内源性代谢标志物筛选的干扰,从而发现真正与手术因素密切相关的差异代谢物。对于新生儿心脏手术引发的不良预后监测有重大而深远的意义。 前景广阔,靶向定量与验证——早期脑损伤患者或迎曙光本研究中使用的非靶向代谢组学方法,具备可区分手术前和手术后样品代谢物差异的能力,而发现的差异代谢物将研究者未来的思路引向犬尿氨酸通路。而基于现有研究成果和成功的分析流程创新,研究者有信心后续更大范围的进行冠心病患者的定量(靶向)代谢组学分析。这些代谢物的定量将与受损神经发育金标准GFAP以及手术后神经学和神经发育测试获得的数据有潜在相关性。这可以提供预测脑损伤所需的生物标志物,尽早识别处于不良神经发育风险的患者,对于先发性干预和辅助神经发育治疗的启动都至关重要。 相较中低分辨率质谱系统而言,文中提及的基于组学金标准Orbitrap技术的Q Exactive质谱系统,能够提供超高分辨分辨率和灵敏度,这也为代谢组学研究者所面临的共同挑战-样本基质复杂、代谢产物鉴定数量不足、辨别假阴性/假阳性结果-带来更加直观的帮助。而Compound Discoverer强大的数据处理和分析功能,能够延展性的帮助研究者创新工作流程,结合公共数据库信息,能够更加方便和准确的鉴定代谢物。 色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 如何实现纳米药物的靶向递送?
    脂质体及聚合物作为纳米药物的常用载体,在药物合成方面已取得了巨大的成功,但在靶向递送方面,仍存在着诸多挑战,纳米药物该如何实现靶向递送呢?在谈论靶向之前,先要了解一个关键的药理学概念,以器官靶向为例:器官靶向药物输送不是将所有给药剂量都输送到目标器官,而是提供足够的剂量以达到所需的生物效果,同时限制脱靶积累的毒性;即使大部分注射剂量没有到达目标器官,也应该足以引起生理效应并为患者提供益处。靶向方式分类纳米药物靶向的方式多种多样,总的来讲,可以分为三大类(如图1)。图1. 靶向方式归类图被动靶向被动靶向依赖于调整纳米颗粒的物理性质,如大小、形状、硬度和表面电荷,使其与解剖学及生理学相结合。例如,调节纳米颗粒的大小可以确定纳米颗粒从不连续的血管(如肝脏和脾脏中的血管)外渗的趋势。主动靶向主动靶向包括用化学或生物的方法修饰纳米颗粒的表面,使其特异性地与靶器官高度表达的受体或其他细胞因子相结合。例如,用单克隆抗体修饰纳米颗粒,以使核酸传递到难以转染的免疫细胞中。内源性靶向内源性靶向包括设计纳米颗粒的组成,使其在注射时与血浆蛋白的一个不同的亚群结合,从而将其引导到目标器官并促进特定细胞的摄取。例如,参与体内胆固醇运输的蛋白质已被证明是脂质纳米颗粒有效的肝细胞传递所必需的。对比而言,被动靶向和内源性靶向的设计度与可控性相对较低,主动靶向自然成为了靶向递送的研究焦点。在肝外靶向的研究中,就涉及了较多的主动性靶向,表1也列出了多种肝外给药的纳米颗粒组合物。表1. 用于肝外给药的纳米颗粒组合物靶向修饰方法药物靶向本质上为官能团之间的相互作用,即纳米药物表面的核心基团与受体部位的基团进行化学结合。以脂质纳米颗粒为例,载体组分中的PEG脂质多位于颗粒表面且本身易于修饰,因此,可以在PEG脂质上加载受体部位的结合基团以实现靶向目的。以下列举了几种常见的PEG脂质修饰方法。马来酰亚胺修饰使用DSPE-PEG2000-马来酰亚胺作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过其取代的羧基端半胱氨酸直接与肽偶联,可以形成肽靶向的纳米粒子。再如SS-31,一种线粒体靶向的四肽,具有巯基,只需与马来酰亚胺标记的脂质纳米颗粒孵育,即可进行硫酰马来酰亚胺偶联。NHS修饰NHS酯通常用于标记胺基生物分子。NHS酯与胺基的反应具有pH依赖性,结合的较佳pH值与生理环境的pH值相同。使用DMG-PEG-COOH-NHS作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过在C端添加赖氨酸修饰MH42,并通过其侧链的伯胺偶联,可以形成肽靶向的纳米粒子。同样,许多具有胺基的抗体和靶向肽也可通过该反应偶联到脂质纳米颗粒上:乳铁蛋白可特异性结合活化的结肠巨噬细胞上的LRP-1,实现细胞靶向抗炎治疗;还有较为熟知的程序性死亡配体1单克隆抗体的应用。氨基修饰氨基有利于醛酮分子的化学选择性附着。甘露聚糖还原端醛基与氨基羧基修饰的脂质之间肟偶联反应的正交特性保证了脂质纳米颗粒表面多糖分子的取向。甘露聚糖受体靶向脂质体既可以作为抗菌药物递送的载体,也可以作为用于免疫治疗的重组疫苗的载体。DBCO修饰DBCO标记可促进巯基-炔反应,并可选择性偶联荧光探针、亲和标记和细胞毒性药物分子。例如,抗体scFv-N3可被有效地偶联到DBCO修饰的脂质纳米颗粒上。研究发现,抗体修饰的脂质纳米颗粒可穿越血脑屏障,并诱导脑特异性积累,以治疗中枢神经系统疾病。结论:人体复杂的生化环境给纳米药物的靶向递送制造了诸多阻力。在实际探索中,被动靶向,主动靶向和内源性靶向,可作为靶向设计的联合工具,在寻找绝对的靶向位点、真实的靶向机理与达到实际的靶向效果之间寻求平衡。在此当中,主动性靶向的尝试值得支持,正如文中所讲PEG脂质的各种修饰方式,大量的设计性尝试定能排除越来越多的靶向干扰因素,朝靶向机理的挖掘处更深一步。参考文献:1. Menon, Ipshita et al. “Fabrication of active targeting lipid nanoparticles: Challenges and perspectives.” Materials Today Advances (2022): n. pag.2. Dilliard, S.A., Siegwart, D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater (2023).3. Herrera-Barrera, Marco et al. “Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.” Science Advances 9 (2023): n. pag.应用范围:纳米药物制备系统:
  • 院企共建创新靶向药物联合实验室
    癌症患者的治疗过程往往相当痛苦,一些抗癌药物&ldquo 威力巨大&rdquo ,在杀死癌细胞的同时也使大量正常细胞受损,有没有什么药物能只攻击&ldquo 坏细胞&rdquo ,绕过&ldquo 好细胞&rdquo ?记者从中科院合肥物质科学研究院获悉,近日,该院强磁场科学中心药物学研究团队和我市一家医药科技企业共建创新靶向药物联合实验室,重点研发靶向抗癌药物,从而最大程度上降低药物对人体的伤害。   什么叫靶向药物?靶向药物指被赋予了靶向能力的药物或其制剂,其目的是使药物或其载体能瞄准特定的病变部位,并在目标部位蓄积或释放有效成分。靶向制剂可以使药物在目标局部形成相对较高的浓度,从而在提高药效的同时抑制毒副作用,减少对正常组织、细胞的伤害。   对于普通药物而言,通常在进入体内后仅有极少一部分真正作用于病变部位,这是制约药物疗效,并导致药物毒副作用的根本原因。获取具有像导弹一样精准靶向能力的药物是人类的梦想,也是药物开发的终极目标。   据了解,2012年以来,中科院强磁场科学中心药物学研究团队以生命健康为出发点,以肿瘤精准治疗为目标,以转化医学为实施手段,成功建设了以高通量为特色的蛋白层次核磁筛选系统、计算机高通量虚拟筛选系统和常规细胞层次高通量、高内涵筛选系统的药物开发和测试硬件体系。快速开发了研究肿瘤精准治疗所需的单基因依赖性的全细胞筛选库软件体系,建立了不同组织来源和基因背景的癌症细胞系库,构建了包含商业小分子药物和自行设计合成的新型小分子药物库。   据研究团队负责人刘青松研究员介绍,目前,他们已经针对B细胞淋巴癌、前列腺癌、结直肠癌、急性白血病、非小细胞肺癌等研发出一批抗癌抑制剂,有望实现对这些肿瘤的精准靶向治疗。
  • 珀金埃尔默为PROXIDRUGS联盟提供支持,共同推进靶向蛋白质降解/PROTAC药物研发
    珀金埃尔默日前宣布,它将为PROXIDRUGS联盟提供方法学、仪器解决方案和相关技术经验,并共同开展研发工作。PROXIDRUGS联盟致力于研究基于邻近互作的药物或PROTACs(蛋白水解靶向嵌合体)。PROTACs是指一类新的药物家族,它们可针对80%与疾病相关的蛋白质(当前无有效靶向药物),通过人体天然的细胞蛋白质回收系统来发挥作用。该联盟由德国法兰克福歌德大学牵头,成员包括达姆施塔特技术大学、弗劳恩霍夫转化医学与药理研究所以及位于法兰克福莱茵-美因地区的全球制药公司的研究人员。该研究项目始于2021年10月,旨在简化和加速新型药物靶标的验证过程。该项目利用药物,将与疾病发病相关的蛋白质与关键酶(例如E3泛素化酶)相结合,使细胞所具有的天然降解机制对这些潜在靶点蛋白进行标记、破坏和回收。为加快研发进度,珀金埃尔默将为该联盟提供免洗的AlphaLISA® 和HTRF® 免疫检测技术、蛋白质标记和方法学设计相关知识、EnVision® 多模式读板仪、高内涵成像平台(如Opera Phenix® 和Operetta CLS™ 平台)以及数据分析和信息工具(如TIBCO Spotfire® 软件)。珀金埃尔默提供的这些服务和技术将为PROXIDRUGS联盟的科学家提供一个高灵敏度的研发平台,加速研发进程,并为基于活细胞和死细胞的研究提供丰富的数据传送途径和高通量筛选解决方案。珀金埃尔默生命科学部高级副总裁Alan Fletcher在评论这项突破性的研究与合作时说:“目前,传统的小分子药物仅能靶向20%与疾病相关的蛋白质,而新的研究方法,例如PROTAC药物研发,则具有巨大的潜力。PROXIDRUGS联盟正在寻找新的方法来解锁和应对流行疾病发病(癌症、神经系统疾病、心血管疾病、炎性和感染性疾病)背后的绝大多数蛋白质,我们很高兴能够为他们的创新工作提供我们的专业知识和技术。”PROXIDRUGS联盟由法兰克福歌德大学的Ivan Đikić牵头,在谈到组织之间结成联盟以促进新型药物研究和开发的重要性时,他说:“要将生物医学的研究成果成功转换成药物,需要加强产业和学术之间的融合。在PROXIDRUGS联盟中,我们与珀金埃尔默的合作就是一个很好的范例。珀金埃尔默在方法学开发方面的专业知识和创新能力对我们至关重要,这将会为我们的后续研究提供新的见解。”作为竞争激烈的“Clusters4Future”竞赛的一部分,PROXIDRUGS联盟最近被德国联邦教育及研究部选中,将获得资金支持。
  • 创新靶向药物联合实验室成立
    近日,中国科学院合肥物质科学研究院强磁场科学中心-合肥合源医药科技股份有限公司创新靶向药物联合实验室挂牌成立,这标志双方合作走向实质深入。   中科院强磁场科学中心研究员刘青松带领的药物学研究团队和合肥合源医药科技股份有限公司为推动精准靶向药物的研究,提升药物学研究的国际竞争力,双方确定携手合作,共同成立&ldquo 创新靶向药物联合实验室&rdquo 。   目标明确、合作共赢   从2012年实验室成立以来,随着刘青松带领的科研团队快速的进展,目前已经在B细胞淋巴癌、前列腺癌、结直肠癌,急性白血病,非小细胞肺癌等领域有一批抑制剂相继问世,一批临床上迫切需要的科研成果有转移转化的需求,迫切需要可以提供产业化开发研究的合作伙伴。   在此背景下,刘青松团队于2015年与合肥合源药业签订了合作协议。协议中成立联合实验室的立项原则明确规定&ldquo 联合实验室研究课题鼓励应用创新性、技术原创性研究&rdquo 、&ldquo 联合实验室将致力于科学研究、服务于生命健康&rdquo 。联合实验室将以靶向抗癌药物领域的相关研究作为工作重点,双方初期主要致力于创新靶向药物的发现研究,发挥各自资源优势,分工合作,以血液癌症和肺癌等疾病为目标,打通药物研发过程中从实验室到临床研究的通道,加快一系列&ldquo 面向国民经济主战场&rdquo 科研成果的转化。以后再根据双方需要扩展到其他领域。   强强联合、优势互补   强磁场科学中心青年千人刘青松研究团队以生命健康为出发点,以肿瘤精准治疗为目标,以转化医学为实施手段,建设成功了以高通量为特色的蛋白层次核磁筛选系统、计算机高通量虚拟筛选系统和常规细胞层次高通量/高内涵筛选系统的药物开发和测试硬件体系 近几年来,快速开发了研究肿瘤精准治疗所需的单基因依赖性的全细胞筛选库软件体系 建立了不同组织来源和基因背景的癌症细胞系库 构建了包含商业小分子药物和自行设计合成的新型小分子药物库。   合肥合源医药科技股份有限公司拥有新药研究技术集成化开发服务平台,有着丰富的药物研发经验,可从事合成工艺研究,制剂研究、安全性评价研究、药代动力学研究及临床研究等多个领域,贯穿新药研发全过程,可以面向全球制药公司提供&ldquo 一站式&rdquo 的系统解决方案,旨在保证质量的前提下,经济有效地加速新药研发进程。合源技术服务获批上市品种包括阿奇霉素分散片、利巴韦林片、布洛芬缓释胶囊等113个,自主研发获批上市品种包括泛硫乙胺片4个。其合作伙伴包括哈药集团、华素制药等公司。   双方秉承&ldquo 协同创新、合作共赢&rdquo ,共同为生命健康事业服务。合作目标是在研究院所和药企间建立共赢机制,通过联合研究和合作项目进行共同创新,促进药学研究的发展。
  • 倒计时2周!产/医/研领袖齐聚9月P4,热议肿瘤biomarker/单细胞测序/MRD检测/免疫&靶向药物/伴随诊断等前瞻技术!
