当前位置: 仪器信息网 > 行业主题 > >

暗场显微

仪器信息网暗场显微专题为您整合暗场显微相关的最新文章,在暗场显微专题,您不仅可以免费浏览暗场显微的资讯, 同时您还可以浏览暗场显微的相关资料、解决方案,参与社区暗场显微话题讨论。

暗场显微相关的资讯

  • 光电所暗场显微增强介质微球超分辨成像质量研究取得进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   在光学成像领域中,由于受到衍射极限的限制,常规成像分辨率难以突破200nm。生物医学、集成电路等领域对提高成像分辨率有迫切要求,如何实现更高成像分辨率成为近年来的热门研究方向之一。 /p p   受自然界微滴可提高成像分辨率的启发,2011年科学家提出将直径在微米级的介质微球直接放置于待测样品表面,在普通白光显微下即可达到50nm的分辨能力。介质微球超分辨显微方式以其简单灵活的特点,受到国内外广泛关注,但微球的成像对比度一直有待提高。 /p p   近日,中国科学院光电技术研究所研究团队发展出一种利用暗场显微有效提高成像高频成分含量的方法,具有降低成像低频成分的特点,结合微球超分辨能力,可实现更高对比度的微结构超分辨显微。该方法通过时域有限差分法模拟分析微球在不同浸没方式、浸没深度情况下的半高宽及光强值等得到更优化的超分辨能力,模拟结果如图1所示。在此基础上,通过二氧化硅和钛酸钡微球在不同浸没情况下观察特征尺寸为139nm的硅光栅结构,实验结果如图2所示。可以看出,在暗场显微时成像对比度明显得到增强。 /p p   研究工作得到国家自然科学基金和中科院科研装备研制项目的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122565441349485.png" src=" http://img1.17img.cn/17img/images/201711/uepic/73b00051-a008-40d3-94d5-c45458140124.jpg" / /p p style=" text-align:center " 不同浸没深度的微球聚焦特性分析 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122569039673281.png" src=" http://img1.17img.cn/17img/images/201711/uepic/f335b35f-486d-4a12-91b4-35f95acbb34a.jpg" uploadpic=" W020171122569039673281.png" / /p p style=" text-align: center " 不同照明方式的微球成像质量对比 /p
  • 结合高光谱和增强暗场的拉曼光谱仪要来了!
    p style=" text-indent: 2em text-align: justify " span style=" text-align: justify text-indent: 2em " 近日,拉曼光谱领域的领先企业HORIBA(堀场)与思拓唯沃(CytoViva Inc. )宣布联合开发产品,通过将HORIBA的拉曼显微成像模块与CytoViva的高光谱成像(HSI)显微模块和增强暗场 (EDF) 照明模块相结合,让拉曼分析变得更快、更强大。 /span /p p style=" text-indent: 2em text-align: justify " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9b3f0fc2-024e-4361-8631-49650eb7cf06.jpg" title=" 7008_horibacytoviva3245325.jpg.jpg" alt=" 7008_horibacytoviva3245325.jpg.jpg" / /p p style=" text-align: justify text-indent: 2em " 据介绍,高光谱成像显微镜可以实现样品的高灵敏度快速成像,用户可通过光谱检测生成的彩色图像更轻松的定位纳米粒子或特定位置。这种创新的结合对纳米材料研制、药物运输、纳米毒理学研究和SERS纳米粒子的表征等应用具有重大的意义。 /p p style=" text-align: justify text-indent: 2em " CytoViva的专利增强暗场照明模块相比于普通的暗场显微镜信噪比提升了近10倍,可以检测更小的尺寸,可以实现10nm纳米粒子的可视化。 /p p style=" text-align: justify text-indent: 2em " 将拉曼、高光谱成像和增强暗场联用,可以使用户快速将样品或目标区域可视化,同时通过相同区域的拉曼检测,获取纳米粒子或其他样品元素的化学信息。 /p p style=" text-align: justify text-indent: 2em " strong 关于HORIBA科学仪器事业部 /strong /p p style=" text-align: justify text-indent: 2em " 1997年,HORIBA集团收购了光谱制造商Jobin Yvon,2009年,HORIBA Jobin Yvon与HORIBA旗下分析仪器产线正式合并成立HORIBA Scientific(HORIBA科学仪器事业部),并启用新标识,自此HORIBA Scientific为用户提供从真空紫外到近红外范围测量的解决方案。 /p p style=" text-align: justify text-indent: 2em " strong 关于思拓唯沃(CytoViva Inc. ) /strong /p p style=" text-align: justify text-indent: 2em " CytoViva是由美国Auburn大学与Aetos技术有限公司合作成立,具有高校和军事公司背景,配合强力的技术支撑,2005年面市, 2006和2007连续两年获得著名的R&D 100奖的获奖荣誉,2007年同年获得Nano50TM奖,在2009年获得了两项美国专利,并迅速得到各个国家重点实验室的认可。 /p