    9月2-3日,北京,P4 China 2022第六届国际肿瘤精准医疗大会特设4大专场7大细分专题,60余位院士/监管/临床医生/科研权威专家与精准药企/诊断企业KOL领衔出席,与1000余位精准医疗领域行业精英代表齐聚现场,围绕肿瘤早筛早检、预后/耐药监测/病理、免疫/靶向药物等行业热点技术与话题,分享前瞻性研究新进展,探索肿瘤精准医疗技术开发与转化新方向!点击查看官网: https://www.bmapglobal.com/p4china2022 限时团购特惠!8月28日(周日)前注册报名,享8人5折(可自由组团),医护群体免费参会!详情欢迎联系组委:19102197578(同微信)扫码添加会议助手,获取优惠链接!P4 2022全议程重磅揭秘!【主论坛:监管动向/政策解读/行业前沿】9月2日上午(Day 1)►09:00-09:30 肿瘤精准医疗现状与最新精准药物开发策略(拟)詹启敏,中国工程院院士►09:30-10:00 最新肺癌早筛早诊与未来精准医学策略李为民,四川大学华西医院/华西临床医学院院长►10:00-10:30 肿瘤精准医疗LDTs的规范化李金明,国家卫生健康委临床检验中心副主任兼临床分子与免疫室主任►10:30-11:00 茶歇&交流►11:00-11:30 肿瘤精准基因检测及高通量测序技术评价指南与数据质量标准中检院专家(确认中)►11:30-12:15 高端圆桌讨论:激流勇进,肿瘤精准生态圈升级之路• 产、学、研、医如何合作推进精准医疗• 申报注册痛点分析与LDT模式探索• 原料/仪器/底层技术的国产替代• 疫情下供应链建设与维护策略• 基因大数据考量与挑战• 投资视角【分论坛 A:肿瘤早筛/早检(9月2日下午-9月3日)】9月2日下午(Day 1)☑全/泛/多癌种普筛/筛查►13:30-14:00 线粒体功能异常与肿瘤防治研究邢金良,空军军医大学肿瘤生物学国家重点实验室PI,中国抗癌协会肿瘤标志专业委员会主任委员►14:00-14:30 全癌标志物的发现,应用与合作于文强,复旦大学生物医学研究院高级PI,奕谱生物首席科学家►14:30-15:00 茶歇&交流IDT 埃德特►15:00-15:30 茶歇&交流►15:30-16:00 话题确认中臻和►16:00-16:30 基于MERCURY多组学液体活检技术泛癌种早筛研究进展汪笑男,世和基因集团创始人,首席技术官►16:30-17:00 多癌种早诊早筛探索之路张之宏,燃石医学CTO►17:00-17:30 泛癌种AI、溯源及早筛高敏感性/特异性突破与前瞻性研究严令华,桐树基因创始人CEO►17:30-18:00 游离DNA片段化模式以及在泛癌种早期诊断中的应用孙坤,深圳湾实验室特聘研究员9月3日(Day 2)☑单癌种早筛/早检►08:30-09:00 肿瘤早筛技术的进展及临床实践姜艳芳,吉林大学第一医院基因诊断中心主任,中国生物工程学会精准医学专委会秘书长►09:00-09:30 NGS液体活检在肺癌精准诊疗中的进展于津浦,天津医科大学肿瘤医院分子诊断中心主任►09:30-10:00 基因诊断在甲状腺癌精准诊疗中的研究与应用姜傥,迪安诊断高级副总裁、董事►10:00-10:30 话题确认中肖飞,北京医院临床生物样本管理中心主任,兼卫健委老年医学研究所细胞室主任►10:30-11:00 茶歇&交流 ►11:00-11:30 自动化整体解决方案在肿瘤精准医疗中的应用施冬青,纳昂达生物科技市场总监►11:30-12:15 圆桌讨论:肿瘤前瞻性筛查技术开发与落地探讨• 泛癌种/多癌种VS 单癌种、小癌种• 多癌种筛查难点“器官溯源”• 更优甲基化策略• 早筛产品性能/合规性等难点突破姜艳芳,吉林大学第一医院基因诊断中心主任,中国生物工程学会精准医学专委会秘书长于晓天,诺辉健康CMO►12:15-13:30 午餐&休息►13:30-14:00 人体正常组织体细胞突变和克隆扩增白凡,北京大学生物医学前沿创新中心研究员►14:00-14:30 单细胞原位多组学检测技术的开发及运用曹罡,华中农业大学生物医学中心副主任►14:30-15:00 肠癌粪便DNA检测与我国医学检验实践结合的策略探讨张良禄,艾米森创始人►15:00-15:30 茶歇&交流►15:30-16:00 糖链外泌体在肿瘤早筛中的应用林长青,北京热景生物技术股份有限公司董事长、总经理►16:00-16:30 多组学尿液液体活检技术在泌尿系统肿瘤早筛中的临床应用楼峰,北京橡鑫生物科技有限公司 CTO►16:30-17:00 甲基化检测技术在妇科肿瘤检测的研究进展及临床价值刘禹利,北京起源聚禾生物科技有限公司 CMO【分论坛 B:肿瘤预后/耐药监测/病理(9月2日下午-9月3日)】9月2日下午(Day 1)☑MRD检测/耐药/预后►13:30-14:10 结直肠癌精准防诊治的策略与前景王锡山,国家癌症中心/中国医学科学院肿瘤医院 结直肠外科主任►14:10-14:50 更灵敏血液瘤MRD监测突破与临床应用评估与建议(拟)陈文明,首都医科大学附属北京朝阳医院血液科主任►14:50-15:20 MRD动态监测临床应用及未来发展探索张宪,世和基因集团首席医学官►15:20-15:50 茶歇&交流►15:50-16:20 话题确认中元码基因►16:20-17:00 基于tumor-informed定制化panel的MRD监测与肠癌精准诊疗临床意见(拟)顾晋,北京大学肿瘤医院教授、主任医师,北京大学首钢医院院长9月3日(Day 2)☑预后/耐药/病理诊断/分子分型/精准治疗►08:30-09:10 精准诊断/医疗的临床落地最新进展与未来方向姚树坤,中日友好医院原副院长,中国生物工程学会精准医学专委会主任委员►09:10-09:50 肺癌靶向融合基因规范检测及应用林冬梅,北京大学肿瘤医院病理科主任►09:50-10:20 话题确认中焦磊,佰诺全景生物技术(北京)有限公司总经理 ►10:20-10:50 茶歇&交流►10:50-11:30 MSI肿瘤病理规范化检测张波,北京大学医学部病理学系/第三医院病理科教授/主任医师►11:30-12:15 圆桌讨论:肿瘤精准诊疗/用药临床落地挑战与突破• 精准检测与药物开发/用药• 标志物研究/伴随诊断与临床建议 ►12:15-13:30 午餐&休息☑ 肿瘤精准筛查/鉴别/病理诊断/分子分型►13:30-14:10 肝胆肿瘤靶向与免疫治疗中的伴随诊断赵景民,解放军总院第五医学中心病理科主任►14:10-14:50 新型病理检查方法开发及临床转化——肿瘤精准分子病理及其智能分析钟定荣,中日友好医院病理科主任►14:50-15:30 茶歇&交流►15:30-16:00 肝癌多中心前瞻性研究最新进展与临床模型及应用嘉宾确认中►16:00-16:30 液体活检和AI在肿瘤筛查和监测中的技术进展和问题探究陈实富,海普洛斯创始人/首席技术官►16:30-17:00 基于多组学的肺结节良恶性鉴别诊断技术平台钟晟,深圳泰莱生物科技有限公司联合创始人 【分论坛 C:肿瘤免疫/靶向药物(9月2日下午-9月3日)】9月2日下午(Day 1)☑新兴免疫疗法/ICIs等免疫药物与Biomarker研究/伴随探索► 13:30-14:00 淋巴瘤靶向及免疫治疗药物研发方向与策略的建议宋玉琴,北京大学肿瘤医院淋巴瘤科副主任,副院长►14:00-14:30 人类遗传资源管理条例对于肿瘤药物开发的影响与人遗管理新趋势嘉宾确认中►14:30-15:00 流式细胞术在ADC药物研发全生命周期中的应用杨成茂,碧迪医疗产品应用专家►15:00-15:30 茶歇&交流 ►15:30-16:00 微肿瘤PTC在肿瘤精准医疗领域的应用和探索尹申意,基石生命首席技术官►16:00-16:30 LAG-3/TIGIT抗体药物开发与生物标志物研究进展(拟)BMS专家(确认中)►16:30-17:00 Keytruda TMB-H泛癌生物标志物研究及伴随诊断开发刘小桥,默沙东中国研发生物信息和生物标志物研究副总监►17:00-17:30 生物标志物及转化医学在肿瘤药物的早期临床开发中应用和考量朱爱思,和铂医药转化医学总监►17:30-18:15 圆桌讨论:如何进一步加速差异化肿瘤精准药物的开发?• Biomarker发现及转化• 转化医学研究• 伴随诊断策略• 新兴疗法与精准开发曾革非,默沙东中国研发生物信息和生物标志物研究负责人郭宝红,康宁杰瑞执行医学总监沈志荣,百济神州副总裁,转化研究与转化医学负责人李福根,海和药物转化医学高级副总裁李懿,中国科学院广州生物医药与健康研究院研究员 9月3日(Day 2)☑ 新兴免疫疗法/创新靶向药物与Biomarker研究/伴随探索►08:30-09:00 新型溶瘤病毒M1的伴随诊断双标志体系颜光美,中山大学教授,广州威溶特医药科技有限公司董事长、首席科学家►09:00-09:30 NTRK抑制剂-拉罗替尼中国研发王玉坤,拜耳中国研发中心/拜耳中国肿瘤转化医学负责人►09:30-10:00 EGFR/MET双抗精准治疗肺癌中的biomarker探索嘉宾确认中►10:00-10:30 话题确认中阅微基因►10:30-11:00 茶歇&交流►11:00-11:30 话题确认中百奥智汇►11:30-12:00 基因治疗推进精准医疗韩轶星,美国国立卫生研究院国家人类基因组研究所精准健康研究中心研究员 (Online)►12:00-13:30 午餐&休息►13:30-14:00 Immune Microenvironment Characteristics in Multiple Myeloma Progression from Transcriptome Profiling李文锦,罗氏中国生物标志物研发部血液肿瘤负责人 ►14:00-14:30 潜在最优ROS1抑制剂精准开发与生物标志物和伴随诊断探索任以中, 葆元生物医药科技(杭州)有限公司医学总监►14:30-15:00 类器官在肿瘤精准药物非临床研究中的应用嘉宾确认中►15:00-15:30 茶歇&交流 ►15:30-16:00 KRAS-G12C靶向药物精准临床开发最新案例李静,再鼎医药转化医学及生物标志物执行总监►16:00-16:30 DS8201-ADC药物中转化医学与biomarker研究与开发季秦梅,第一三共转化医学负责人►16:30-17:00 药物预测性生物标志物的早期开发及临床设计思考张聪聪,瑛派药业生物标志物部门负责人*以上更新截止至8月9日,最终议程以现场为准!实时嘉宾阵容与议程信息欢迎联系组委:191 0219 7578(同微信)【P4 招展/论坛组织工作全面启动!】1、对话科研及企业专家,共促精准医疗行业高效新发展!论坛开放特装展位,主题演讲、卫星会、晚宴赞助,插页广告,吊绳&名卡、手提袋、瓶装水、椅套广告等多种形式、全方位供您展示肿瘤精准“诊+疗”产品与技术!详情欢迎咨询:180 1793 9885(同微信)2、肿瘤界超强阵容集结令!P4演讲嘉宾火热征集中!演讲摘要/论文投稿,经组委评估并确认的嘉宾将享受以下福利:获得一张免费全程参会证;会议期间午餐券、嘉宾招待晚宴;在会议期间专享演讲嘉宾休息室;组委会官方宣传与推广。投稿邮箱:p 4china @bmapglobal.com 限时团购特惠!8月28日(周日)前注册报名,享8人5折(可自由组团),医护群体免费参会!详情欢迎联系组委:19102197578(同微信)扫码添加会议助手,获取优惠链接!扫码即可咨询赞助/参会报名/演讲/往届报告/媒体合作等事宜。赞助/演讲/媒体合作详情欢迎联系组委会:电话:19102197578(同微信)邮箱:p4china@bmapglobal.com网站:www.bmapglobal.com/p4china2022媒体合作联系:上海商图信息咨询有限公司赵俊雯| Jane ZhaoTel:+86 136 6556 4971官网: www.bmapglobal.com
  • 抗肿瘤分子靶向药物研究重点实验室在南京建成
    [提要] 位于南京徐庄软件园的江苏省抗肿瘤分子靶向药物研究重点实验室今天正式竣工,江苏省副省长何权出席了竣工典礼,称这是江苏首家设在企业的省级重点实验室。抗肿瘤分子靶向药物研究重点实验室于2008年10月获江苏省科技厅批准,经过三年建设,投资2亿元,形成了完善的抗肿瘤分子靶向药物研究综合技术平台。   中新网南京1月8日电(记者陈光明)位于南京徐庄软件园的江苏省抗肿瘤分子靶向药物研究重点实验室今天正式竣工,江苏省副省长何权出席了竣工典礼,称这是江苏首家设在企业的省级重点实验室。   何权说,江苏是医药大省,也是医药强省。加大科研投入,将使民族医药的自主创新成为可能。   抗肿瘤分子靶向药物研究重点实验室于2008年10月获江苏省科技厅批准,经过三年建设,投资2亿元,形成了完善的抗肿瘤分子靶向药物研究综合技术平台。   就在一个月前,先声药业宣布与著名国际生物制药企业百时美施贵宝公司(bristol-myers squibb company)达成战略性合作关系,将携手研发抗肿瘤药物bms-817378。据了解,该化合物为小分子met/vegfr-2 抑制剂,目前仍处于临床前阶段。合作旨在加快临床概念验证实验的步伐。根据协议,先声药业获得在中国研发和将bms-817378商业化的独家授权。先声药业首席科学官王鹏博士说,“这是一次具有突破意义的合作,它证明了中国领先的医药研发企业可以与国际性大公司合作,加速产品研发进度,并推动中国国内临床试验的开展。”   先声药业集团是中国内地第一家在纽交所上市的化学生物药公司。近三年来,先声药业研发累计投入5.1亿元,超过5200万美元。在国内的医药企业中,在研发方面投入方面先声药业显得先声夺人。抗肿瘤分子靶向药物研究重点实验室的建成,将加快中国在抗肿瘤药物的研发和应用的步伐。
  • 新药创制专项已获16个证书 缓解用药难看病贵
    通过创制一批创新药物,开展药物大品种技术改造,老百姓“用药难、用药贵”可望得到缓解。3月2日,记者从国家科技重大专项办公室获悉,通过“新药专项”的持续支持,截至目前,已有16个品种获得新药证书,24个品种提交新药注册申请 36个药物大品种技术改造进展顺利。   “十一五”时期,一批新药品种研发课题取得阶段性成果。中国人民解放军第三军医大学研制的重组口服幽门螺杆菌疫苗是我国自主研发、具有完全自主知识产权的原创性疫苗,是世界上第一个获得新药证书的同类疫苗。全世界有近一半人口感染幽门螺杆菌,仅中国感染者就超过6亿,每年我国因胃癌死亡约20万人。临床试验表明,口服幽门螺杆菌疫苗保护率高达72.1%,在国内外口服疫苗中位居前列。该疫苗的应用可望为胃溃疡、胃癌的防控提供重要手段。中科院上海药物创制的氟喹诺酮类新药盐酸安妥沙星,填补了我国该领域50年的空白,其化学结构全新,有自主知识产权,药效明确优于国际临床一线用药,价格仅为国外同类产品的1/3。我国自主研发的第一个新一代小分子靶向抗癌药埃克替尼,用于化疗失败的晚期肺癌的治疗,即将上市,有望打破国外替尼类药物对国内市场的垄断。   此外,“重大新药创制”专项中的36个药物大品种技术改造课题进展顺利。我国人口主要死亡原因之一的急性缺血性脑卒中尚无有效的救治药物,由中国医学科学院和石药集团合作研制的丁苯酞软胶囊,是世界上第一个专门用于急性缺血性脑卒中的药物。丁苯酞高端制剂产品氯化钠注射液也已上市,在疗效相似的前提下所需费用约为国外同类药物的1/5,为我国高发的中风疾病治疗提供重要手段。再如已投产上市的新型抗高血压药物“玄宁”,疗效显著,且产品售价是国外同类产品的1/3。2009年,“玄宁”市场销量突破2亿元,估计可减少医疗费用支出4亿元以上。进口抗肿瘤新药“阿霉素脂质体”价格为8890元/支,国内同类产品经技术改造后,价格可降低一半左右。
  • 基因测序与精准用药产业化标准将建立
    近年来生物技术领域的创新出现井喷。随着科技部3月下发精准医疗重大科研专项申报指南,我国精准用药与基因测序产业化标准将率先建立起来。此前,在科技部和国家卫生计生委等的组织下,中国精准医疗战略专家组成立,计划于2030年前在精准医疗领域投入600亿元。多家券商研报测算,精准医疗产业涉及的产业规模上万亿元,直接相关的产业规模超过一百亿元。  涉及领域广泛  中国科学院北京基因组研究所原副所长于军告诉中国证券报记者,精准医疗是以个体化医疗为基础,随着基因组测序技术的发展以及生物信息与大数据科学的交叉应用而发展起来的新型医学概念与医疗模式。其本质是通过基因组、蛋白质组等组学技术和医学前沿技术,对于大样本人群与特定疾病类型进行生物标记物的分析与鉴定、验证与应用,从而精确寻找到疾病的原因和治疗的靶点,并对疾病不同状态和过程进行精确分类,最终实现对疾病和特定患者进行个体化精准治疗的目的,提高疾病诊治与预防效益。  中国医学科学院副院长詹启敏表示,当前,国内临床医疗多局限于依靠病人主诉、临床症状、生理生化指标和影像学改变来确定疾病情况。但在组织器官改变的下面,是大量的深层次分子生物学改变,包括遗传背景、变异、免疫和内分泌改变。以癌症早期诊断为例,发达国家的早期诊断率为50%以上,北欧甚至高达70%-80%,而中国不足20%。  对于美国率先提出精准医疗计划,南昌大学医学院李振山认为应从三方面来看:美国的医疗系统相对比较完善 生物医学研究的成果转化普遍 精准医疗能够解决当前美国疾病诊疗中重要的问题。精准医疗中的诊断成本仅占医疗成本的不到5%,却可以影响近70%的治疗成本。  业内人士告诉中国证券报记者,精准医疗是一个系统工程,主要在于确定病人群体的异质性以及后续的处理办法,由此直接和间接涉及的行业和相关产业广泛。  确定病人群体的异质性方面,涉及众多科研部门与医疗部门的合作、样本的收集与保存、临床症状和数据的记录与储存、大规模数据库的建立与分析 然后是诊断实现合理的转化,这又涉及到诊断服务业本身及诊断仪器、试剂和技术开发行业等。  确定异质性后的处理办法方面,则涉及制药业,包括开发针对特异群体的靶向乃至基因药物,以及药物应用到临床的诸多环节。  此外,整个过程离不开信息咨询、行业管理等中介机构的参与,以及政府层面的立法和监管。  技术新 难度大  国家卫计委科教司有关人士向中国证券报记者透露,卫计委、科技部等部门组织专家论证后,认为开展精准医疗研究是整个医学界的重大机遇,并提出了中国版的精准医疗计划。  业内人士表示,开展精准医疗是国际医学发展的趋势,尽快切入有可能弯道超车 随着社会逐渐进入老龄化,医疗方面的负担越来越重,医疗产业是刚性内需且边际效应巨大,可以有效拉动整体经济发展。  精准医疗主要包括三个层次,层次间逐级提高,难度呈几何级数加大。基础层次方面,基因测序是精准医疗的基础。无论是细胞治疗还是基因治疗,首先要通过基因测序诊断病情才能设计方案。在实施精准医疗方案过程中,需要大量的细胞和分子级别的检测。基因测序工具分为测序仪和试剂,医疗器械公司可以顺势介入测序设备生产领域。  中等层次方面,主要涉及细胞免疫治疗。通过对免疫细胞的功能强化和缺损修复,提高免疫细胞的战斗力。这种技术治疗癌症效果好,但操作难度大,对患者身体素质要求较高,难以大面积推广。  最高层次方面是基因编辑。癌症本质上是人体基因变异导致的细胞分裂失控。基因剪辑就是对患者癌变细胞的变异基因进行批量改造,使之成为正常细胞。  精准医疗计划获得众多政策利好支持。《科技部关于发布国家重点研发计划精准医学研究等重点专项2016年度项目申报指南的通知》(简称“国家指南”)3月8日公布,拉开了精准医疗重大专项科研行动的序幕。国家指南明确,精准医疗将是今年优先启动的重点专项之一,并正式进入实施阶段。本年度的科研专项涵盖八大目标,包括构建百万人以上的自然人群国家大型健康队列和重大疾病专病队列,建立生物医学大数据共享平台及大规模研发生物标志物、靶标、制剂的实验和分析技术体系,建设中国人群典型疾病精准医学临床方案的示范、应用和推广体系,推动一批精准治疗药物和分子检测技术产品进入国家医保目录等。  “这标志着精准用药及基因测序产业标准化即将开始。”业内人士介绍,这八大目标环环相扣:构建百万人以上专病队列及大数据共享平台,旨在打下精准医疗的大数据基础 建立大规模研发生物标志物分析体系,是为中国人群典型疾病示范打下产业标准化的基础 推动精准医疗药物进入医保目录,则标志着精准医疗大规模商业化的关键瓶颈有望被打破。  精准医疗技术新,难度大。目前进入这个领域的国内企业主要是传统医疗医药企业转型、医药器械公司创新以及其他行业跨界三种类型,包括达安基因、迪安诊断、新开源、千山药机、紫鑫药业、北陆药业、仙琚制药、丽珠集团等。  肿瘤诊治成突破口  2015年4月,国家卫计委医政医管局公布首批肿瘤高通量基因测序临床应用试点单位名单。达安基因旗下广州达安临床检验中心、迪安诊断全资子公司杭州迪安医学检验中心入选首批试点单位名单。  卫计委指出,将通过试点,做好高通量基因测序技术的验证与评价,逐步完善相关技术规范,提高高通量基因测序技术在肿瘤诊断与治疗方面的应用和管理水平。除上述两家企业外,入选首批试点的单位还包括中山大学附属肿瘤医院、深圳华大临床检测中心等。  据统计,2012年中国癌症发病人数为306.5万,约占全球发病的1/5 癌症死亡人数为220.5万,约占全球癌症死亡人数的1/4。  对这类恶性疾病的治疗,一方面是加大治疗药物的研发突破,另一方面应从精准治疗角度进行治疗技术的突破。业内人士介绍,当前的肿瘤治疗正逐渐从宏观层面对“症”用药向更微观的对基因用药转变,实现“同病异治”或“异病同治”,精准治疗已经成为肿瘤治疗的一个趋势。在广阔的市场前景面前,继无创产前测序争夺战开展数年后,多家基因公司开始进入肿瘤检测市场,争夺这块大蛋糕。  此前,在肿瘤个体化治疗领域,国家卫计委仅批准了中南大学湘雅医学检验所、北京博奥医学检验所和中国医科大学第一附属医院三家,但进展缓慢。在2015年3月国家卫计委公布了首批肿瘤高通量基因测序临床应用试点后,个别公司已先下手为强。华大基因旗下华大医学的进展快速,其肿瘤套餐已推向市场,目标客户包括健康人群、高危人群,也可辅助治疗、预后监控。
  • 专家共识!可通过类器官药物敏感性检测与分析,为难治性肺癌患者用药提供参考
    肺癌在我国的发病率及病死率均居恶性肿瘤之首,严重危害人民的生命健康。难治性肺癌指对标准治疗反应低,或尚无标准治疗,缺乏高效低毒治疗方案的肺癌。目前对于难治性肺癌尚缺乏明确定义及治疗相关共识。 为了更好地指导临床合理、安全、有效地治疗难治性肺癌,中华医学会呼吸病学分会肺癌学组的专家,针对我国肺癌实际诊疗情况,参考了国内外新研究数据、相关指南共识及专家临床实践经验,制定了本共识。 共识围绕难治性SCLC、难治性驱动基因阳性NSCLC、难治性驱动基因阴性NSCLC、精准诊疗新技术方案等四个方面分别给出推荐意见,为我国医师提供难治性肺癌的用药建议和参考。 难治性肺癌精准诊疗新技术方案难治性肺癌患者会面临多重耐药等复杂情况,临床医师可在取得患者知情同意前提下,利用类器官芯片技术、人源肿瘤异体移植瘤模型(patient-derived tumor xenograft,PDX)及MiniPDX技术开展药物敏感性检测,结合基因测序,综合判断,制定个体化用药方案,推荐如表6。 其中,多数专家(64%)推荐,难治性肺癌患者可通过类器官药物敏感性检测与高通量药物筛选,为后续用药提供参考(证据水平:Ⅱ级)。患者来源的类器官(patient-derived organoid,PDO)在新药靶点发现和验证、肿瘤药物筛选、个体化治疗和转化医学等临床癌症研究中有重要价值。 在临床实践中,医师可在征得患者知情同意情况下,选择性建议其进行类器官药物敏感性检测,为后续用药选择提供参考。一项合并17项肿瘤类器官药物性敏感检测的临床疗效预测结果显示,类器官技术在精准医学的临床应用价值(总体敏感度为84%,特异度为81%)。 此外,利用胸腔恶性积液构建肺癌类器官、进行个体化药敏检测取得了积极进展,可用于记录肿瘤类器官对化疗药物敏感性以预测体内药物反应。因此,利用肺癌类器官进行化疗药物和靶向药物高通量药物筛选是可行的。 艾玮得类器官药物敏感性分析服务肿瘤患者的是试药替身艾玮得生物专注于人体器官芯片及配套生命科学设备的创新研发。艾玮得药敏分析方案以器官芯片为核心,类器官+微环境实现人体高仿真模拟,构建出临床治疗有效性评估理想的预测模型,为医生与患者的治疗提高效率和有效性。 艾玮得药敏分析服务通过仿真的体外模型模拟肿瘤微环境,更准确呈现药敏反应。利用摇摆灌注仪提供动力系统,实现自动化、高通量样本动态培养。类器官/器官芯片智能成像分析系统配备智能实时拍摄、智能定位、智能AI图像处理及分析功能,数据结果更客观,节约人力的同时提升效率。所有实验操作均在智能类器官培养工作站中进行,减少污染风险,降低人员操作的批次间差异。
  • 胃癌靶向治疗新思路, Biacore觅得赫赛汀有效增敏剂
    胃癌是我国最常见的消化系统恶性肿瘤之一,患病率高,进展较快,严重影响人民健康。目前,由于胃癌的肿瘤异质性和化疗药物的耐药等问题,进展期胃癌综合治疗效果欠佳,因而开发新型胃癌治疗药物意义重大。曲妥珠单抗(trastuzumab)通过与HER2受体的细胞外区域结合, 抑制HER2同源二聚,从而阻止HER2 介导的信号转导,并且促进抗体依赖的细胞毒性作用,导致表达HER2 的细胞死亡,在胃癌中显示出生存获益。但是,许多接受曲妥珠单抗治疗的HER2阳性胃癌患者由于细胞敏感性不足和耐药性导致患者的用药反应差,对于临床治疗仍然具有巨大的挑战。2021兰州大学第二医院萃英生物医学研究中心焦作义团队在Nature Communications发表题为“Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer”的研究论文,报道了HER2下游存在的一条新的信号通路HER2/Shc1/SHCBP1/PLK1,该信号通路的异常激活与曲妥珠单抗耐药密切相关。并据此筛选发现了新型的SHCBP1-PLK1复合体的抑制剂茶黄素-3, 3’-双没食子酸(TFBG),可显著增敏曲妥珠单抗治疗胃癌的疗效。如图1所示,HER2和其他表皮生长因子受体(ERBBs)始终使用Shc1(一种细胞内支架蛋白)募集细胞质靶标激活下游途径,包括促分裂原活化蛋白激酶(MAPK)和磷脂酰肌醇3-激酶(PI3K)途径,并通过增加细胞增殖,转移和侵袭来促进肿瘤发生。SHCBP1是一种Shc1结合蛋白,在HER2激活后与支架蛋白Shc1脱离。释放的SHCBP1在Ser273磷酸化后进入细胞核,从而对HER2级联反应,然后通过与PLK1结合促进有丝分裂相互作用因子MISP的磷酸化来调控细胞有丝分裂。同时,Shc1被募集到HER2进行MAPK或PI3K途径激活。HER2-SHCBP1-PLK1这一关键的信号通路驱动曲妥珠单抗敏感并在治疗上具有针对性。图1 胃癌治疗靶点HER2下游新的信号通路HER2/Shc1/SHCBP1/PLK1据此研究人员采用虚拟筛选和SPR的方法,寻找抑制SHCBP1–PLK1结合的天然产物。在用Biacore进行小分子筛选时,将PLK1偶联到CM5芯片上,40个小分子化合物以100uM的浓度进样,经过分子量校正后通过与阳参的对比可以得到候选的小分子抑制剂(图2)。图2 Biacore对40个小分子化合物进行亲和力筛选最终研究人员选择了亲和力最强的小分子TFBG,与PLK1的亲和力为4.67 ×10-7M(图3)。TFBG对SHCBP1–PLK1互作的抑制也通过后续的Co-IP和细胞FERT实验得到了验证。在动物实验中,TFBG治疗与曲妥珠单抗联合显示出显著的生长抑制和肿瘤消退,表明在HER2阳性胃癌治疗中的潜在临床应用。图3 Biacore检测TFBG与PLK1的亲和力回顾整篇文章,研究人员采用LC-MS/MS、免疫组化、FERT、原位杂交等多种方法明确了HER2下游新的信号通路HER2/Shc1/SHCBP1/PLK1,然后以抑制SHCBP1–PLK1互作为目标,找到了小分子抑制剂TFBG,最后在细胞实验和动物实验中,TFBG联合曲妥珠单抗的方案都显示了显著的抗肿瘤效果,为胃癌临床靶向治疗提供了新思路,也对天然药物研发产生了有力推动作用。图4 文章整体思路高灵敏度的Biacore在小分子抑制剂的筛选和表征中可以输出可靠的数据,无人值守的操作能够满足高通量筛选的需求,兼具了数据质量和筛选效率。智能的筛选分析模块可以自动对样品进行分子量校正,方便直接用响应值的高低进行比较,并且可以根据需求自动进行排序或者划分阈值线,直观地呈现筛选结果,极大地提高实验效率,保证在药物开发过程中的高效性。Biacore,for a better life参考文献:Shi, Wengui et al. “Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer.” Nature communications vol. 12,1 2812. 14 May. 2021, doi:10.1038/s41467-021-23053-8关注德泉兴业,了解更多实验室仪器实验信息!