  • 如此轻松!30分钟快速搭建X射线相衬、暗场成像光栅装置
    模块化 高性价比 X射线相衬 暗场成像套件与传统的X射线吸收成像相比,X射线相位衬度成像能够为轻元素样品提供更高的衬度,特别适合用于对软组织和轻元素构成的样品进行成像。目前主要存在5类相衬成像方式,他们大部分对光源的相干性要求极高,只能在同步辐射光源或者借助微焦点X射线源实现。而光栅法相衬成像,经过十多年的发展,已经成为在实验室实施相衬成像实验的主流技术路线。但是,高深宽比和大视场光栅的制作一直是困扰研究人员的一个痛点,LIGA技术的出现及成熟,使得此类光栅的制作变得更加的容易及可靠。基于X射线相衬成像的光栅利用Talbot自成像效应来获取有关X射线因折射和散射而产生的微小角度偏转的信息。这在医学成像和材料研究等各个领域都有潜在的应用。但是对于刚进入这一研究领域的科研工作者或者单纯想快速获得相衬图片的用户来说,繁琐的光栅参数模拟、全新开模制作光栅价格昂贵、精密平移台的选择及精密调节都将耗费大量的精力。为了解决这个问题,德国microworks公司推出了一套模块化、高性价比的X射线相衬、暗场成像套件-TALINT EDU。-TALINT套件-Microworks的TALINT EDU系统是一款结构紧凑、物美价廉的TALbot干涉仪套件。它是X射线Talbot-Lau干涉仪的巧妙简化形式,包括了建立和微调干涉仪所有必要的硬件,通过相位步进步骤来获得三种成像模式应用:吸收成像、相衬成像和暗场成像。使用者可以在不到半小时的时间内快速组装。对于这个简化的系统来说,图像采集是手动的,在相位步进过程中获得的图像非常适合于图像分析科学家。- TALINT EDU包装一览 -00:16Talint-EDU 套件主要参数套件规格套件尺寸 60cm x15cm x20cm安装EDU套件底板为M6螺孔,孔间距25mm的面包板,可安装于用户的光学平台或任何适合 25mm 间距的装置G0-G1和G1-G2距离 29cm,通过精密定位销固定;对称安装方案1:所有3个光栅角灵敏度的设计能量周期(光栅周期超过光栅间距) 40 keV 6.0 μm 21 μrad方案2:所有3个光栅角灵敏度的设计能量周期 21 keV 4.8 μm 16 μrad光栅有效面积G0: 15 mm ØG1: 70 mm ØG2: 70 mm Ø干涉仪微调可调整G1和G2绕光轴旋转角度两种光栅都可以用精密调节的螺旋千分尺绕光轴旋转样品放置可放置于靠近G1任意一侧相位步进闭环压电平移台,30nm分辨率 (包含控制器)条纹可见度 典型值15%光栅组选项 (含3块光栅)标准规格参数设计能量-40 keV设计能量-21 keV光栅周期(3块)6.00μm4.80μmG0 G2 吸收材料及高度金>150μm金>50μmG0 G2 光栅占空比0.55(容差范围0.5-0.6)0.55(容差范围0.5-0.6)G0 G2 光栅衬底石墨 400μm石墨 400μmG1 相移材料及高度Gold 7.7 μm (40 keV)Nickel 7.4 μm (21 keV)G1 光栅占空比0.5(容差范围0.45-0.55)0.5(容差范围0.45-0.55)G1 光栅基底硅 200μm硅 200μm视场范围(样品)35mm35mmTALINT-EDU 为一维光栅对称结构,除上述标准光栅套组外,还可根据要求提供其他能量段,视场等定制光栅。应用示例1. CFRP拉伸试验试棒吸收像相位像暗场像- 相衬成像增强了空腔折射信号的成像衬度- 暗场成像增强了由纤维束引起的散射信号的成像衬度2. 裂纹损伤吸收像 暗场像- 暗场成像增强了发丝状裂纹散射信号的成像衬度3. 3D打印钛波纹管照片吸收像暗场像- 暗场成像增强了残留粉末散射信号的成像衬度Microworks 代理产品 滑动查看下一张图片 德国Microworks公司基于及独特的LIGA技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。北京众星联恒科技有限公司作为Microworks公司中国区授权总代理商,为中国客户提供Microworks所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的EUV、X射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。
  • 日立推出暗场晶圆缺陷检测系统DI4600,吞吐量提高20%
    日立暗场晶圆缺陷检测系统DI46002023年12月6日,日立高新宣布推出日立暗场晶圆缺陷检测系统DI4600,这是一种用于检测半导体生产线上图案化晶圆上颗粒和缺陷的新工具。DI4600 增加了一个专用服务器,该服务器提供了检测颗粒和缺陷所需的显著增强的数据处理能力,从而提高了检测能力。与之前的型号相比,通过缩短晶圆转移时间和改进晶圆检测期间的操作,系统的吞吐量也提高了约 20%。DI4600将实现半导体生产线中高精度的缺陷监测,这将有助于提高产量和更好的拥有成本,促进半导体产量持续扩大。发展背景在当前的社会环境中,DRAM和FLASH等存储器半导体设备,MPU和GPU等逻辑半导体不仅用于智能手机、笔记本电脑和PC,还用于生成人工智能(AI)计算和自动驾驶。随着半导体器件的萎缩和复杂性的发展,对制造过程清洁度和检测能力的要求也变得更加严格。半导体制造商不断努力提高竞争力,尤其是在性能和制造成本方面。图案化晶圆检查工具通过检查生产晶圆的表面是否有颗粒和缺陷,有助于产量管理,使工程师能够监测半导体处理工具的清洁度变化和趋势,因此对半导体器件的性能和制造成本有很大影响。关键技术1.高通量与现有型号相比,通过减少晶圆转移时间、改善晶圆检测期间的操作和优化数据处理顺序,吞吐量提高了约 20%。2.高精度检测由于增加了专用服务器,因此提高了检测精度,该服务器提供了检测颗粒和缺陷所需的显着增强的数据处理能力。
  • 全新奥林巴斯GX53倒置金相显微镜闪亮登场