  • 基于小球藻细胞的磁性复合多聚体微机器人用于高效靶向给药
    微纳机器人在低雷诺数流体中可将能量转化为有效运动,因此在生物医学领域具有巨大的应用前景。近年来,磁性微纳机器人作为一种有发展前景的靶向给药平台而受到了特别的关注。科研工作者设计了不同的磁性微纳机器人用于高效递送抗癌药物至靶向肿瘤部位并取得了较好的效果。研究发现,作为体内给药的平台或载体,一方面,微纳机器人的生物相容性是至关重要;另一方面,微纳机器人的重构对于其在复杂变化环境中高度灵活地完成给药具有重要意义。然而,目前来说,微纳机器人的研究在同时满足这两方面的要求上仍具有一定的挑战性。 天然生物模板具有良好的生物相容性和精致结构的固有优势,有望为磁性微纳机器人的制备提供新的机遇。小球藻是一种具有良好的生物相容性和生物降解性的单细胞微藻。它们具有均匀的球状结构,直径约为3-5μm。这些特性使它们具有作为理想天然生物材料用于生物医学领域的优越性。然而,由于扇贝定理的限制,在低雷诺数流体中采用动态磁场有效地驱动具有简单对称球体形状的单一微球是不可行的,这限制了微藻细胞在微机器人领域的应用潜力。近日,北京航空航天大学蔡军课题组制备了一种基于小球藻细胞的磁性复合多聚体微机器人,实现了高效的靶向给药。研究者将小球藻(Chlorella,Ch.)细胞作为一种生物模板,依次进行Fe3O4沉积、抗癌药物阿霉素(DOX)装载,实现磁性复合微机器人单元的制备。利用磁偶极作用,微机器人单元通过诱导自组装作用重构成链状的复合多聚体微机器人(BMMs),如微小的二聚体、三聚体等。基于面投影微立体光刻(PμSL)技术设计了哑铃形的微流控通道,用于进行BMMs的体外靶向给药试验(图1)。图1,BMMs的制备和靶向给药示意图。图2,自组装BMMs的驱动性能。图3,BMMs的生物相容性和化疗性能。图4,BMMs的体外靶向给药试验。BMMs具有两种不同的运动模式,包括动态磁场下的旋转和垂直旋转磁场下的翻滚;运动速度的测量以及精确定位的实现表明BMMs具有优异的驱动能力(图2)。BMMs还表现出良好的生物相容性、高效的DOX装载能力、pH触发释药能力以及显著的化疗效果(图3)。另外,采用PμSL(nanoArch S140, 摩方精密)技术结合PDMS倒模技术制备了哑铃形微流控通道,在该通道内,利用磁场驱动实现了BMMs对HeLa癌细胞的靶向给药。结果表明BMMs可以实现精准靶向给药,并对抗肿瘤治疗具有良好的疗效。此研究在靶向抗癌治疗方面具有巨大的应用潜力。该研究成果,以“Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery”为题发表在ACS Applied Materials & Interfaces上。
  • 许国旺团队新成果:食品中兽药及其代谢物非靶向筛查新方法
    近日,中科院大连化物所高分辨分离分析及代谢组学研究组(1808组)许国旺研究员团队在食品中风险物质非靶向筛查技术研究方面取得新进展,通过系统研究兽药及其相应代谢物的质谱碎裂特征,构建了复杂食品基质中兽药及其代谢物的非靶向筛查策略,可为食品中风险物的发现提供重要的技术手段。  食品安全关系国计民生,不断出现的未知/新型风险物质给食品安全带来了挑战。针对未知风险物识别的难题,该研究团队在前期工作中先后建立了两种非靶向筛查策略,可实现对有空白样本(Anal Chem.,2016)和无空白样本(Anal Chem.,2018)的食品中潜在风险物质的筛查。考虑到风险物质在体内会被代谢并以多种形式存在于食品中,团队于近期构建了包含3710种兽药及其相应代谢物的质谱数据库,研究、归纳了共有或独有的质谱碎裂特征,并基于质谱碎裂特征及智能检索程序,开发了一种针对复杂食品基质中已知/未知兽药及其代谢物的非靶向筛查方法。团队利用该方法在蛋类样本中进行了示范性应用,证明了其在食品安全风险物筛查中具有应用潜力。  相关研究成果以“Nontargeted Screening Method for Veterinary Drugs and Their Metabolites Based on Fragmentation Characteristics from Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry”为题,发表在《食品化学》(Food Chemistry)上。该工作的第一作者是我所1808组博士研究生梁雯莹。上述工作得到了国家重点研发计划、国家自然科学基金、大连化物所创新基金等项目的资助。(文/图 梁雯莹)文章链接:https://doi.org/10.1016/j.foodchem.2021.130928
  • 【11月22日报名截止】P4 China--肿瘤精准诊断与用药研究论坛议程首公布
    p   前沿技术(液体活检、人工智能、大数据挖掘与集成等)在临床肿瘤诊治中有哪些应用策略、医学解读与领先实践? /p p   肿瘤免疫、靶向与联合治疗的精准诊断与个体化用药该怎样更好地应用到临床实践? /p p   肠道微生态基因与检测对于肿瘤治疗有何作用及前沿应用? /p p   新型生物标志物如何在肿瘤早筛、诊断、个体化用药、预后与复发监测中推动研发与应用? /p p   中国生物工程学会及商图信息特此举办P4 China 2018 第三届国际精准医疗大会(12月1-2日,北京)--肿瘤精确诊断与用药研究论坛,与行业专家一同探讨这一话题。并从精准免疫治疗、新型生物标志物及人工智能出发,到个性化诊治肿瘤及其并发症,逐级研讨整个环节的医学转化到前沿应用实践。 /p p style=" text-align: center "   大会日程一览 /p p style=" text-align: center " img title=" 14.jpg" alt=" 14.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/362a5623-abe0-4616-b358-5c8402e735a5.jpg" / /p p   同时,如果您属于下列群体,P4是您学习不可缺失的平台: /p p    医院:临床涉及肿瘤的医生、病理科医生、药理科医生、临床研究中心、医学转化中心 /p p    药厂(肿瘤靶向药物、免疫治疗药物的公司)医学部、临床开发部,临床CRO公司生物分析部、医学部 /p p    科研机构-生医工、生命科学技术、生物信息、生物统计、医学 /p p    基因检测公司医学部、研发部 /p p   论坛由中国生物工程学会与BMAP商图信息联合主办,并由国际生物和环境样本库协会(ISBER) 中国研究型医院学会分子诊断医学专委会 中国生物工程学会精准医疗与伴随诊断专委会(筹) 美国华人生物医药科技协会(CBA) 中国抗癌协会肿瘤与肠道微生物专委会 中国医疗器械行业协会IVD分会 中国医疗器械行业协会病理专委会大力支持。 /p p   11月22日17:00报名截止,两人报名再送一个免费参会名额。 /p p   扫描下方二位码或联系组委会立即抢占一席! /p p style=" text-align: center " img title=" 13.jpg" alt=" 13.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/25894a9d-939b-480a-89b4-12d02b109510.jpg" / /p p   P4 China2018 将汇聚200多位病理、肿瘤、药理、临床、检验科医生+200多位高校、科研院所研发人员+200多位上下游相关企业精英,共聚第三届P4 China,也期待您的加入! /p p   更多演讲嘉宾及详细话题,请点击进入https://a.eqxiu.com/s/gGKx5Mcx /p p   电话:+86 180 1793 9885 /p p   邮箱:p4china@bmapglobal.com /p p   网站:www.p4china.com /p p /p
  • 小动物活体影像仪助力抗体药物靶向&联合治疗研究
    p    strong 01 抗肿瘤药物活体水平药效学评价 /strong /p p   Avastin/Bevacizumab通过特异性结合并阻断VEGF(血管内皮生长因子)抑制肿瘤血管生成,是世界上第一个抗肿瘤血管生成的抗体类药物。Palbociclib(帕博西尼)是针对 CDK4/6 激酶靶点的高选择性小分子抑制剂,辉瑞公司于2015年获得Palbociclib与诺华Letrozole(来曲唑)联合治疗ER+/HER2- 绝经后晚期乳腺癌的FDA药物上市审批。Docetaxel(多西他赛)为紫杉醇类传统化疗药物。 /p p   在2009年Clin Cancer Res杂志发表的文章中,辉瑞肿瘤生物部研发团队就利用IVIS小动物光学成像技术平台,将荧光素酶标记MDA-MB-435 乳腺癌细胞移植入小鼠肾包膜下,建立肾包膜肿瘤疾病活体水平动物药效学评价模型,通过观测给药后光学信号随时间的变化情况,进而评价Palbociclib (PD-991)、Avastin 和 Docetaxel三种不同药物,特定的给药途径、时间、剂量等给药策略对于肿瘤的治疗效果。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/dbd4cf41-f7bb-40ed-86ba-6666a45320cf.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   相对于触诊、肿瘤体积测量等传统方法,利用高灵敏度的生物发光成像技术进行药物评价,可以更灵敏的发现残余病灶点或尽早发现肿瘤的复发,从而更准确的对药 物治疗效果进行判定。并且利用生物发光成像技术进行药效评价的另一独特优势在于,可以明确判断药物是否有效杀死肿瘤活细胞。这是由于生物发光的原理是基于活细胞环境的酶促反应,因此,能够发光的细胞必定是具有活性的,从而避免了传统体积测定方法造成肿瘤体积无变化、内部已出现细胞死亡的检测陷阱。 /p p   针对人类顽疾癌症的治疗,多靶点联合治疗是当前的一个新思路,而小分子药物和生物大分子治疗的联合应用带来的治疗改善,给攻克癌症治疗难题也带来了新曙光。而高灵敏度的生物发光成像技术平台,以其非侵入性、快速、高效、高灵敏度等特点,也为多靶点联合治疗开启了新篇章。 /p p    strong 02 免疫检验点抗体药物联合治疗研究 /strong /p p   Michael Lim等人在2017年Clinical Cancer Research杂志上的文章中,首次使用PD-1阻断抗体、TIM-3阻断抗体和传统放疗(stereotacticradiosurgery, SRS) 三种方式联合,在小鼠神经胶质瘤模型上,评价不同组合联合治疗的效果,如下图数据所示,使用三种 /p p   方式联合治疗能显著提高小鼠的生存时间,并且通过IVIS成像系统检测发现,第14天以后治疗组已检测不到GL261-luc2细胞的生物发光信号。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/019afff7-e279-40b5-8c7f-1f30623e10de.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p   Ronald Blasberg等人在2016年Molecular Therapy: Oncolytics杂志上发表的文章中,使用PD-1/PD-L1阻断抗体,联合靶向PSMA的人CAR-T细胞,对小鼠前列腺癌模型(Myc-CaP:psma(+))的治疗效果。如下图中结果所示,阻断PD-1/PD-L1,使得hPSMA-CAR-Tcell免疫治疗效果增强,但是治疗反应仅仅是在短期内,表示可能存在其他的免疫调节机制,限制了CAR-T细胞靶向、功能和在hPSMA阳性肿瘤的汇集。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/99b2eeeb-6c1e-48e6-a671-eb9a9b332be7.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p    strong 03 荧光标记抗体药物靶向分布及代谢研究 /strong /p p   通过近红外荧光探针直接标记单抗药物,经尾静脉注射后,利用小动物活体成像检测荧光信号,而实时追踪抗体药物在体内分布、肿瘤靶向性及代谢情况。 /p p   利用近红外荧光探针直接标记抗体药物Herceptin/Trastuzumab,将XenoFluor 750-Herceptin通过尾静脉注射到HER2/neu阳性的小鼠模型体内。给药前21天使用人源前列腺癌PC-3M-luc细胞株,在免疫缺陷小鼠体内进行细胞原位移植造模,并同时用Spectrum检测生物发光信号,判断肿瘤生长状况。 /p p   XenoFluor 750-Herceptin不同剂量给药后,使用Spectrum连续检测荧光信号72h,可直观看到药物实时分布且靶向肿瘤的情况,并通过软件定量分析 /p p   肿瘤区域的荧光信号后,得到Herceptin的代谢曲线。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/5542361d-205d-469e-a29a-3bf0d2758091.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p   Takuo Suzuki等人在2015年 mAbs杂志上发表的文章中,使用一种更先进的基于FRET的方法,分别标记Trastuzumab和Cetuximab,通过小动物活性成像平台检测完整抗体实时分布及抗体被降解的情况。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/c4861b20-13a9-4035-88e1-c515eaecc01b.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p   以上这种FRET模型非常适合对抗体完整性、生物分布及稳定性的评价,且对Fc区域介导的ADCC效应及改造机制和抗体偶联药物设计(Antibody-Drug Conjugates, ADC)提供重要有效信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/d6daf28b-db0b-421c-89ad-e49cafece935.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/9f1c32a3-dbfd-486a-9cb0-a8a850330df0.jpg" title=" 7.jpg" alt=" 7.jpg" / /p
  • 科学家有望开发出新型靶向性药物 彻底根治癌症不是梦!
    科学家有望开发出新型靶向性药物 彻底根治癌症不是梦!日前,一项发表在国际杂志ACS Chemical Biology上的研究报告中,来自加利福尼亚大学的研究人员表示,癌症研究者和药物制造商们往往或许会迅速忽略掉一系列对靶向特殊细胞蛋白的调查研究;机体中的每个细胞都会促死亡蛋白和抗死亡蛋白,二者之间能够相互作用,从而抵消彼此的功能,这两种蛋白之间健康的平衡是一种自然的过程,比如损伤的细胞会产生较多的促死亡蛋白,从而导致疾病细胞被自然消除,该过程称之为细胞凋亡,因此这两种蛋白被分别命名为促凋亡和抗凋亡蛋白。在癌细胞中,遗传改变会导致抗凋亡蛋白的过量产生,最终使得癌细胞能够不断生长并且对当前疗法产生一定的耐受性。因此这种抗凋亡蛋白就能够作为新型抗癌药物的靶点,Bcl-2就是6种抗细胞凋亡蛋白的其中一种,同时其也是被研究的最多的一种蛋白,2016年FDA批准的药物Venetoclax就以Bcl-2为作用靶点。但如果癌细胞对该药物产生耐受性该怎么办?是不是该药物仅以Bcl-2为作用靶点呢?基于此前利用小鼠机体蛋白进行的研究,研究人员和制药公司就将目光锁定到新一代的抗凋亡蛋白Mcl-1上了。当癌细胞暴露于化疗、放疗,甚至是免疫疗法之中时,促凋亡信号,比如毒素NOXA就会产生从而诱发癌细胞死亡,两种抗细胞凋亡蛋白Mcl-1和Bfl-1能够抵消NOXA的效应,因此这两种抗凋亡蛋白的抑制剂或许就能够互补药物Venetoclax来恢复癌细胞的细胞凋亡,目前很多研究都仅仅关注Mcl-1,因为利用小鼠蛋白进行的大量研究都表明,NOXA能够同Mcl-1发生紧密地相互作用并且对其进行隔离。研究者表示,我们也应当需要关注另外一个不同的抗凋亡蛋白:Bfl-1,当研究者发现,小鼠机体中NOXA、Mcl-1和Bfl-1能够被纠正时,他们意识到这或许并不能够完全适用于人类机体蛋白,这或许是因为,人类机体中NOXA和Bfl-1同小鼠机体并不相同,而且研究者还发现,当他们发现NOXA能够有效抵御人类机体的抗凋亡蛋白时,或许Bfl-1具有更高的亲和性,这就是其能够作为一种新型药物靶点来帮助开发新型药物。研究者Pellecchia的实验室此前发现,NOXA能够通过一种特殊的化学键来同Bfl-1作用,而这种化学键在其它5种抗凋亡蛋白中并不存在。研究者Pellecchia表示,理解NOXA与Bfl-1之间相互作用的机制或能帮助我们在实验室中设计出替代NOXA样的分子来紧密结合并且抑制Bfl-1的功能,研究者对来自耐受性慢性淋巴细胞白血病患者机体的细胞进行概念验证研究,结果表明,如果能够利用创新性的抑制剂阻断Bfl-1,那么细胞就能够对疗法产生反应并且死亡。为此研究者强烈认为Bfl-1能够作为一种新型的药物靶点,目前研究人员花费了大量的心血来寻找Mcl-1的拮抗剂,而这些制剂往往能够用于某些特定疾病之中,而相关的疾病也会因为Mcl-1的过量产生而恶化,因此研究者表示,我们可以转向对Bfl-1进行研究,本文研究结果就揭示了癌症对化疗产生耐药性的新机制,同时也证实了Bfl-1的确可以作为一种新型药物的靶点,未来研究者有望利用该靶点开发出更多治疗疾病的新型药物。
  • 上海有机所肿瘤免疫靶向小分子药物技术授权金额创纪录
    p   中国科学院上海有机化学研究所与信达生物制药(苏州)有限公司近期就肿瘤免疫靶向小分子药物的授权开发达成了合作协议。信达生物以首付款、研发里程碑和销售里程碑付款共计4.57亿美元另加销售提成的合作方式,获得上海有机所研发的吲哚胺 2,3-双加氧酶(IDO)小分子抑制剂的全球独家开发许可权。这是目前国内科研院所与本土生物制药企业达成的合作金额最高的项目,充分体现了分子创制的价值,有望成为中国院企创新药合作的重大里程碑事件。 /p p   创新药物的研发是当前国际科技竞争的战略制高点之一,对经济发展和社会进步具有重要而深远的影响。国际创新药物研发的一个重要趋势是以基础研究的突破为引领。目前,在国际创新药物研发中,肿瘤免疫治疗药物研发成为备受关注的新方向。中科院生物与化学交叉研究中心研究员王召印、朱继东致力于肿瘤免疫治疗小分子靶向药物及肿瘤免疫治疗的研究攻关,通过紧密合作研究,获得新型结构的高活性IDO抑制剂,成为肿瘤免疫治疗药物开发的“种子选手”。 /p p   科技创新绝不仅仅是实验室里的研究,而是必须将科技创新成果转化为推动经济社会发展的现实动力。信达生物制药致力于抗体创新药的研发,目前已与多家国际著名制药企业达成肿瘤免疫疗法的合作。中科院上海有机所研发的IDO抑制剂与信达生物当前正在开发的肿瘤免疫类抗体有着潜在的协同治疗效果。此次合作,是科研院所与中国生物药创新企业在重要的免疫疗法上的强强联合,将共同开创肿瘤免疫治疗的新天地,合作成果不仅有望惠及中国乃至全球病人,而且将推动中国生物药抢占国际市场,打响“中国创新”品牌。 /p p   近年来国内外临床研究证明,IDO抑制剂与PD-1抗体的联合疗法已取得令人满意的临床结果。PD-1是信达生物的“拳头产品”,目前信达生物与其国际战略合作伙伴合作开发的PD-1抗体已进入三期临床。此次院企联手,可使信达生物的PD-1产品“如虎添翼”,有望达到更加有效的治疗作用。 /p p   IDO可以抑制免疫细胞的活性,目前研究已发现在前列腺癌、胰腺癌、乳腺癌、胃癌等多种肿瘤细胞内都有IDO的过度表达。所谓IDO过度表达,是指肿瘤细胞通过过度释放IDO造成色氨酸耗尽而阻止免疫细胞增殖激活,从而使肿瘤细胞逃避免疫系统的监视而“逍遥法外”,这也是早期癌症难以被免疫系统发现的原因之一。IDO抑制剂可以对IDO的过度表达进行抑制,从而让肿瘤微环境中的免疫细胞重新恢复活性,精准杀死肿瘤细胞。 /p p /p
  • 默克与艾德生物达成靶向药物临床研究合作
    p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family:宋体,SimSun" strong 仪器信息网讯 /strong 近日,厦门艾德生物医药科技股份有限公司发布公告称,该公司与MERCK KGaA(以下简称“默克”)签署了合作协议。艾德生物基于PCR技术平台自主研发的“肺癌多基因联合检测产品”(即艾慧键升级版)将用于默克MET抑制剂Tepotinib在日本的伴随诊断注册。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 据了解,在PCR平台领域,公司自主研发的“艾惠健”(可检测多个肺癌核心驱动基因)已于2018年8月24日获国家药品监督管理局批准上市。本次合作正是基于艾德自主创 新的又一个PCR平台肺癌多基因联合检测产品,该产品也是礼来、安进等公司靶向药物的伴随诊断产品。在NGS平台领域,公司自主研发出维惠健、维汝健等产品,全面覆盖了肺癌、结直肠癌、乳腺癌、卵巢癌等重要癌种的伴随诊断需求,维惠健更是成为礼来、强生等肿瘤产品线伴随诊断产品 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体,SimSun " 此外,默克MET抑制剂Tepotinib已于2020年3月获日本厚生劳动省批准上市,用于治疗MET外显子14跳跃突变的非小细胞肺癌患者。 /span /p p br/ /p
  • 差异化ADC药物ADCE-T02,靶向组织因子显优势
    2024年8月20日,中国上海和丹麦哥本哈根——普众发现和Adcendo ApS(简称“Adcendo”)今天共同宣布,双方就代号为ADCE-T02(普众发现研发代号AMT-754)的一种新型、高度差异化的靶向组织因子(Anti-TF)的抗体偶联药物(ADC)达成许可协议,Adcendo将获得在大中华区以外的全球独家开发和商业化权利,而普众发现将保留在大中华地区(包括中国大陆、香港特别行政区、澳门特别行政区及台湾地区)的开发和商业化权利。根据协议的财务条款,普众发现将获得数千万美元的首付款,并在达成后续开发、监管及商业里程碑时,将收取总计超过10亿美元的总里程碑付款,以及基于全球(不包括大中华地区)净销售额的个位数至低两位数百分比的销售提成。组织因子(TF)在膀胱癌、非小细胞肺癌、结直肠癌、宫颈癌、食管癌、头颈癌和胃肠道癌等过度表达,但在正常组织中表达受限,因此是表现优异的ADC靶点。ADCE-T02是一种新型、高度差异化的Anti-TF ADC。其独特的抗体设计能够减弱对凝血通路的影响,同时,T1000-exatecan连接子-有效载荷技术平台经研究证明,能够放大“旁观者效应”、提高连接子稳定性,并具备克服耐药性机制的潜力。这些差异化的特性有望转化为更高的临床治疗响应率、更长的疗效持续时间以及更好的安全性,拥有更优异的治疗窗口。ADCE-T02已在澳洲申报进入临床试验,预计将于近期申报美国IND。普众发现表示:"我们很高兴能与Adcendo开展全球合作。ADCE-T02采用了T1000-exatecan连接子-有效载荷平台,此次成功合作意味着该平台已在多个成功的ADC管线中发挥了巨大作用。我们期待Adcendo经验丰富的全球开发和临床团队,尽快将ADCE-T02带给有需要的肿瘤病患。Adcendo表示:“我们对T1000-exatecan连接子-有效载荷平台的科学研究印象深刻,并对我们就ADCE-T02达成的许可协议感到高兴,此次合作完美地补充了我们现有的first-in-class ADC管线。正如最近在年度ASCO大会上所展示的那样,TF是一个出色的ADC靶标,在大量未满足需求的适应症中有巨大的潜力。ADCE-T02的高度差异化设计可以充分发挥该靶点的优势,有望为更多肿瘤患者带来实际获益。”关于普众发现普众发现是一家专注于ADC药物开发的临床阶段公司。普众发现拥有两个技术平台:MabArray—— 一种用于发现新颖的细胞表面抗肿瘤靶点以构建全新靶标(First-in-Class)的抗体平台,以及T1000 —— 一种用于开发ADC的新型连接子-有效载荷技术,利用该平台制备的ADC在旁观者效应、疗效和安全性方面能够获得更优化的平衡。MabArray与T1000的结合产生了显著的协同效应,使普众发现能够构建一套ADC“图册”,该“图册”有望用于治疗具有高度未满足治疗需求的恶性肿瘤,并实现更高和更持久的响应。基于上述技术平台,普众发现目前有数个ADC管线在开发中,其中包括了3个全新靶标的ADC管线。并且,包括所有新靶在内的多条ADC管线进入了临床阶段,展现了良好的安全性和有效性,为公司平台技术完成了初步的验证。关于Adcendo ApSAdcendo ApS致力于开发治疗罕见癌症的突破性抗体药物偶联物(ADCs)。2024年,公司完成了一轮A轮融资的延伸,筹集的总资金达到9800万欧元,用于推进、扩展和加速其全新靶标ADC管线的开发。投资者包括Novo Holdings、Ysios Capital、Pontifax Venture Capital、RA Capital Management、HealthCap、Gilde Healthcare和KKR控制的平台公司Dawn Biopharma。编辑视角:ADC药物作为一种新型的靶向抗癌药物,近年来备受关注。它们通过将抗体与药物有效载荷连接,精准地将药物输送到肿瘤细胞,从而实现高效抗癌的同时减少对正常细胞的损伤。目前,ADC药物已在多种癌症类型中展现出良好的治疗效果,例如乳腺癌、淋巴瘤和白血病等。然而,ADC药物的研发仍面临诸多挑战,例如靶点选择、连接子稳定性、有效载荷毒性等。此外,ADC药物的价格普遍较高,限制了其在临床上的广泛应用。随着技术的不断进步和研发投入的持续增加,相信ADC药物在未来将迎来更加广阔的发展空间,为更多癌症患者带来希望。
  • Echo Revolve显微镜在非小细胞肺癌靶向治疗获得性耐药机制研究中的应用
    在非小细胞肺癌(NSCLC)靶向治疗过程中,有可能会出现获得性耐药的问题。虽然目前已经发现了许多获得性耐药的驱动因素,但在治疗过程中导致肿瘤进化的潜在分子机制还不完全了解,治疗在多大程度上通过促进突变过程积极推动肿瘤的发展尚不明确。因此来自美国马萨诸塞州总医院的Hideko Isozaki和Ammal Abbasi等科学家发表了一篇名为《APOBEC3A drives acquired resistance to targeted therapies in non-small cell lung cancer》的文章,文中作者研究了在NSCLC靶向治疗期间,是否有特定的突变机制驱动肺癌的基因组进化。结果表明靶向治疗诱导胞苷脱氨酶APOBEC3A (A3A)突变可能促进非小细胞肺癌获得性耐药的发展。作者在研究中发现,临床常用的肺癌靶向治疗诱导A3A的表达,导致耐药癌细胞持续发生突变。诱导A3A可以促进了药物治疗细胞中双链DNA断裂(DSBs) 的形成,从而导致耐药细胞进化过程中的染色体不稳定性,如拷贝数改变和结构变异。通过基因缺失或RNAi介导的抑制来预防治疗诱导的A3A突变可以延缓耐药的出现。因此,靶向治疗诱导A3A突变可能促进非小细胞肺癌获得性耐药的发展。抑制A3A的表达或酶活性可能是一种潜在的治疗策略,以预防或延迟获得性耐药的肺癌靶向治疗。因此靶向治疗诱导A3A突变可能促进非小细胞肺癌获得性耐药的发展。抑制A3A的表达或酶活性可能是一种潜在的治疗策略,以预防或延迟获得性耐药的肺癌靶向治疗。在DNA双链损伤形成时,H2AX的Ser139 位点会被迅速磷酸化,从而形成γH2AX,γH2AX可以作为双链修复的标志物。文章中作者通过免疫荧光技术,利用ECHO Revolve正倒置一体荧光显微镜进行免疫荧光观察。在奥希替尼治疗2周后,我们观察到PC9细胞中组蛋白变体H2AX的Ser139磷酸化水平升高(图1),说明TKI诱导的A3A突变导致基因组不稳定,促进耐药克隆的进化。将γH2AX映射到TKI处理的PC9细胞的细胞周期分布上显示,γH2AX最显著地定位于一个恢复细胞分裂并处于G2期的细胞亚群(图2),因此,TKI治疗诱导增殖耐药细胞中A3A催化的基因组损伤。▲图1:用1 μM奥希替尼处理PC9细胞0或14天,用γH2AX染色以量化DNA损伤。NT,没有处理;比例尺= 70μm。▲图2:左图是用1 μM奥希替尼处理PC9细胞14天,用EdU/DAPI染色以分辨细胞周期,代表G1、S、G2细胞 比例尺= 10 μm。右图是EdU细胞周期试验的散点图,用γH2AX定量DNA损伤。NT:未处理。作者的研究结果表明,TKI治疗后APOBEC突变信号的获取可能指示了耐药克隆的进化路径,并提供了一种新的机制,通过该机制,靶向治疗可能在治疗期间无意中增加了癌细胞的适应性突变。因此,阻止A3A的表达或酶活性可能是一种潜在的治疗策略,以预防或延迟获得性耐药的肺癌靶向治疗。参考文献:H Isozaki, Abbasi A , Nikpour N , et al. APOBEC3A drives acquired resistance to targeted therapies in non-small cell lung cancer. 2021.DOI:10.1101/2021.01.20.426852Revolve Gen 2正倒置一体电动荧光显微镜新一代Revolve正倒置一体电动荧光显微镜,拥有流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字处理功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。
  • NanoTemper热点解析 | 颠覆传统!基于PROTAC技术的“靶向降解组学”鉴定中药成分靶点
    背景介绍蛋白降解靶向嵌合体(PROTAC)技术是目前小分子药物研发领域最火热的技术之一。它颠覆了传统药物化学中“占位驱动 (occupancy driven)”的开发理念,借助内源性的泛素蛋白酶体系统有效地特异性降解致病蛋白,尤其是“不可成药(undruggable)”靶点。如此优秀的技术,不但让国内外众多制药巨头和Biotech公司趋之若鹜,更为科学家们打开了新世界的大门。中国科学院司龙龙课题组刚刚在Nature子刊发表了基于PROTAC技术的流感疫苗[1]doi: 10.1038/s41587-022-01381-4,沈阳药科大学陈丽霞和李华团队又创造性地将这项技术引入到了中药研究领域,在Acta Pharmaceutica Sinica B(APSB)发表了题为“PROTAC Technology as a Novel Tool to Identify the Target of Lathyrane Diterpenoids”的研究论文 [2] doi: 10.1016/j.apsb.2022.07.007。中药活性成分和其作用靶点的鉴定均在中药研发领域具有重要的科学意义和实用价值。尤其是靶点鉴定,它是理解中药机制和下游药物开发的基础和关键。但由于中药“多靶点、多成分”的作用模式,以及与靶点蛋白瞬时、弱亲和力的相互作用,导致中药的靶点鉴定存在巨大挑战,亟需研究的思路创新和技术创新。PROTAC技术中的蛋白降解剂是一种含有两个活性端的小分子化合物,一个活性端可与靶蛋白结合而另一个活性端结合E3连接酶;两个活性端通过linker相连接。鉴于PROTAC分子往往无需很强的亲和力即可有效地特异性降解靶蛋白,沈阳药科大学的研究团队大胆猜想该技术可用于鉴定中药成分及天然产物的作用靶点。研究人员将PROTAC技术与定量蛋白组学、微量热泳动(MST)分子互作检测技术相结合,从被降解的差异蛋白中找到中药靶点,并通过下游的一系列分子、生物化学和动物实验得到了功能验证。该流程被研究团队称为“靶向降解组学”,可以为中药成分的靶点鉴定提供新的解决方案。实验解读沈阳药科大学陈丽霞和李华团队在前期研究中从中药千金子中获得了一系列千金烷二萜类化合物,其中ZCY-001化合物具有最强的抗炎活性,并且具有低毒性。研究人员将该化合物的核心骨架Lathyrol(即千金子二萜醇)与沙利度胺 (E3连接酶CRBN配体) 通过PEG linker相连,得到了PROTAC分子ZCY-PROTAC。使用该PROTAC分子对细胞进行处理后提取蛋白,并使用TMT串联质谱标签进行标记定量蛋白组学分析(图1 A)。比较蛋白组学分析发现MAFF蛋白在ZCY-PROTAC处理后发生了最为显著的降解。Western Blot结果也显示, MAFF蛋白的降解水平与ZCY-PROTAC的剂量和作用时间是正相关的(图1 B)。这些结果表明,该蛋白可能是Lathyrol等千金烷二萜类化合物的最主要靶点。图1 ZCY-PROTAC可显著降解MAFF蛋白为了验证比较蛋白组学发现的靶点蛋白,研究人员采用微量热泳动(MST)技术直接检测Lathyrol及其衍生物ZCY020与MAFF蛋白的结合能力。如下图所示,Lathyrol与MAFF的亲和力为20.90 μM,ZCY020对MAFF的亲和力也在同一水平。以上亲和力检测结果也通过表面等离子共振(SPR)、细胞热迁移分析(CETSA)以及DARTS等实验得到了验证。这些结果证实了MAFF蛋白是中药千金子成分的直接作用靶点。图2 微量热泳动技术(MST)检测中药千金子活性成分与MAFF蛋白相互作用研究人员进一步采用生化和药理学实验深入研究阐明了千金烷二萜ZCY020以MAFF为靶点蛋白, Nrf2/HO-1信号通路为作用途径发挥抗炎作用。ZCY02可以促进MAFF-Nrf2异源二聚体的形成而抑制MAFF同源二聚体,进而调节HO-1的下游表达,从而在体内外发挥抗氧化和抗炎活性。本研究创造性地将PROTAC技术应用在了中药成分靶点的鉴定上,首先以中药活性成分为基础合成出PROTAC分子探针,再通过蛋白的特异性降解来发现中药活性成分的靶点蛋白。以MST为代表的的分子互作检测技术在靶点验证中发挥了重要作用,可直接定量分析中药活性成分与靶点蛋白的亲和力。作者将这一系列技术手段整合为一套可行的中药成分靶点鉴定新方法,可以有力地补充甚至替代现有技术。关于Monolith新一代分子互作检测仪德国NanoTemper公司自2010年推出第一款基于微量热泳动技术的Monolith分子互作仪。随着工业用户的增多且对高通量检测的需求越来越迫切,NanoTemper公司于2014年推出了自动化的检测仪器Monolith NT.Automated。基于用户的反馈,在2020年对该产品线进行了全面升级,推出了全新的Monolith系列仪器。(点击图片,查看更多详情)产品特点:仅需微量样品,即可直接在溶液中测定分子间结合。无需固定,不受检测样品种类的限制。检测速度快、测量范围广 (Kd : 从pM到mM)。仪器操作简单,无需繁琐的清洗维护。参考文献[1] Si L, Shen Q, Li J, et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat Biotechnol. 2022 Jul 4. [2] Wu Y, Yang Y, Wang W, et al. PROTAC Technology as a Novel Tool to Identify the Target of Lathyrane Diterpenoids. Acta Pharmaceutica Sinica B. 2022 Jul 16.