    更快速进行金属部件质量检测的全新奥林巴斯GX53倒置金相显微镜升级版奥林巴斯Stream图像分析软件 专为观察和检测金属部件而设计的新型奥林巴斯GX53倒置金相显微镜采用具有超长使用寿命和低功耗的LED光源。为了提升观察和报告功能,GX53显微镜还配有最新版本的奥林巴斯Stream图像分析软件(v.2.3)。 倒置金相显微镜能够从下方观察样品,可让用户不必调整样品表面朝向即可检测较厚或较重的样品。该功能让GX53显微镜成为观察汽车及其他金属部件微观结构的实用工具。 GX53具有帮助检测人员更快完成任务的先进功能: 观察细致入微:MIX观察可实现微观结构及其他表面特征的清晰成像编码硬件:保存观察设置,实现更快的检测和更高的生产率。逼真图像:采用具有均一色温的LED照明方式 MIX观察:让难以观察的部位无可遁形作为首个采用MIX观察技术的GX系列产品,GX53显微镜能够获得非常清晰的表面结构图像。MIX技术将暗场与其他观察方法(如明场、荧光或偏光)结合使用,可获得独有的观察图像。MIX观察能够让用户观察使用传统显微镜难以观察的样品。暗场观察所用的环形LED照明设备的定向暗场功能可在特定时间内照明一个或多个象限。这样可以减少样品光晕,对于显示表面纹理非常有用。同时,奥林巴斯Stream® 图像分析软件的升级版本利用图像合成功能提供具有最低限度光晕的清晰图像,即使观察高反射样品也没有问题。 编码硬件:更快的检测以及更高的生产力配合奥林巴斯Stream软件使用时,GX53倒置金相显微镜可保存观察设置以便后续调用。通过复制常用的观察设置或其他用户设置可提高用户的工作效率,且方便进行检测。 奥林巴斯Stream图像分析软件:更睿智,更灵活奥林巴斯Stream图像分析软件2.3版本为从准备显微镜到观察、分析和报告的每个检测步骤提供支持。最新版本包含可将聚焦整个视场的即时扩展聚焦成像(EFI)功能。软件还增加了对系统电子表格报告功能的改进。
  • 全新奥林巴斯GX53倒置金相显微镜闪亮登场
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 更快速进行金属部件质量检测的全新奥林巴斯GX53倒置金相显微镜 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 升级版奥林巴斯Stream图像分析软件 /strong /span /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/43977c59-bfc7-404b-b46e-e946878f2de8.jpg" title=" 1.jpg" / /p p   专为观察和检测金属部件而设计的新型奥林巴斯GX53倒置金相显微镜采用具有超长使用寿命和低功耗的LED光源。为了提升观察和报告功能,GX53显微镜还配有最新版本的奥林巴斯Stream图像分析软件(v.2.3)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/333b6761-3ad4-4ac7-b62c-eba1db51cc62.jpg" title=" 3.jpg" / /p p   倒置金相显微镜能够从下方观察样品,可让用户不必调整样品表面朝向即可检测较厚或较重的样品。该功能让GX53显微镜成为观察汽车及其他金属部件微观结构的实用工具。 /p p & nbsp /p p GX53具有帮助检测人员更快完成任务的先进功能: /p p strong 1.细致入微: /strong MIX观察可实现微观结构及其他表面特征的清晰成像 /p p strong 2.编码硬件: /strong 保存观察设置,实现更快的检测和更高的生产率。 /p p strong 3.逼真图像: /strong 采用具有均一色温的LED照明方式 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/e58e061d-3b22-469f-ae0a-09afa9f3917d.jpg" title=" 2.jpg" / /p p strong MIX观 /strong strong 察:让难以观察的部位无可遁形 /strong /p p   作为首个采用MIX观察技术的GX系列产品,GX53显微镜能够获得非常清晰的表面结构图像。MIX技术将暗场与其他观察方法(如明场、荧光或偏光)结合使用,可获得独有的观察图像。MIX观察能够让用户观察使用传统显微镜难以观察的样品。暗场观察所用的环形LED照明设备的定向暗场功能可在特定时间内照明一个或多个象限。这样可以减少样品光晕,对于显示表面纹理非常有用。同时,奥林巴斯Stream& reg 图像分析软件的升级版本利用图像合成功能提供具有最低限度光晕的清晰图像,即使观察高反射样品也没有问题。 /p p & nbsp /p p strong 编码硬件:更快的检测以及更高的生产力 /strong /p p   配合奥林巴斯Stream软件使用时,GX53倒置金相显微镜可保存观察设置以便后续调用。通过复制常用的观察设置或其他用户设置可提高用户的工作效率,且方便进行检测。 /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/b1edeaf7-2814-482c-aeee-1df4980c1cc5.jpg" title=" 4.jpg" / /p p strong 奥林巴斯Stream图像分析软件:更睿智,更灵活 /strong /p p   奥林巴斯Stream图像分析软件2.3版本为从准备显微镜到观察、分析和报告的每个检测步骤提供支持。最新版本包含可将聚焦整个视场的即时扩展聚焦成像(EFI)功能。软件还增加了对系统电子表格报告功能的改进。 /p p br/ /p p span style=" color: rgb(0, 112, 192) " strong GX53倒置金相显微镜(英文版产品资料): /strong /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201712/ueattachment/aed4c49e-d6a1-4db1-862e-b8c49fb2d32b.pdf" GX53_en.pdf /a /p