  • 浅谈肺癌的靶向治疗和基因检测
    肺癌是全球和我国癌症发病率和死亡率最高的恶性肿瘤,据世界卫生组织统计,全球每年约有180万人死于肺癌,我国肺癌死亡病例约占全球的40%。数十年来,手术治疗,放射治疗及化疗一直是肺癌治疗的三驾马车,虽然药物和技术有所进步,但对生存率的改善有限。然而近年来随着各种靶向药物和免疫治疗药物的相继问世,各种治疗模式的综合应用,使得肺癌治疗取得了突破性进展,肺癌的总体生存率获得了很大的提升,很多肺癌从绝症变成了慢性病。  所谓靶向治疗,顾名思义即是专门针对癌细胞上的驱动基因作为靶点,来抑制肿瘤的生长和扩散的治疗方法。驱动基因是指癌细胞上存在的一种特定类型的基因,其突变或异常活性可以导致细胞异常增殖、生存和扩散。靶向治疗相较传统的化疗更为精准,起效快,可减少对健康组织的伤害,通常不会产生传统化疗药物导致的骨髓抑制,肾功能损害等严重毒副作用。靶向药物常见的副作用主要表现为皮疹、腹泻及肝功能损害等,但一般都比较轻微,通过对症治疗基本都能缓解和耐受,一般都无须停药或减量。而且靶向药物基本都是口服的,给药方便,无须住院。约有一半的晚期肺癌患者在其病程中会合并脑转移,传统化疗药物通常不能入脑,而靶向药物则能在脑内达到一定的血药浓度,对脑转移有效。因此,靶向治疗已成为失去手术机会的患者最主要的治疗手段之一,也越来越多的应用于围手术期的患者。  随着靶向治疗在临床上的广泛应用,如何正确的服用靶向药物需要患者及家属充分知晓。首先服用靶向药物需要定时定量,即每天服药固定在某个时间点;定量是指必须根据医生指导服用相应的剂量,切忌随意增减。但饭前亦或饭后服用引起的疗效差异可以忽略不计,患者可以根据自身胃肠道反应情况灵活选择。靶向治疗究竟需要持续多长时间,也经常困扰患者。晚期肺癌患者,只要靶向药物仍然有效,且无严重不良反应,就需要长期服用,直至耐药的出现。另外对于术后辅助靶向治疗的患者,一般推荐服用吃1-2年,可考虑停药。另外,服用靶向药物期间,需要避免同服某些药物和食物。因为多数靶向药都是通过肝内一种主要的药物代谢酶(CYP3A4酶)进行代谢的,某些药物,如利福平、异烟肼、苯妥英、糖皮质激素、卡马西平、巴比妥类等会诱导CYP3A4酶的产生,导致其含量过高,从而加快靶向药代谢,从而降低药物疗效;而某些食物,如柑橘类水果、石榴、杨桃等,能抑制CYP3A4酶的活性,也会影响靶向药的药效。  然而需要强调的是,靶向治疗并不适用于所有肺癌患者,通常只适用于特定的肺癌亚型和分子特征。  肺癌从病理上主要分为两大类型,即小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC),NSCLC占肺癌的大多数,包括腺癌、鳞癌和大细胞癌等。随着肺癌系列致癌驱动基因的相继确定,肺癌的分型也由过去单纯的病理组织学分类,进一步细分为基于驱动基因的分子亚型,而其中EGFR突变是亚洲NSCLC患者最常见的驱动基因,中国EGFR突变阳性患者约占50%,在女性非吸烟患者中EGFR突变比率则更高。ALK突变的阳性率较低,肺腺癌患者中ALK阳性发病率为6.6%-9.6%,肺鳞癌患者中ALK阳性发病率为3.7%。然而ALK突变是公认的“钻石突变”,其靶向药物的治疗效果尤其好。多项研究表明靶向治疗对比化疗,能够改善和延长驱动基因阳性NSCLC患者的预后和生存。图:驱动基因阳性患者使用靶向治疗疗效好。  然而以上靶向治疗相较传统化疗更好的疗效,是在明确了驱动基因,选择了合适的靶向药物后取得的。众多研究表明,突变状态未知,盲试靶向药物,耽误治疗时机,无法取得良好疗效,切不可取。因此,为了给给患者提供个体化精准治疗,需要在选择合适的靶向治疗药物之前,进行基因检测。所谓基因检测(也称为分子诊断或分子生物学检测)是一种通过分析肿瘤组织、胸腹腔积液或血液中的DNA来检测驱动基因突变和其他分子标志物的方法。  那么哪些患者应该做基因检测呢?权威指南推荐首次接受治疗的晚期NSCLC患者接受基因检测,指南推荐初治患者确定EGFR、ALK、ROS1、HER2、BRAF和KRAS等驱动基因突变情况,早期NSCLC患者演变为IV期也应进行基因检测。手术、经皮肺穿刺、气管镜活检等取得的肿瘤组织样品是基因检测首选的样品,检测结果可靠,是首选推荐的分子检测金标准。但有些患者无法通过上述有创的手术或操作获得肿瘤组织标本,这时胸腔积液或腹腔积液等中的细胞学样品,以及血液检查可作为一种补充,但存在假阴性结果。  基因检测技术及检测基因选择众多,须听取正规医院临床医师的建议,科学、精准地选择检测方案。ARMS和super ARMS适用于组织样品,cobas和微滴式数字PCR适用于组织、细胞学样品和血液样品,FISH、IHC适用于ALK突变检测,荧光-PCR适用于ROS1检测;而二代测序NGS适用于组织样本,可同时检测多个基因,目前临床应用较广泛。  进行靶向治疗的患者,短则数月,长者数年终将出现耐药,这是目前临床尚无法克服的难题。当一线靶向治疗发生耐药、出现疾病进展后,应该再次取得样本进行基因检测,明确耐药基因突变状态,精准指导后续治疗方案的确立,此即二次基因检测。例如一代靶向药EGFR-TKI耐药后,二次基因检测T790M突变阳性可达到60%左右,这部分患者使用三代EGFR-TKI靶向药物仍可获得临床缓解,延长患者的总生存期。当然经由二次基因检测还会发现其他一些罕见的耐药突变,从而有机会选择针对性的靶向药物。靶向药物耐药后的治疗非常棘手,争议颇多,亟待突破。对于靶向耐药后出现缓慢进展或寡转移的患者,继续原靶向药物治疗的同时辅以局部治疗(放射治疗或手术切除),同时加用抗血管药物(如贝伐珠单抗等)是已被广泛接受的治疗选择。对于靶向耐药后出现快速进展的患者,如果二次基因检测没有靶点或没有进行二次基因检测,化疗仍是主要治疗手段,近来有研究发现,这部分患者化疗同时联用抗血管药物及免疫治疗,能获得总生存率的改善。  总之,肺癌靶向治疗的本质是将治疗焦点放在特定的分子异常上,以提高治疗的精准性和有效性,同时减少对患者健康的不必要损害,极大地改善了某些肺癌患者的生存率和生活质量。未来,如何克服靶向药物的耐药仍是亟需解决的难题;对于某些难以成药的靶点,如KRAS突变等,找到有效、低毒的相应靶向药物仍是我们需要面对的挑战。
  • Digital Western Blot在领先靶向蛋白降解药物公司研发中应用
    靶向蛋白质降解 蛋白表达和功能异常调控可极大地改变细胞生理学并导致许多病理生理状况如癌症、炎症性疾病和神经退行性疾病等。内源性蛋白质的稳态表达由从头合成和降解速率的平衡来控制。靶向蛋白质降解(Targeted Protein Degradation,TPD)以剂量和时间依赖性方式通过蛋白酶体对致病靶蛋白进行降解。从目前药物研发进展来看,靶向蛋白降解的概念提供了革命性的药物开发机会,预计将带来现代小分子药物研发的转变。 在靶向蛋白降解领域,蛋白质免疫印迹技术(Western Blot,WB)是观察细胞中浓度依赖性蛋白质降解的经典方法。然而,传统的蛋白质印迹非常耗费资源,需要多个洗涤步骤和长孵育时间才能产生高质量的印迹,导致技术操作复杂、通量低、定量不准和重复性差等劣势,难以推动选择性诱导、快速和可持续性的蛋白质降解疗法的快速发展。 根据药物研发需求,工业界迫切需要建立高效、灵敏、可量化和可重现的蛋白质降解技术平台,满足不同通量和不同研发阶段需求。目前全球领先的靶向蛋白质降解药物研发公司基本建立了高低通量结合、筛选和验证一体化的研发平台。下面文章一窥行业领先的药物公司平台建设思路。SLAS Discovery:C4 Tx团队总结加速靶向蛋白降解疗法开发和优化的高通量技术 本文总结了靶向蛋白降解领域最常采用的从低通量到高通量的几种不同方法。详细说明了传统Western blot、基于毛细管电泳技术的Digital Western Blot(ProteinSimple)、高通量流式细胞术(HTFC)、AlphaLISA SureFire技术、时间分辨荧光共振能量转移(TR-FRET)技术和Nano-Glo HiBiT技术。01 Digital Western Blot技术 Digital WB技术是传统WB实验系统的高效替代方案。使用该技术,可在同一根毛细管中完成样品分离、捕获、固定、免疫检测和定量分析,从而实现传统WB的所有实验步骤(包括蛋白质上样、分离、免疫印迹、洗涤、检测以及数据分析)自动化,有效提高蛋白质表达定量结果的精确性和重复性。全自动Digital WB技术显著地缩短了样本检测时间到3小时,直接采集化学发光或荧光信号值,利用数字化信号峰面积来表征蛋白含量,短时间内实现了目的蛋白的可视化精准定量分析。ProteinSimple旗下具有系列的Digital WB系统,从25到96个样本通量,可满足靶向蛋白降解药物研发过程中对中低通量检测需求。 本技术可相对和绝对定量检测目的蛋白丰度,适用于内源性的或未修饰靶蛋白分析,如果抗体表位不受干扰,也可检测修饰的标记过的蛋白质。与传统WB相比,Digital WB可实现高分子量蛋白质可靠捕获和定量分析如BRD4案例。同时,需要样本量少,只需要3 μL上样量,特别适用于细胞或降解剂有限的条件下,96孔板中收集处理过的细胞可满足检测需求。除了自动化和标准化之外,批次数据差异CV值较低,重复性好。软件符合21 CFR Part11,数据全程可记录。这些优势使其成为工业领域蛋白表达检测平台的标准配置。02高通量流式细胞术(HTFC)和In-Cell Western (ICW) 流式细胞技术可分析细胞表面和细胞内蛋白质表达水平,技术进步已使流式可作为中高通量筛选方法来辅助药物发现。紧凑型流式细胞仪可检测96孔板中细胞配体或蛋白质的不同荧光强度。本质上,高通量流式细胞术一次检测单个细胞,提供单个细胞信号。而ICW对孔内所有细胞进行批量读取。两种方法使用比率荧光读数来提高重现性和降低标准偏差,进而提高整体数据质量。与传统流式比,这两种技术方案需要更少的样本体积和检测抗体可有效降低成本。但无法根据蛋白质分子量参数来区分特异性和非特异性信号。03AlphaLISA SureFire技术 AlphaScreen是一种多功能的基于微珠相互靠近实验技术,基于生物分子的相互作用,可测定各种分析物包括标记的或内源性蛋白。本技术提高了检测灵活性,微珠种类被设计识别各种不同的工程化蛋白质标签,或AlphaLISA每个微珠能包被针对目标蛋白不同表位的特异性抗体。当与同一蛋白质结合时,Alpha供体和受体微珠会靠近,采用680nm近红外光激发,供体微珠导致单线态氧分子释放。单线态氧的产生本身不足以产生信号,但当受体微珠靠近时,会引发能量转移反应,进而产生放大的荧光信号。AlphaLISA SureFire技术采用改进光谱特性的微珠,只能进行终点分析,需要细胞裂解来观察感兴趣蛋白质信号。对于时效性降解曲线,可通过多个高通量筛选细胞培养板在不同时间点裂解来实现。该技术优势是有助于更快地优化、自动化和小型化,适用于化合物常规和高通量筛选。可减少实际操作时间和信号读取需要的总时间,加速药物发现。具有飞克级灵敏度和 4-5 log 宽动态范围,使其适合于细胞内、分泌或膜结合蛋白检测。 对于靶向蛋白质降解的细胞学实验,384孔板可显著缩短实验时间。使用合适的抗体,通过使用针对靶蛋白翻译后修饰的抗体来区分靶标蛋白。例如使用特异性识别磷酸化蛋白的抗体直接评估具有自磷酸化活性激酶的化合物BiDAC抑制和降解影响,可与总蛋白(磷酸化和未磷酸化)测量值进行比较。获得这两个数据可能会提高降解剂与抑制剂前体区分机制的理解,进一步了解目标蛋白调节对表型影响。 尽管有这些优点,该技术有一些局限性。Alpha 微珠价格昂贵且对环境光高度敏感,需要在暗室环境添加实验试剂,上机前孵育期间尽可能避免在光线下长时间暴露。此外,读板机温度会影响单线态氧的生成和扩散速率,每摄氏度可高达10%。为了最大限度地减少批次间差异,实验微孔板和读板机应保持在温度良好可控环境中。最后需要注意过渡金属可导致单线态氧猝灭效应。04时间分辨荧光共振能量转移(TR-FRET)实验 TR-FRET实验可用于检测细胞内蛋白质水平变化,有助于高效快速的靶向蛋白质降解领域的药物发现。与AlphaLISA SureFire 技术类似,TR-FRET 是一种直接的均质混合和读取夹心免疫分析方法,信号检测前不需多次洗涤步骤。通过量化两种荧光团标记的抗体之间的比率信号来确定蛋白降解水平,这些抗体结合同一蛋白质上的两个不同表位,采用供体和受体荧光团标记。 TR-FRET是终点实验,需要细胞裂解来观察检测感兴趣蛋白质的信号。如蛋白降解动力学曲线,必须使用多个高通量筛选细胞板并行设计TR-FRET实验,以便裂解细胞并在每个时间点后添加检测抗体。将这些数据叠加可提供DC50、Emax偏移以及时效曲线。对于生物标志物分析,重要的是两种抗体使用不同表位与同一蛋白质结合,以启用 FRET 信号,同时将背景信号降至最低。与Alpha 技术一样,该方法可用于测量目标蛋白质翻译后的抑制,从而可对通路抑制以及总蛋白质水平进行定量。也可区别癌症样本突变体和正常组织中相同蛋白质野生型具有选择性的降解剂。本技术需要购买高质量特异性抗体,长期药物发现工作时,TR-FRET 分析每个数据点成本可能是该技术的最大缺点,尽管成本可通过批量定制标记抗体降低。TR-FRET实验的灵活性、适应性和可转移性具有优势。一旦针对某个细胞系靶蛋白的 HTRF方法建立,通常很容易转移到表达相同蛋白质的其他细胞系中。HTRF技术具有宽动态范围和信号稳定,而无需担心环境光的猝灭效应。05Nano-Glo HiBiT技术 Nano-Glo HiBiT技术是一种高通量靶向蛋白质降解药物筛选系统。本技术基于分成两部分互补NanoLuc荧光素酶系统,11个氨基酸的HiBiT标签和 17.6 kD LgBiT多肽。采用 CRISPR基因编辑技术将11个氨基酸的 HiBiT标签引入到编码目标蛋白基因内,或设计为可通过质粒转染或慢病毒感染的重组DNA表达载体,两种方式都可实现将标签与感兴趣目的蛋白相连。加入特有的裂解检测试剂,HiBiT会自发的与检测试剂中与HiBiT互补的多肽LgBiT结合,二者结合后可形成有催化功能的NanoLuc 荧光素酶,可催化底物产生明亮的发光信号。该信号强度与细胞裂解物中的 HiBiT 标记蛋白含量成正比。 本技术检测蛋白质浓度线性范围有几个数量级,产生的发光信号可稳定数小时,因此适用于蛋白质降解剂药物发现阶段的高通量筛选。将HiBiT标签基因编辑敲入到感兴趣的蛋白质序列中,并生成稳定表达 HiBiT 标签目的蛋白的细胞系,整个实验开发时间至少需要3-4周。如需要挑取高表达HiBiT信号的单细胞克隆,则这个系统开发时间额外增加2-3周。与不需要基因编辑开发表达HiBiT细胞系技术相比,开发时间长是这种方法的一个缺点。然而,一旦产生稳定表达的具有足够信号的细胞克隆或细胞群,操作只需加样、直接均匀混合和读取检测,比较简单。 HiBiT 技术也可进行实时动力学蛋白降解检测。LgBiT蛋白通过慢病毒转染到已经表达HiBiT标记的目标蛋白细胞中,同时表达HiBiT和LgBiT标签,整个实验过程中重组发光NanoBiT酶都存在,通过与特定底物作用来检测信号随时间变化值。作为单一的非裂解试剂添加步骤,持续几分钟到几小时到几天时间内实时测量目的蛋白质降解,所以这种方法检测板和HiBiT试剂成本方面更具成本效益,但长时间实验需要配置自动化系统。靶向蛋白质降解平台建设策略 纵观目前市面上几种不同通量的靶向蛋白质检测技术,每种技术都各自优势和相关局限性。如何构建高效的靶向蛋白质降解技术平台来推动药物发现计划,需要注意整体策略选择,综合考虑成本、时间和可行性等多种因素。根据具体研发目标,选择最可能受益技术方案。针对某些靶标蛋白可能需要采用分层筛选漏斗原理,根据C4团队的经验,这种分层方法可最大限度地提高数据收集效率,以推动BiDAC降解剂早期发现和优化工作。各种策略前提是针对目标蛋白的抗体,及所有检测方法和试剂都必须在化合物筛选前完整验证。如有Nano-Glo HiBiT技术平台,可作为快速优化降解剂效力的高通量筛选的首选方法,它适用于终点法和连续读取方法,以与TR-FRET相当的成本,但提供更多的数据类型和检测灵活性。如有针对目的靶标高度特异性且经过验证的抗体,同时有相关即用型试剂盒,TR-FRET是一种合适的高通量药物发现工作的替代方案。TR-FRET可为表达相同目标蛋白的不同细胞系后续筛选提供有吸引力的选择。具体那种方案作为高通量筛选阶段优先选择,取决于研发阶段和目标。 本团队建议高通量筛选平台需与其他技术平台配合使用,才能更充分表征异双功能蛋白降解剂。如采用Digital WB确认内源性蛋白质降解,以确保与初步筛选实验中利用HiBiT高通量技术获得一致性实验结果,防止初级筛选试验中数据结果被错误解读。不管首选策略是什么,随着未来几年靶向蛋白降解领域的研究不断加强,利用更高通量技术和更自动化平台来加速药物发现是一项有价值的投资。SLAS Discovery:C4 Tx团队开发一种小分子诱导泛素化动力学检测方法 目前大多数靶向蛋白降解化合物借助最常见的E3泛素连接酶,主要是Cullin环连接酶CRBN或VHL。化合物在E3连接酶和靶蛋白之间形成三元复合物,并促进E3连接酶催化靶蛋白泛素化,多泛素化靶蛋白随后被细胞蛋白酶体降解。BiDACs以催化方式驱动靶蛋白泛素化,时间依赖性的诱导靶蛋白持续降解。作为新兴的治疗策略,理解蛋白质降解的催化基础对于靶向蛋白质降解表征和效用至关重要。 依赖CRBN双功能蛋白降解化合物(BiDAC)的催化速率是药物发现过程中需要考虑的重要参数。C4基于毛细管的全自动数字化WB技术,开发了一种无细胞裂解物泛素化的体外系统来检测BRD4溴结构域1(BD1)泛素化的动力学。采用全自动Digital WB来进行BD1和BRD4泛素化水平,研究发现 BiDAC 在泛素化速率、亲和力和协同性方面存在显着差异,并遵循快速平衡模式。此外,量化发现不同化合物之间泛素化模式有所不同。本研究提供一个框架来优化BiDAC,进而提高三元复合物形成亲和力和泛素化率。只有在形成稳定的靶蛋白-BiDAC-E3泛素连接酶三元复合物时才能高效特异性泛素化靶蛋白,但三元复合物形成不一定决定泛素化率。通过检测无细胞裂解物中BD1结构域泛素化初始速率,来了解相同化学系列BiDAC是否在催化效率方面和热力学参数方面差异。 下图A中 3个化合物CFT-0251,CFT-0743和CFT-0660在不同浓度下,90min时BD1泛素化免疫印迹条带。下图B中用 DMSO或300nM CFT-0251处理样品,不同时间点的BD1和 BD1_Ub代表性化学发光定量峰图。通过Digital Western检测在4个时间点,根据每个时间点获得的曲线下峰面积AUC测量BD1转化为泛素化偶联BD1的量。90分钟时间内DMSO对照显示很低背景泛素化水平。相比之下,CFT-0251在300nM浓度时泛素化水平最高,BD1在整个实验过程中发生明显的泛素化,进而导致蛋白降解。 BiDAC诱导的BD1泛素化水平在不同泛素化位点可变的。下面A图 BD1泛素化模式量化10个化合物对BD1结构域无赖氨酸泛素数量。随着时间变化,最大活性浓度下测试各种BiDAC,只有CFT-0743结果双泛素化比单泛素化更多。 了解泛素化率有助于深入了解BiDAC系列化学过程,可优化E3连接酶降解目标蛋白质过程。特别是对于挑战性的目标蛋白,其中泛素化率可能被证明是需要优化的关键参数。需要开发定量描述热力学和降解动力学的方法工具,来全面了解BiDAC诱导的蛋白质降解过程以及循环的每一步对整体降解速率的影响。
  • 单细胞拉曼结合靶向宏基因组揭示土壤活性抗生素耐药组
    抗生素耐药性(AMR)在人类、环境和动植物间的传播,加剧全球“One Health”的负担。土壤是“One Health”的关键环节之一,所携带的抗生素耐药性可通过食物链等方式转移至人类而带来健康威胁。土壤中栖息着地球上最丰富多样的微生物,其中活性耐药菌在驱动土壤耐药性传播中具有关键作用。然而,由于高达99%的土壤微生物不可培养,针对土壤原位活性耐药菌的探索较少,土壤中抗生素耐药性风险的研究面临挑战,阻碍了AMR环境行为及阻控策略的发展。  虽然分子生物学技术提升了我们对土壤微生物组和抗性组的认识,但基因信息仅反映耐药潜力而非耐药表型,且不能区分胞外、死亡或休眠菌的DNA,因此难以解析具体发挥作用的耐药微生物,影响AMR健康风险的精确评估。基于培养的方法仅能关注少数可培养的指示菌,忽视了土壤中大量未培养菌的贡献。因此,亟需开发合适的技术手段,从表型和基因型两个层面全面解析土壤中重要的活性耐药菌。  中国科学院院士、中科院城市环境研究所研究员朱永官团队在《美国国家科学院院刊》(PNAS)上,发表了题为Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics的论文。该研究通过发展单细胞拉曼-稳定同位素标记和靶向宏基因组联用技术,示踪了土壤原位活性抗生素耐药菌,量化了其表型耐药水平,并结合单细胞靶向分选与测序揭示了土壤高活性耐药菌的抗性组和移动组。朱永官团队长期致力于环境耐药性研究,并在“One Health”的背景下提出监测和防控抗生素耐药风险的方法理论框架。  该研究利用单细胞拉曼-重水同位素标记技术,针对土壤的复杂性以及对抗生素有效性的影响,通过优化抗生素剂量、孵育时间、采谱深度,建立了准确示踪土壤活性耐药菌的单细胞方法与判别标准,利用土壤原位环境的多种已知抗性菌和敏感菌,对方法在不同土壤和不同机制抗生素的普适性和准确性进行交互验证,将方法从简单的临床耐药菌的研究拓展至包含大量未培养菌的复杂土壤环境。  利用该方法,研究在单细胞水平和表型层面克服培养限制,直接示踪和定量了土壤原位活性耐药菌的丰度和活性水平,揭示了人类活动(如农业耕种和污染排放)显著增加土壤的表型耐药水平。由于高代谢活性耐药菌对AMR环境传播的重要作用,研究进一步提出将表型耐药水平作为环境AMR风险评价的新指标,改进了长期以来AMR风险评价仅有基因信息而无耐药表型信息的境况。  该研究针对拉曼技术识别具有潜在健康风险的高度活跃土壤耐药菌,利用单细胞分选与靶向宏基因组测序技术,鉴定出多数高表型耐药菌属于之前难以研究的未培养菌以及一株新型的抗生素抗性病原菌,证明了土壤未培养菌是AMR的重要宿主。科研团队在单细胞水平破译了活性耐药菌携带的抗性基因、毒力因子、可移动遗传元件(包括质粒、插入序列和前噬菌体)。该工作将多种抗生素耐药表型和多种基因型关联,为剖析环境中大量未培养耐药菌提供了崭新的方法。  该工作发展的单细胞拉曼结合靶向宏基因组的方法,为复杂环境耐药研究提供了新手段,深化了科学家对土壤活性抗生素耐药性的认知。该方法可广泛用于其他生态系统,并对在“One Health”框架下推进环境耐药性的风险评估与制定防控策略具有重要价值。研究工作得到国家自然科学基金优秀青年科学基金项目、创新研究群体项目、面上项目,以及中科院基础前沿科学研究计划“从0到1”原始创新项目的支持。
  • “小贝开讲”之遗传文库筛选技术在药物靶点发现中的作用
    时间:2018年12月25日 14:00 - 15:00内容简介:1. 肿瘤精准化用药和靶向药物的研究进展。目前全球已经批准了数十种靶向治疗药物,靶向药物已经被广泛用于多种恶性肿瘤疾病的治疗。截至2015年靶向药物市场已经超过430亿美元,其市场的大幅增长也吸引了更多的制药企业投身于靶向药物的研发。但肿瘤的异质性是其重要的特点,即使是同一个部位的肿瘤,不同患者的肿瘤突变情况也千差万别。如果不进行检测和针对性用药,肿瘤药物的有效率仅为20%。因此目前已经公认肿瘤精准化用药是发展趋势。但是癌症精准化用药还存在以下难点:⑴ 拥有明确治疗靶点的肿瘤只占少数比例。⑵ 大部分肿瘤患者检测不到有价值的药物治疗靶点。⑶ 靶向药物容易产生耐药性等。2. 高通量大规模遗传筛选技术是以上难题的解决方案之一。目前高通量筛选是发现药物作用靶点或寻找有效治疗药物的有效手段。高通量筛选,可以在同一时间对数以千万的样品进行检测,幅度地缩短了新药和药物新靶点发现的时间。SiRNA和CRISPR技术是现代生命科学领域最伟大的发现。siRNA可以对特定基因产生敲低(knockdown)效果。而CRISPR/Cas9更是可以在基因组水平上对特定基因进行敲除、基因编辑和激活。我们这个讲座主要介绍遗传筛选文库技术的原理。同时介绍其结合大规模细胞筛选和高通量深度测序技术,在筛选和揭示复杂信号网络调控、寻找药物靶点和制定联合用药方案中的应用。主讲人简介:陈红波副教授,博士生导师 中山大学陈红波,中山大学 副教授 博士生导师 PI,中山大学“百人计划”引进人才,深圳市海外高层次人才(孔雀计划)。近年来在包括Nat Commun, PNAS, Biomaterials,Hum Mol Genet, Acta Biomater等国际著名医学生物学期刊发表SCI论文30多篇,影响因子加和约200点,被引用次数约1000次。目前是多个期刊的编辑和特约审稿人。主持了包括国家自然科学基金面上项目、广东省自然科学基金自由申请项目、教育部博士点基金、深圳市科技创新项目(学科布局和自由探索等)、清华大学深圳研究生院青年项目、中山大学人才启动基金和教育部高校基本科研业务费“重点和交叉培育项目”等在内的多个科研项目。此外曾主持的一个国家一类新药正在准备申报一期临床。 曾获得过北京昭衍新药研究中心“创新奖”,清华大学校级综合优秀一等奖,清华大学深圳研究生院 “科研优秀二等奖”,清华大学深圳研究生院第五届“学术新秀”和2014年深圳市科学技术奖(自然科学奖二等奖)等荣誉和称号。2016年一项成果在“深圳市科技创新委员会”网上登记。陈红波副教授的研究方向为1.基于基因工程技术的皮肤及神经营养因子类药物的研发2.核仁功能与疾病的发生3.利用高通量高内涵细胞筛选技术或CRISPR遗传文库筛选技术鉴定药物作用靶点及开发新型药物分子。
  • 武汉病毒所等揭示靶向病毒RNAi抑制子的抗病毒药物研发新策略
    RNAi是一种在真核生物中高度保守的转录后基因沉默机制,也是一种高效的抗病毒天然免疫机制。当病毒感染宿主细胞后,病毒RNA复制所产生的dsRNA被RNAi通路关键蛋白Dicer识别,并切割成病毒来源的小干扰RNA(vsiRNA),这些vsiRNA进一步组装入RNA诱导的沉默复合物RISC,介导被感染细胞内病毒RNA的降解。同时,许多病毒通过编码病毒RNAi抑制子(Viral Suppressor of RNAi,VSR)来拮抗RNAi抗病毒免疫。2017年,中国科学院武汉病毒研究所/病毒学国家重点实验室研究员周溪团队合作发现,肠道病毒EV71的非结构蛋白3A具有RNAi抑制(VSR)活性,能阻止Dicer对病毒dsRNA切割及vsiRNA产生;而缺失3A-VSR活性的EV71突变病毒能在被感染的哺乳动物细胞与体内产生大量vsiRNA,激发RNAi抗病毒反应,从而证明RNAi作为一种抗病毒免疫在哺乳动物中依然存在,并揭示了一种人类病毒逃逸RNAi免疫的机制【Immunity(《免疫》) 2017】。此外,该团队还发现了黄病毒(登革病毒、乙脑病毒、寨卡病毒等)、SARS-CoV-2、甲病毒、风疹病毒、丙肝病毒等多种重要人类病毒编码的VSR蛋白,并揭示其与宿主RNAi抗病毒通路相互作用的分子机制(Cell Research 2019,Science Advances 2020,Journal of Virology 2020,SCIENCE CHINA Life Sciences 2020,Virologica Sinica 2020,Viruses 2021)。  该科研团队创新性的提出了靶向VSR,从而释放RNAi抗病毒潜能的药物研发概念。研究以肠道病毒EV71为对象,针对其3A蛋白的VSR关键功能区域设计了数种VSR靶向多肽(VSR-targeting peptide,VTP)。这些VTP能与3A蛋白直接结合,通过竞争作用,在EV71感染的细胞中解除3A对RNAi的抑制,诱导大量病毒vsiRNA的产生;这些vsiRNA进而被组装入RISC,介导被感染细胞内EV71 RNA的降解,高效抑制EV71复制。VTP在小鼠体内也能释放RNAi抗病毒反应,产生大量vsiRNA,抑制EV71在小鼠全身各器官的复制,拯救病毒感染导致的小鼠死亡与临床症状。同时,VTP所针对的3A蛋白上的靶点区域在多种肠道病毒的3A蛋白中高度保守,研究还发现VTP能抑制多种肠道病毒的复制,具有广谱抗肠道病毒活性。  该研究首次证实了通过VTP特异性靶向VSR,可以在病毒感染的细胞与体内有效释放RNAi抗病毒免疫,充分证明了RNAi作为哺乳动物抗病毒免疫在生理和功能上的重要性。从抗病毒药物研发上来说,该研究基于新的抗病毒机制发现VSR是一类全新的药物靶标,并针对肠道病毒的VSR研发出机制上first-in-class的候选抗病毒药物,为其他重要病毒的抗病毒药物研发提供了新的思路与策略。此外,针对肠道病毒的VTP具有较低的动物体内毒性与抗原性,较高的热稳定性与蛋白酶稳定性,有望进一步开发为治疗手足口等肠道病毒感染疾病的新型药物。  9月22日,相关研究成果以Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo为题,在线发表在Immunity上。武汉病毒所/病毒学国家重点实验室与复旦大学医学分子病毒学教育部/卫健委重点实验室合作完成这一研究工作。该研究已申请PCT及多个国家的发明专利。
  • Nature:攻克30年挑战 靶向“无药可及”的癌症基因
    在药物设计领域,K-Ras蛋白是一个传奇。作为人类癌症中最常见的突变癌基因,30多年来它一直位列在所有研究人员的&ldquo 靶点&rdquo 清单上。尽管如此的高调,由于许多的制药、生物技术公司和高校实验室都未能设计出一种能够成功靶向这一突变基因的药物,在科学界里K-Ras被视作是&ldquo 无药可及&rdquo 的靶点。 现在,来自加州大学旧金山分校霍华德休斯医学研究所(HHMI)的研究人员,鉴别并利用了K-Ras一个新发现的&ldquo 阿喀琉斯之踵&rdquo (Achilles heel)。这一薄弱点就是HHMI研究人员Kevan M. Shokat和同事们在K-Ras上新发现的一个 &ldquo 口袋&rdquo (结合位点)。Shokat和他的研究小组设计出了一种化合物,证实它可以进入到这一口袋里,抑制突变K-Ras的正常活性,但不会影响正常的蛋白。 Shokat 说:&ldquo 人们将K-Ras视作是癌症中最重要的癌基因,并广泛认为它&lsquo 无药可及&rsquo 。我们报告称发现了K-Ras上一个药物可及的新口袋。我们相信这对于患者将具有真正的转化意义。&rdquo 在发表于11月20日《自然》(Nature)杂志上的一篇研究论文中,Shokat研究小组描述了一种新型的化合物,其能够进入到K-Ras上一个从前未知的口袋中,干扰该酶的功能。Ras蛋白是一种在细胞内负责传送信号的小GTPase。由于它们在细胞生长和存活中发挥核心作用,对于细胞至关重要。 Ras这一名称也用于指代编码这些蛋白质的基因家族。其中的一个基因K-Ras大约30年前被发现,在30%的人类肿瘤,包括90%的胰腺癌、40%的结肠癌和20%的非小细胞肺癌中存在突变。携带Ras突变的癌症具有侵袭性,对标准治疗反应不佳。 尽管靶向突变Ras基因的研究工作一直遭受挫折,美国国家癌症研究所(NCI)近日强调将继续重视这一难对付的药物靶点,并宣布了一项1000万美元的RAS计划。这项计划将汇集研究人员共同开发阻断Ras的新思路,以激励研发出新药或新疗法让癌症患者受益。 Shokat的HHMI研究小组在大约6年前开始启动对Ras的研究工作。利用他们的化学专业知识,Shokat和两个研究小组成员:博士后研究人员Ulf Peters以及博士生Jonathan Ostrem拟定了一些早期的想法:研发一类新的Ras突变体抑制药物。&ldquo 其中一些早期的策略行不通,&rdquo 他说。 &ldquo 我们不得不开发出一种新的筛选方法,其最终推动研发出了这一新抑制剂。&rdquo Shokat说当确定了他们的攻击范围时他们做了一些不一样的事情。他们将焦点缩小,专注于其他科学家们没有采用的策略。他们还选择了研究一种叫做G12C的K-Ras突变体,这种K-Ras突变体广泛存在于大约7%的肺癌患者中。 这一突变使得K-Ras蛋白中第12位的甘氨酸被半胱氨酸所替代。重要的是,这一半胱氨酸处在对Ras正常功能至关重要的一个位置。偏离从前的研究工作,Shokat和同事们没有试图靶向天冬氨酸和缬氨酸突变的Ras版本&mdash &mdash 这些突变相对常见,因此过去许多的科学家们都将焦点放在这些突变上。反之,他们挑选出了G12C突变体,因为这些Ras突变体影响了大批的肺癌和结直肠癌患者。 Shokat说,这一半胱氨酸所赋予的一些化学特性,为他的研究小组提供了一个独特的药物设计把柄。在20种天然氨基酸中半胱氨酸具有一种独特的能力:可以形成共价键。通常两个半胱氨酸之间形成共价键起稳定蛋白质结构的作用,但如果存在游离半胱氨酸,就如同G12C K-Ras,一种特别设计的药物就可以与这一半胱氨酸形成共价键。 Shokat说:&ldquo 其他人一直认为他们必须去追逐所有的Ras突变体。我们寻找的是别人没有做过的,我们挑选出这一特殊突变是因为它的一些化学特性。&rdquo 在三年的时间里,该研究小组对500多个化合物进行了初步筛查,看看他们能否鉴别出一个可以与K-Ras G12C共价结合和&ldquo 连接&rdquo 的化合物。他们的研究导致鉴别出了一种有效的K-Ras抑制剂。为了获得这一化合物与K-Ras互作机制的更好图像,科学家们解析了这一化合物与K-Ras结合的晶体结构。 当他们检测数据时,Shokat和研究小组发现在靠近这一半胱氨酸残基的K-Ras蛋白表面上有一个之前从未描述过的口袋。Shokat说:&ldquo 这个口袋是新发现的,此前从未有人找到它。&rdquo 通过进一步的调查,他们发现化合物是通过改变Ras与底物GTP的自然亲和力从而对其形成干扰的。&ldquo 其中最重要的一个方面就是这一小分子只抑制突变K-Ras,而不影响正常蛋白,&rdquo Shokat说。 接下来的工作包括:继续优化这一化合物,进一步测试了解这一化合物在多大程度上能够杀死具有G12C突变的细胞。Shokat说他和同事们成立了一家叫做Araxes Pharma, LLC的公司,与强生的下属部门Janssen Biotech建立了合作关系,以开发出有潜力应用于临床的化合物。 