  • 中科大张斗国教授团队研制出基于光学薄膜的平面型显微成像元件
    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心教授张斗国研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,从而获取高对比度的光学显微图像。研究成果以Planar photonic chips with tailored angular transmission for high-contrast-imaging devices为题,发表在Nature Communications上。光学显微镜利用光学原理,把人眼不能分辨的微小物体放大成像,进而拓宽人类观察物质结构的空间尺度范围。通用的光学显微镜是明视场显微镜(Brightfield Microscopy),它利用光线照明,样本中各点依其光吸收的不同在明亮的背景中成像。但对于一些未经染色处理的生物标本或其他透明样本,由于对光线的吸收少,其明视场显微镜像的对比度差,难以观测。为解决以上问题,科学家们发展出暗视场显微镜(Darkfield Microscopy):其照明光线不直接进入成像物镜,只允许被样品反射和衍射的光线进入物镜。无样品时,视场暗黑,不可能观察到任何物体;有样品时,样品的衍射光与散射光等在暗的背景中明亮可见,因此其成像对比度远高于明场光学显微镜,如图1a所示。另外一个解决方案是,利用光线全反射后在介质另一面产生衰失波(又称表面波)来照明样品,无样本时,衰失波光强在纵向呈指数衰减的特性使得其不会辐射到远场,视场暗黑;有样品时候,衰失波会被散射或衍射到远场,从而在暗背景下形成物体的明亮像,该显微镜被称为全内反射显微镜(Total internal reflection microscopy, TIRM),同样可以提高成像对比度。衰失波光强在纵向呈指数衰减的特性,只有极靠近全反射面的样本区域会被照明,大大降低了背景光噪声干扰观测标本,故此项技术广泛应用于物质表面或界面的动态观察,如图1b所示。然而,上述两种显微镜均需要复杂的光学元件,如暗场显微镜需要特殊的聚光镜来实现照明光以大角度入射到样品;全内反射显微镜需要高折射率棱镜或高数值孔径显微物镜来产生光学表面波;这些元件体积大,不易集成,成像效果严格依赖于光路的精确调节,增加了其操作复杂度。研究提出的基于光学薄膜的平面型显微成像元件可有效弥补上述不足。图1c为该元件结构示意图,主要包含三部分:中间部分是掺杂有高折射率散射纳米颗粒的聚合物薄膜,利用纳米颗粒的无序散射来拓展入射光束的传播角度范围;上部和下部是由高低折射率介质周期性排布形成的光学薄膜,利用其来调控出射光束的角度范围。通过光子带隙设计,下部光学薄膜只允许垂直入射的光束透过,其他角度光束的均被抑制;上部光学薄膜在750 nm波长入射下,只有大角度的光束才能透射;在640 nm波长下任何角度的光均不能透射,只能产生全内反射。图1. 传统暗场照明(a)与全内反射照明(b)光学显微镜,基于光学薄膜结构的显微成像照明元件(c)因此,在正入射下,经过该光学薄膜器件的光束出射角度或大于一定角度(对应750 nm波长),或在薄膜表面产生光学表面波(对应640 nm 波长)。利用一块光学薄膜器件,在常规的明场显微镜上(图2a),可同时实现暗场显微成像与全内反射成像。成像效果如图2b,2c所示,相对于明场光学显微镜像,其成像对比度有大幅提升。该方法不仅适用于空气中的样品,也适用于液体环境中生物活细胞的成像,如图2d所示。进一步实验结果表明,该方法可以实现介质薄膜上的表面波,并可用于金属薄膜表面等离激元,如图3所示,研究利用其作为照明光源,实现了新的表面等离激元共振显微镜架构,相较于目前广泛使用的基于油浸物镜的表面等离激元共振显微镜,基于光学薄膜器件的表面等离激元显微镜结构简单,成本低、操作便利,易于集成。图2. 基于光学薄膜结构的全内反射照明与暗场照明显微成像图3. 利用光学薄膜结构激发表面等离激元实现新型表面波光学显微镜上述实验结果表明,无需改变现有显微镜的主体光路架构,通过设计、制作合适的显微镜载玻片可以有效提升其成像对比度,拓展其成像功能。研究工作得到国家自然科学基金委员会、安徽省科技厅、合肥市科技局等的支持。相关样品制作工艺得到中国科大微纳研究与制造中心的仪器支持与技术支撑。论文链接
  • 奥林巴斯推出新一代工业显微镜BX53M
    高级的显微观察 便捷的显微操作奥林巴斯推出新一代工业显微镜BX53M 1.为工业和材料学应用而设计 BX3M系列采用了模块化设计,为广泛的材料学和工业应用提供了多样化的解决方案。BX3M改进了与奥林巴斯Stream软件的集成性,从而为常规显微镜检查和数码成像用户提供了从观察到报告创建的无缝工作流程。BX53根据工业和材料学的不用应用,可以组合成反射显微镜、透反射显微镜、红外显微镜、偏光显微镜等多种应用的显微镜。 反射显微镜 透反射显微镜 红外显微镜 偏光显微镜2.直观的显微镜控制舒适而便于使用 显微检查任务常常需要用很长的时间来调节显微镜设置、获取图像,以及进行必要的测量,从而得到令人满意的报告。BX3M通过其优良的设计和便捷的控制功能,简化了复杂的显微检查任务。用户不需要长时间的培训即可掌握显微镜的大多数功能。BX3M方便而舒适的操作还改善了图像的再现性,最大程度减少了人为错误。2.1 编码硬件:很容易恢复显微镜设置BX3M采用了新的编码功能,将显微镜的硬件设置与奥林巴斯Stream图像分析软件整合在一起。观察方法、照明强度和物镜位置全都记录在软件和/或手动控制器里。编码功能使显微镜设置能够与每幅图像一起自动保存,从而使此后还原设置,以及为报表提供文档记录更加方便。既节省了操作者的时间,又最大程度减小了使用不正确设置的概率。当前的观察设置总是清晰地显示在手动控制器和软件上。 2.2 智能光强管理:一致的照明在初始安装时,可以调节照明强度,使其与编码照明器和/或编码物镜转换器的特定硬件配置匹配。 2.3 方便而人性化的操作简单的手动开关,使用户能够把时间专注于样品本身和所需实施的检查。 3.先进的成像BX3M保留了常规显微镜检查的传统衬度对比法,比如明场、暗场、偏光和微分干涉。随着新材料的发展,现在可以使用先进的显微镜检查技术来进行更精确和更可靠的检查,从而解决了以往很多使用传统衬度对比法检查时遇到的缺陷检测方面的困难。3.1 MIX组合式观察:让以往看不见的图像显示出来BX3M的MIX组合式观察技术组合了明场和暗场照明方法。MIX组合式照明滑块中的LED光源,以定向暗场光线照射样品,这种方式类似于传统暗场照明,但又具有更大的灵活性。这种明场与定向暗场的组合称为MIX组合式照明,对突出显示缺陷和区分隆起与凹陷表面很有用处。 3.2 即时拼图(MIA):轻松地移动载物台,即可进行全景摄影现在仅仅移动手动载物台上的XY旋钮即可方便而快捷地拼接图像,不再需要电动载物台。奥林巴斯Stream软件采用图案识别来生成全景图像,为用户提供了比单一画面更宽的视野。 3.3 轻松实现超景深图像(EFI)奥林巴斯Stream软件的景深扩展成像(EFI)功能能够获取高度超过物镜焦深的样品图像,并把它们叠加在一起,创建出一幅超景深图像. 4. 尖端光学技术的悠久历史奥林巴斯公司拥有高品质光学仪器研发的悠久历史,创造了多项光学质量的记录,保证了显微镜优异的测量精度。4.1 LED照明BX3M为反射光和透射光照明提供了高强度的白光LED光源。无论强度是多少,LED都保持着一致的色温。LED提供了高效而长寿命的照明,是材料学检测应用的理想工具。 4.2 自动校准类似于数码显微镜,使用奥林巴斯Stream软件时也能够实施自动校准。自动校准消除了校准过程中的人为变化因素,能够获得更可靠的测量结果。 奥林巴斯公司为材料学和工业显微镜检查提供了丰富的产品系列。有关DSX系列光学数码显微镜和LEXT 3D测量激光扫描共聚焦显微镜的更多信息,请查阅我们的网站,www.olympus-ims.com/zh/microscope。
  • 徕科光学发布舜宇EX21生物显微镜新品
    一、概述搭配优异的复眼照明系统,EX21 在任何放大倍率下都可以得到光照均匀,清晰明 亮的图像 ;用户友好型设计,操作简单、便捷,即使是学生也可以轻松掌握。二、性能及例图1、出色的光学性能,带来优异的光学体验专业高眼点大视野平场目镜,有效校正视场边缘的畸变与色环。牢固的结构设计,能够有效 防止学生拆卸目镜,避免学生使用后出现镜片反装、破损及污点现象。2、复眼照明,点亮理想光路创新采用复眼照明系统,提高反差率,切实提升标本面的 照明均匀性,整个视场亮度均一,任何放大倍率下,即使在视野 边缘也可实现均匀明亮的背景亮度。光照柔和、不刺眼,不仅成 像效果更理想,还能降低疲劳感,提升观察体验。3、友好的用户体验,增加使用的舒适度为了带给你更好的操作体验,EX21 机身采用光滑曲线设计,消除了所有锋利的边缘;机身镂空, 增加提手位置,便于搬运 ;“ 钟”型外观设计,稳重大气,紧凑美观,充电适配器内置,节约 实验室空间。4、多种配件可选。满足多种观察需求明场观察 复眼照明系统配以专业平场消色差物镜, 成像明亮,可用于观察细胞结构、分析植 物切片。相衬观察 适用于观察具有高透明度的样品,如生物 标本中的细胞、细菌等微小、透明物体。简易偏光 能对动、植物细胞、体液结晶等具有双折 射特性的物质进行判定。暗场观察 无需更换专用的暗场聚光镜,只要将暗场 附件插入聚光镜,并切换光阑,即可实现 暗场照明。创新点:相较于上一代机器,本带机器从整体上提升了一个档次,整体采用无限远光路,可兼容更多的光学附件,观察方法更全面,同时,对镜头的色差等镜头进行了多次校正,提升了光学质量,提升了整体分辨率。同时采用一体化设计,方便外出用户使用,提升了便捷性,同时观察头可选配带有2000万像素摄像头,且可通过WIFI输出信号,是教学平台的首选仪器。 舜宇EX21生物显微镜
  • 实验室用生物显微镜观察藻类水产养殖
    实验室用生物显微镜观察藻类水产养殖藻类水产养殖不仅能够提高水产养殖的效率和产量,还能够改善水质环境,达到可持续发展的目的。养鱼先养水,观察水体藻相已经是鱼病防治工作中必不可缺少的一部分,而生物显微镜则成为了实验室必备的重要设备之一。生物显微镜具有高清晰度、高放大倍数、高对比度等核心优势,可以让实验人员清晰地观察藻类的细胞结构、生长状态等信息,以此来判断藻类的健康状况和生长状态,从而进行相应的调整和管理。如何使用生物显微镜观察藻类?1.准备好显微镜、载玻片、盖玻片、滴管等工具。2.将藻类样品放在载玻片上,加上一两滴水,再用盖玻片覆盖住样品。3.将载玻片固定在显微镜的样品台上,调节显微镜的目镜和物镜,使样品清晰可见。4.通过调节光源强度、聚焦等方式来获得更好的观察效果。5.通过安装显微镜相机,直接在计算机屏幕观察细胞结构和状态等,完成图像采集、记录和共享。生物显微镜优势:MHL2800系列生物显微镜配置优良的无限远平场消色差物镜和大视野目镜,成像清晰,视野广阔。符合人机工程学要求的理想设计,采用低位调焦手轮,内向式物镜转换器与内置式提手设计,使操作更方便舒适,空间更广阔,仪器搬运更安全。从低倍到高倍都可以得到高分辨率,高对比度的显微图像。符合人体工程学设计,使用更加简单舒适。多种观察方式:明场观察、相衬观察、暗场观察和偏光观察。产品可广泛应用于生物、医学、工业、农业等领域,是医疗、教学、科研等单位的理想仪器。MHL2800生物显微镜参数内容:技术规格目镜大视野WF10X(视场数Φ22mm) 无限远平场消色差物镜PL 4X/0.10 PL 10X/0.25 PL 40X/0.65(弹簧) PL 100X/1.25(弹簧,油 Spring, oil)目镜筒MHL2800双目镜(倾斜30&ring ),眼点高度可调三目镜(倾斜30&ring ) ,眼点高度可调调焦机构粗微动同轴调焦,带锁紧和限位装置,微动格值:2μm.转换器四孔(内向式滚珠内定位)载物台双层机械移动式:180mmX150mm, 移动范围: 75mmX50mm阿贝聚光镜N.A.1.25可上下升降集光器集光镜中内置视场光阑。光源3WLED, 亮度可调 选配件 目镜分划目镜10X(Φ22mm) 物镜无限远平场消色差物镜20X、60X CCD接头CCD0.5X、1X、0.5X带分划尺 显微镜摄像头USB2.0MHD500USB3.0MHC600、MHD600、MHD800、MHD1600、MHD2000、MHS500、MHS900 相衬装置对中望远镜 无限远相衬平场消色差10X、20X、40X、100X 转盘式(Ⅲ)相衬聚光镜 暗场装置干式或湿式暗场聚光镜. 数码相机接头CANON(EF) NIKON( F) 光源6V 30W 卤素灯通过显微镜观察藻类,可以更好地了解藻类的生长、繁殖等过程,从而更好地掌握藻类水产养殖技巧和管理方法,提高水产养殖的效率和产量,还能够改善水质环境,达到可持续发展的目的。如果您需要观察藻类水产养殖,广州明慧期待您来了解与沟通,为您提供完整的显微镜系统解决方案。