人透明质酸结合蛋白(HABP)ELISA试剂盒 Human Hya]uronate binding protein,HABP ELISA试剂盒 人Ⅰ型胶原N末端肽(NTX)ELISA试剂盒 Human cross linked N-telopeptide of type Ⅰ collagen,NTX ELISA试剂盒 人幽门螺旋杆菌IgM(Hp-IgM)ELISA试剂盒 Human Helicobacter pylori IgM,Hp-IgM ELISA试剂盒 人细胞毒素相关蛋白A(CagA)ELISA试剂盒 Human Cytotoxin-associated protein,CagA ELISA试剂盒 人胃抑素(GIP)ELISA试剂盒 Human gastric inhibitory polypeptide,GIP ELISA试剂盒 人胃泌素释放多肽(GRP)ELISA试剂盒 Human gastrin-reliasing peptide,GRP ELISA试剂盒 人胃泌素释放肽前体(ProGRP)ELISA试剂盒 Human pro-gastrin-releasing peptide, ProGRP ELISA试剂盒 人胶原蛋白Ⅱ(HCBⅡ)ELISA试剂盒 Human Collagen-like Bioprotein Ⅱ,HCBⅡ ELISA试剂盒 人促胰液素/胰泌素(Secretin)ELISA试剂盒 Human Secretin ELISA试剂盒 人多肽YY(Peptide-YY)ELISA试剂盒 Human Peptide YY ELISA试剂盒 人促胃液素受体(GsaR)ELISA试剂盒 Human gastrin receptor,GsaR ELISA试剂盒 人胆囊收缩素/缩胆囊素八肽(CCK-8)ELISA试剂盒 Human cholecystokinin octapeptide,CCK-8 ELISA试剂盒 人胰蛋白酶原激活肽(TAP)ELISA Human trypsinogen activation peptide,TAP ELISA试剂盒 人&alpha 1酸性糖蛋白(&alpha 1-AGP)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人内皮型一氧化氮合成酶3(eNOS-3)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人丙二醛(MDA)ELISA试剂盒 Human malondialchehyche,MDA ELISA试剂盒 人胰淀素(Amylin)ELISA试剂盒 Human Amylin ELISA试剂盒 人血管活性肠肽(VIP)ELISA试剂盒 Human Motilin,MTL ELISA试剂盒 人胆囊收缩素/肠促胰酶肽(CCK)ELISA试剂盒 Human cholecystokinin,CCK ELISA试剂盒 人Ⅲ型前胶原肽(PⅢNP)ELISA试剂盒 Human N-terminal procollagen Ⅲ propeptide,PⅢNP ELISA试剂盒 人Ⅱ型胶原(Col Ⅱ)ELISA试剂盒 Human Collagen Type Ⅱ,Col Ⅱ ELISA试剂盒 人Ⅰ型胶原(Col Ⅰ)ELISA试剂盒 Human Collagen Type Ⅰ,Col Ⅰ ELISA试剂盒 人Ⅰ型前胶原羧基端肽(PⅠCP)ELISA试剂盒 Human procollagen Ⅲ N-terminal peptide,PⅢNT ELISA试剂盒 人透明质酸(HA)ELISA试剂盒 Human Hyaluronic acid,HA ELISA试剂盒 人Ⅳ型胶原(Col Ⅳ)ELISA试剂盒 Human Collagen Type Ⅳ,Col Ⅳ ELISA试剂盒 人Ⅲ型胶原(Col Ⅲ)ELISA试剂盒 Human Collagen Type Ⅲ,Col Ⅲ ELISA试剂盒 人层连蛋白/板层素(LN)ELISA试剂盒 Human Laminin,LN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人NOGO-A抗体(Nogo-A Ab)ELISA试剂盒 Human anti-Nogo-A antibody,NOGO-A Ab ELISA试剂盒 人抗组织转谷氨酰胺酶抗体IgA(tTG-IgA)ELISA试剂盒 Human Anti-tissue tranGSlutaminase IgA,tTG-IgA ELISA试剂盒 人抗存活素抗体/生存蛋白(Surv)ELISA试剂盒 Human anti-Survivin antibody,Surv ELISA试剂盒 人粒细胞巨噬细胞集落刺激因子抗体(GM-CSF Ab)ELISA试剂盒 Human anti-Granulocyte-Macrophage Colony Stimulating Factor antibody,GM-CSF Ab ELISA试剂盒 人抗肌联蛋白抗体(TTN)ELISA试剂盒 Human Anti-titin Antibody,TTN ELISA试剂盒 人抗突触前膜抗体(PsmAb)ELISA试剂盒 Human anti-presynaptic membrane antibody,PsmAb ELISA试剂盒 人血管紧张素Ⅱ受体2抗体(AT2R-Ab)ELISA试剂盒 Human Angiotensin Ⅱ Receptor 2 antibody,AT2R-Ab ELISA试剂盒 人血管紧张素Ⅱ受体1抗体(ATⅡR1)ELISA试剂盒 Human angiotension Ⅱ receptor 1 Antibody,ATⅡR1 Ab ELISA试剂盒 人血管紧张素Ⅰ受体抗体(ANG-ⅠR)ELISA试剂盒 Human angiotension I receptor Antibody,ANG-ⅠR antibody ELISA试剂盒 人卵清蛋白特异性IgG(OVA sIgG)ELISA试剂盒 Human ovalbumin specific IgG,OVA sIgG ELISA试剂盒 人抗钙调素特异抗体(CAM-ab)ELISA试剂盒 Human anti-calmodulin specific antibody,CaM-ab ELISA试剂盒 人甲状腺非肽激素抗体(THAA)ELISA试剂盒 Human thyroid hormone autoantibodies,THAA ELISA试剂盒 人抗类固醇生成细胞抗体(SCA)ELISA试剂盒 Human steroid producing cell autoantibody,SCA ELISA试剂盒 人粒细胞特异性抗核抗体(GS-ANA)ELISA试剂盒 Human granulocyte specific antinuclear antibody,GS-ANA ELISA试剂盒 人抗信号识别颗粒抗体(SRP)ELISA试剂盒 Human signal recognization particle antibody,SRP ELISA试剂盒 人封闭抗体(BA)ELISA试剂盒 Human Blocking antibody,BA ELISA试剂盒 人抗细胞膜DNA抗体(cmDNA)ELISA试剂盒 Human anti-cell membrane DNA antibody,cmDNA ELISA试剂盒 人抗钙蛋白酶抑素抗体(ACAST-DⅣ)ELISA it Human autoantibodies against the C-terminal domain Ⅳ,ACAST-DⅣ ELISA试剂盒 人卵清蛋白特异性IgE(OVA sIgE)ELISA试剂盒 Human ovalbumin specific IgE,OVA sIgE ELISA试剂盒 人抗核仁纤维蛋白抗体(AFA/snoRNP/U3RNP)ELISA试剂盒 Human anti-fibrillarin antibody,AFA/snoRNP/U3RNP ELISA试剂盒 人系统性红斑狼疮(SLE)ELISA试剂盒 Human systemic lupus erythematosus,SLE ELISA试剂盒 人抗神经节苷脂抗体(GM1)ELISA试剂盒 Human anti-ganglioside antibody,GM1 ELISA试剂盒 人抗髓鞘相关糖蛋白抗体(MAG Ab)ELISA试剂盒 Human anti-myelin associated glycoprotein antibody,MAG Ab ELISA试剂盒 人抗中性粒细胞颗粒抗体(ANGA)ELISA试剂盒 Human anti-neutrophil granules antibody,ANGA ELISA试剂盒 人抗中性粒细胞抗体(ANA)ELISA试剂盒 Human anti-neutrophil antibody,ANA ELISA试剂盒 人抗载脂蛋白抗体A1(Apo A1)ELISA试剂盒 Human anti-apolipoprotein A1 antibody,Apo A1 ELISA试剂盒 人抗胰岛素受体抗体(AIRA)ELISA试剂盒 Human anti-insulin receptor antibody,AIRA ELISA试剂盒 人抗胃壁细胞抗体(AGPA/PCA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-Reticulin antibody,ARA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-mutated citrullinated vimentin antibody,MCV ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗腮腺管抗体(anti-parotid duct Ab)ELISA试剂盒 Human anti-parotid duct antibody ELISA试剂盒 人抗软骨抗体(anti-cartilage-Ab)ELISA试剂盒 Human anti-cartilage-antibody ELISA试剂盒 人抗人绒毛膜促性腺激素抗体(AhCGAb)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗染色体抗体(anti-chromosome Ab)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗脑组织抗体(ABAb)ELISA试剂盒 Human anti-brain tissue antibody,ABAb ELISA试剂盒 人抗麦胶蛋白/麦醇溶蛋白抗体(AGA)ELISA试剂盒 Human anti-gliadin antibody,AGA ELISA试剂盒 人抗磷脂酰丝氨酸抗体(APSA)ELISA试剂盒 Human Anti-phosphatidyl serine antibody,APSA ELISA试剂盒 人抗磷壁酸抗体(TA)ELISA试剂盒 Human anti-teichoic acid antibody,TA ELISA试剂盒 人抗淋巴细胞毒抗体(ALA/LCA)ELISA试剂盒 Human anti-lymphocytotoxic antibody,ALA/LCA ELISA试剂盒 人抗巨噬细胞抗体(anti-macrophage Ab)ELISA试剂盒 Human anti-macrophage antibody ELISA试剂盒 人抗甲状腺过氧化物酶抗体(TPO-Ab)ELISA试剂盒 Human anti-Thyroid-Peroxidase antibody,TPO-Ab ELISA试剂盒 人抗红细胞抗体(RBC)ELISA试剂盒 Human anti-red cell antibody ELISA试剂盒 人28S抗核糖体抗体(28S rRNP)ELISA试剂盒 Human 28S ribosome RNP antibody,28S rRNP ELISA试剂盒 人抗核仁抗体(ANA)ELISA试剂盒 Human anti-nucleolus antibody,ANA ELISA试剂盒 人抗核膜糖蛋白210抗体(gp210)ELISA试剂盒 Human Anti-glucoprotein 210,GP210 ELISA试剂盒 人抗肝细胞胞质1型抗体(LC1)ELISA试剂盒 Human anti-liver cytosolantibody type 1,LC1 ELISA试剂盒 人抗肺泡基底膜抗体(ABM-Ab)ELISA试剂盒 Human alveoli basement membrane zone antibody,ABM-Ab ELISA试剂盒 人抗胸腺细胞球蛋白(ATG)ELISA试剂盒 Human anti-thymocyte globulin,ATG ELISA试剂盒 人抗表皮细胞基底膜抗体(EBMZ)ELISA试剂盒 Human epidermal basement membrane zone,EBMZ ELISA试剂盒 人抗中性粒/中心体抗体(ACA)ELISA试剂盒 Human anti-centrol and centrosome antibody,ACA ELISA试剂盒
  • 核酸药物/mRNA疫苗分会场预告:靶向递送/单链寡核酸作用机制/关键质量属性分析
    为促进我国生物医药产业持续快速发展,仪器信息网将于2023年3月29日-2023年3月31日举办第四届“生物制药研发及质量控制” 网络大会,内容覆盖抗体/蛋白药物、细胞与基因治疗、多肽药物、核酸药物/mRNA疫苗,涉及生物药开发、质量控制、制剂的分析表征以及自动化等创新技术在生物制药领域的应用。核酸药物主要在基因水平上发挥作用,如mRNA新冠疫苗,直接作用于引起疾病的分子,并通过调节身体功能缓解疾病的症状,而无需操纵基因组,目前在抗病毒、抗肿瘤、抗代谢紊乱方面显示了独有的作用。目前,核酸药物产业仍存在亟待解决的技术壁垒。本次生物制药大会特别设置核酸药物/mRNA疫苗会场,7位嘉宾将从新药研发、靶向递送、关键质量属性分析等角度进行讲解。点击图片免费报名报告嘉宾详情如下:王友如 首席科学家 宁波君健生物科技有限公司报告:mRNA疫苗的前景与挑战 报名占位宁波君健生物科技有限公司mRNA疫苗首席科学家,中科院武汉病毒研究所博士,教授。长期从事病毒疫苗研究,以人源化表达系统为载体,开展疫苗的分子设计、人源化表达、纯化、有效性与安全性评价研究,擅长mRNA疫苗的分子设计、有效性与安全性评价。王海盛 CEO 思合基因报告:单链寡核酸的作用机制与新药研发 报名占位王海盛博士是思合基因生物科技有限公司(SicaGene Bioscience)的创始人和CEO。基于利用生物技术解决未满足临床医学需求的目标,王博士和创业团队创立了思合基因,致力于建立寡核酸新药研发技术平台。王博士具有丰富的新药研发及管理经验,拥有15年以上的药品研发和管理的经验。在创立思合基因前,王博士任职上市公司哈药集团研发副总裁,并先后在Bioduro,BeiGene和扬子江药业担任高管负责药物研发工作。王海盛博士1995年毕业于兰州大学化学系,在北京大学药学院获得博士学位后,赴美国UMSL及Auburn University接受博士后训练,2008年回国后进入工业界并致力于新药研发工作。王博士是教授级高级工程师,并拥有中欧国际工商学院EMBA学位。杨振军 教授 北京大学报告:新型核酸药物制剂体内靶向递送研究 报名占位北京大学医学部药学院教授、天然药物及仿生药物国家重点实验室课题组长。1987年获北京医科大学药学专业学士学位,1998年获该校药物化学专业理学博士学位,2000-2002年在美国佐治亚大学药学院从事博士后研究。研究方向:核酸药物及核酸化学生物学研究。发表研究论文150多篇,授权专利18项。负责科技部新药重大专项和973项目课题、自然基金委重点课题子课题等多项科研项目。获得过全国百篇优秀博士学位论文奖、国家自然科学二等奖一项、教育部自然科学一等奖一项和二等奖两项。曾任国家自然科学基金委员会化学部化学生物学流动项目主任,现任中国化学会化学生物学和化学教育两个专业委员会委员。陈进进 研究员 中山大学孙逸仙纪念医院报告:器官靶向性的mRNA递送与应用 报名占位陈进进,中山大学孙逸仙纪念医院研究员,博士生导师。获得国家级海外高层次人才青年项目资助。2018年博士毕业于中科院长春应用化学研究所,导师陈学思院士。2018-2021年在美国塔夫茨大学从事博士后研究,合作导师许巧兵教授。现在主要研究方向为:一:脂质分子与功能性高分子材料的合成以及药物/基因载体构建。二:基于生物材料的肿瘤免疫治疗。三:mRNA递送及应用(mRNA疫苗、基因编辑、蛋白替代疗法等)。目前已在Science Advances, Advanced Materials, PNAS, Nano Letters, Angew. Chem. Int. Ed., Nano Today 等学术期刊发表论文30余篇,3篇论文分别入选ESI热点与高被引论文。以共同发明人授权/申请专利9项。应邀担任Chinese Chemical Letters青年编委。张拓 资深应用工程师 沃特世科技(北京)有限公司报告:沃特世核酸分析整体解决方案 报名占位沃特世科技(北京)有限公司资深应用工程师,毕业于中国药科大学,从事生物药表征工作15年,在多肽、蛋白药物,核酸和病毒等大分子相关的表征及定量方面有丰富的经验。唐雪 高级应用工程师 岛津企业管理(中国)有限公司报告:寡核苷酸药物和mRNA关键质量属性分析 报名占位就职于岛津全球应用技术开发支持中心,有10年以上药物分析领域工作经验。目前在岛津主要负责液相与液质相关仪器的应用开拓与技术支持工作,涉及药物种类有寡核苷酸、mRNA、抗体药物、基因治疗药物、小分子化药等。点击报名:https://www.instrument.com.cn/webinar/meetings/biopharma2023/扫码进入会议交流群
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制