  • 向“新”而生,EVIDENT工业显微镜亮相中国材料大会
    新材料是传统产业升级和战略性新兴产业发展的基石。近年来,中国新材料产业蓬勃发展,关键材料取得突破、前沿技术不断涌现。7月8日-11日,中国材料大会2024于广州白云国际会议中心举行,大会致力于面向国家重大需求、推动新材料前沿重大突破,Evident携带多款创新工业显微镜产品亮相,与行业同仁一同探索材料的微观世界,为新材料的发展贡献力量。当前,高新产业的发展不断催生对于新材料的需求,进而对材料的微观结构设计和性能优化研究提出了更具前瞻性的要求。作为专业的光学仪器和解决方案提供商,Evident致力于提供材料学领域整体解决方案,其显微镜产品广泛应用于金属、陶瓷、半导体、化学材料等领域的微观形貌观察,助力实现精准的质量分析与控制。OLS5100 3D激光显微镜:亚微米级测量标杆OLS5100激光显微镜以其卓越的测量精度和光学性能,在亚微米级测量方面树立了标杆。在电子材料领域,新材料向更高性能、更小尺寸和更高集成度发展。Evident OLS5100显微镜以其精细的亚微米级三维成像能力,可深入观察半导体材料的微观结构,帮助提高电子元件性能。此外,其专用的LEXT物镜和Smart Lens Advisor(智能镜头顾问)的结合,确保了测量的准确性,为用户提供值得信赖的检测结果。随着全球对可持续能源解决方案的需求不断增长,新能源材料、储能材料和节能材料的研究变得尤为关键。在锂电池电极材料的生产中,为了保障电子在集流体与电极材料之间有效转移,生产中材料表面的粗糙度控制十分重要。作为非接触式工具,OLS5100显微镜在不损失样品的情况下获得精准数据,清晰捕获传统显微镜难以获得的精细图案和缺陷。值得一提的是,OLS5100配备智能实验管理助手,能够简化工作流程并提供高质量数据,让材料检测的流程更加快速、高效。激光显微镜OLS5100可同时获得样品的激光图、真彩色图和高度图DSX1000数码显微镜:多功能、一体化创新工具DSX1000数码显微镜则是Evident在数字化显微技术领域的又一力作。它将光学技术与数字技术有机融合,成为一台集体视镜、工具显微镜、金相显微镜、偏光显微镜等功能于一体的多功能高度自动化的显微系统,集成明场、暗场、偏斜、偏光、MIX、微分干涉等六种观察模式,多款物镜支持23X-8220X放大倍率,为研究人员提供综合性成像和显微镜解决方案。在汽车、航空航天及其他制造领域,轻质材料、高温材料和耐腐蚀材料的需求日益增长。DSX1000显微镜配备的PRECiV软件提供多种选配模块,包括符合行规和国际标准的材料解决方案,如晶粒度、铸铁分析、最恶劣视场、孔隙率、相分析、非金属夹杂物等。此外,DSX1000的远心光学系统有效降低在整个放大范围内的图像失真率,保证了测量的准确度和重复性。其丰富的观察方法和灵活的载物台设计,使得研究人员能够轻松应对各种复杂外形的样品。一键式呈现样品的明场、暗场、斜射、偏振、MIX(明场和暗场)、偏光和微分干涉的图像在同一界面中,即使是初学者也能快速找到合适的观察方式。活动现场,Evident展台吸引了众多行业专家、研究人员及合作伙伴,Evident光学技术的创新应用引发了关注与热议。在制造大国向制造强国迈进的征程上,新材料的突破性进展对于加速产业升级具有重要作用,展望未来,Evident仍将顺应时代发展浪潮,以高质量的解决方案推动产业向“新”发展,为中国制造业的发展筑牢基石。
  • 胤煌科技发布显微镜不溶性微粒检测仪新品
    YH-MIP-0103型显微镜不溶性微粒检测仪检测介绍药典规定:按照中国药典0903章节的要求,不溶性微粒的检测有两个方法,光阻法不溶性微粒检查和显微镜不溶性微粒检查。随着光阻法收录入药典作为不溶性微粒检查的一个方法以来,由于其操作简单,检测速度快,无需制样等优点深受广大用户的喜爱,也便成了用户偏爱和较高一种的检查方法。而显微镜法不溶性微粒慢慢淡出人们视野。随着药学的发展,尤其是制剂学的飞速进步,各式新的剂型进入临床,如注射用乳剂,常见的有丙泊酚、中长链脂肪乳、三腔袋脂肪乳等,脂质体,混悬剂,滴眼剂,混悬剂,易产生气泡剂型等。此种注射剂剂型的特殊性,无法利用常用的光阻法检测不溶性微粒,因为其样品本身的不透明性、高粘度等原因,使得采用光阻法检测会产生假性结果,因为光阻法会将样品本身和气泡也作为颗粒计入。中国药典CP中规定所有的注射剂都要做不溶性微粒项目检查,故而显微镜法不溶性微粒检查设备是非常重要的选择。常规显微镜不溶性检查的缺陷常规显微镜不溶性微粒检查大家会采用一台简单显微镜,人工进行计数。此种操作的难点是:无法避免人为的原因导致计数的偏差,主观性太强;最重要的是人为计数对实验员眼睛的要求较高,用眼过度会造成视力过早下降,引起一些不必要的眼疾;操作不规范性,测试结果重复性差YH-MIP-0103系列显微镜不溶性微粒检测仪上海胤煌科技有限公司自主研发生产的全自动显微镜不溶性微粒检测仪YH-MIP-0103系列,从样品制备到测试完成有一套完整的方案。1)直接按照药典要求出具报告;2)全自动进行滤膜全扫描,并进行颗粒图片分析;3)可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维;4)按照颗粒性质进行归类分析统计;5)光阻法检测不通过时,作为光阻法不溶性微粒的一个验证;显微镜不溶性微粒检测仪设备构成样品过滤装置,烘干装置,检测分析系统,电脑等。检测分析系统可以根据用户要求配置奥林巴斯体式显微镜、奥利巴斯金相显微镜、徕卡金相显微镜、尼康金相显微镜等。显微镜不溶性微粒检测仪应用领域应用范围:乳剂、脂质体、滴眼剂、混悬剂、易产生气泡剂型、粘度大制剂等执行标准:中国药典CP,美国药典USP 788、USP 789,欧洲药典 EP,英国药典 BP2013,日本药典JP等YH-MIP-0103系统介绍:组成:显微镜颗粒分析系统既可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;该系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;是传统显微测量方法与现代图像处理技术结合的产品;软件:测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;专业软件控制分析过程,手动对焦,手动光强,自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接, 数字化显微镜分析系统;数据传输:R232 接口数据传输方式将颗粒图像传输到分析系统; 颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;特点:直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点; 避免激光法的产品缺陷,扩展检测范围;YH-MIP-0103系统介绍:胤煌科技为您奉献的专门高性价比实验室显微镜。可以轻松地根据需要进行明场、暗场、相衬、荧光、偏光等多种观察;还可以连接照相机、数码摄像头,与电脑联机工作。1)物镜:独立校正光学系统,物镜拥有更高的数值孔径,成像更加平坦,清晰范围可达视场边缘。5X、10X、20X、30X、40X、50X、80X、100X 等可根据要求选配、经过防霉处理;2)目镜:高眼点,屈光度可调。10X 目镜视场范围有 20mm 和 22mm 两种配置。经过防霉处理;3)阿贝聚光镜:数值孔径 NA1.25,中心可调,带相衬板插孔,配孔径光阑调节装置,聚光镜孔径光阑采用与物镜色圈相同颜色的标记,方便您的使用;4)暗场聚光镜:专门用于暗场观察,安装方便;5)偏光装置:加配起偏器和验片器,您便可以轻松进行简易偏光观察;6)多功能转盘式相衬聚光镜:数值孔径 NA1.25,配置多功能相衬聚光镜,您可以配合 10X-100X 相衬物镜进行相衬观察,配合 10X-40X 物镜进行暗场观察,也可以明场观察;7)内倾式转换器:方便您放置切片,变换物镜进行观察;8)机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm。低位同轴移动手轮;9)无导轨机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm,低位同轴移动手轮,调节手轮可以根据您的用手习惯任意安装在载物台的左手或右手一侧;10)电动载物台:平台行程:大于 80*70mm;行程:2000μm;定位精度:≤±5μm;典型分辨率: 单步 0.625μm;11)观察筒:双目或三目铰链式观察筒;三目分光比 20/80,可以轻松与数码摄像头或照相机连接工作;视场较高可配置到 22mm;有 48-75mm和 52-75mm 两种不同的双目瞳孔,调节距分别适用于亚洲和欧美人士使用,您可以根据自己双目距离作出灵活的选择;12)粗微动手轮高度可调:根据您手形的大小,粗微动手轮高度可调,为您的手臂带来轻松和舒适;13)照明系统:6V/20W、6V/30W 卤素灯或者 LED 多种光源可供选择。抽屉式的灯座设计让您只需简单地拔出、插入便可方便地更换灯泡;14)高效率的独立散热系统:即使在 6V/30W 卤素灯 48 小时不间断照明的环境下,机身也不会烫手,完全解决了长期困扰研究人员的机身发烫问题;15)增高器:果您体型高大,可选配增高器,保证您观察时的坐姿更加舒适;16)搬运把手:保证您移动显微镜时轻松安全;YH-MINP-0103产品配置 显微镜不溶性微粒检测仪技术参数测试范围: 1 μm - 500 μm放大倍数:40X-l000X 倍比较大分辨:0.1 μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232 或 USB 方式供货期:30 个工作日精 确 度:95%(按中国药典 2010 版校准)YH-MIP-0103分析过程: YH-MIP-0103系统介绍:美国药典 USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典 EP6.0、EP7.0、EP7.8、EP8.0;英国药典 BP2013、BP2012、2010、2009;日本药典 JP16、JP15、JP14;印度药典 IP2010 版;WHO 国际药典 IntPh 第四版;中国药典 2010 年、2015 年;GB8368 输液器具;ISO21510;ISO11171 等。GB/T 11446.9-2013 电子级水中微粒的仪器测试方法。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。 创新点:显微镜不溶性微粒检测仪 全自动进行滤膜全扫描,并进行颗粒图片分析,可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维按照颗粒性质进行归类分析统计,检测分析系统可按客户要求配置奥林巴斯体式显微镜、奥林巴斯金相显微镜等 显微镜不溶性微粒检测仪
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 清华大学于荣团队在电子显微学方法研究中取得突破
    始于上世纪90年代末期的像差校正电镜开启了定量电子显微学时代。其亚埃分辨能力显著提高了图像的信噪比,使人们能够对材料中的原子位置进行定量分析,测量精度达到5皮米。然而,实现这些性能要求入射电子束与晶带轴近乎严格平行,毫弧度量级的偏离便足以破坏图像质量,引入假象,降低测量精度。如图1所示,在常见的高分辨成像技术中,ABF技术和iDPC技术受晶带轴偏离的影响很大;HAADF技术虽然受晶带轴偏离的影响较小,但难以对轻原子成像。图1. 高分辨成像技术对比。样品为SrTiO3。自上而下晶带轴偏转为0, 4, 8, 12 mrad。HAADF:高角环形暗场像;ABF:环形明场像;iDPC:积分差分相位衬度;FPP:固定传播因子叠层成像;APP:自适应传播因子叠层成像(新方法)叠层成像是一种结合扫描透射电镜和相干衍射成像的计算成像方法,能够大幅提高像差校正电镜的空间分辨率,进入深亚埃分辨。但是,现有的叠层成像方法(FPP)对晶带轴偏离非常敏感,需要苛刻的实验条件。于荣课题组针对这一难题,提出并实现了“自适应传播因子叠层成像”方法(APP),成功地消除了晶带轴偏离对空间分辨率和测量精度的影响。结果表明,即使存在明显的晶带轴偏离,仍能实现深亚埃分辨成像(图2)和皮米测量精度(图3)。自适应传播因子叠层成像方法为深亚埃分辨成像和皮米精度测量在材料科学中的广泛应用铺平了道路。图2.叠层成像重构效果对比。FPP为现有的叠层成像方法,APP为新的自适应传播因子叠层成像方法图3. 不同高分辨成像技术的原子位置测量准确度和精度。HAADF为高角环形暗场像方法,FPP为现有的叠层成像方法,APP为新的自适应传播因子叠层成像方法。理论值为零。该方法的实验验证工作以“基于取向校正电子叠层成像方法的深亚埃分辨成像”(Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction)为题发表在学术期刊《科学进展》(Science Advances)上。清华大学材料学院2018级博士生沙浩治和2019级博士生崔吉哲为共同第一作者,于荣教授为通讯作者。材料学院程志英高级工程师和陈震副研究员在实验数据采集方面提供了重要帮助。该研究获得国家自然科学基金基础科学中心项目的支持。论文链接:https://www.science.org/doi/10.1126/sciadv.abn2275
  • 天美公司参加2012年全国电子显微学学术会议
    2012年9月22日-24日,2012年全国电子显微学学术会议在四川省成都市成功举办。天美(中国)科学仪器有限公司作为国内知名的科学仪器供应商受邀参加此次会议。天美公司副总裁赵薇女士和日立高新部长今田先生亲自带队参加会议。 会上,中国电镜学会理事长张泽院士充满激情地介绍了中国电镜学会这30年飞速健康发展的历程,充分肯定了中国电镜学会对中国材料和生命科学领域发展的巨大贡献,也肯定了电镜产品供应商们提供了非常好的实验手段,特别提到日立原位透射电镜H-9500 在浙江大学电镜中心做出了很多特别的工作成果在等待发表。还回忆了日本电镜专家桥本先生对中国电镜学会的成长和发展给予的支持和关注,今天,中国电镜学会的发展壮大使得它的影响力越来越大,张泽院士已经当选为亚洲电镜学会的理事长。这些令人骄傲的成就会鼓舞大家继续努力。 天美(中国)科学仪器有限公司罗琴女士代表天美公司与日立公司在大会上给参会的各位来宾介绍了日立新型超高分辨率冷场发射电镜SU9000,并详细介绍了这款拥有全球最高分辩率的扫描电镜所特有的低加速电压扫描投射成像功能,受到参会人员的高度关注。 日立SU9000超高分辨率冷场发射扫描电镜 主要特点: 1、 SU9000达到扫描电镜世界最高分辨率:二次电子:0.4nm,STEM: 0.34nm。 2、 全新真空技术设计使得冷场发射电子束具有超稳定和高亮度特点。 3、 STEM的暗场像能够调整信号检测角度,明场像、暗场像和SE图像可同时显示并拍摄照片。 会议学术交流内容第一次细分为材料,生物,原位,球差,EBSD五个分会场,更加专业化,每个分会场都吸引了大量的学者参加。 日立公司最新推出的一款样品制备产品IM4000离子研磨仪也引起了参会代表的广泛兴趣,该款离子研磨仪既可以对样品进行氩离子截面切割,也可以进行氩离子平面研磨,是截面样品制备和平面样品无应力抛光的理想工具。具体详情请参阅以下网址:http://www.techcomp.cn/chanpin.asp?id=311&sortsid=807&categoryid=171 天美和日立的工程师同时在会议现场对用户在使用中遇到的问题给予积极解答,现场反响热烈。天美公司一直致力于给广大客户提供高品质、高性能的仪器,提供完备的实验解决方案,期待与更多的用户合作,更好的为大家服务。 公司介绍: 天美(中国)科学仪器有限公司(&ldquo 天美(中国)&rdquo )是天美(控股)有限公司(&ldquo 天美(控股)&rdquo )的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。 天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司 和美国IXRF等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 360万!清华大学激光共聚焦显微镜和超声扫描显微镜采购项目
    项目编号:清设招第2022123号项目名称:清华大学激光共聚焦显微镜预算金额:160.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01激光共聚焦显微镜1套是设备用途介绍 :高精度表面分析,用于微观形貌、微观结构的表征;厚胶光刻显影工艺、刻蚀释放工艺、厚金属剥离工艺等3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像。简要技术指标 :1)具备8英寸及以下基片上3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像和测量功能;2)3D观测方式:共焦光路系统,光源:反射激光和反射LED光源,激光共聚焦模式、彩色成像模式、彩色光学DIC成像,具备光学测量及成像模块,3D观测方式具有白光;明场、暗场及共聚焦;单色共聚焦或多色真彩共聚焦观察方式;3)成像图像X/Y平面分辨率≤0.12µm、Z轴显示分辨率精度≤0.006μm;4)5x,10x,20x,50x,100x均为激光专用复消色差物镜。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。项目编号:清设招第2022125号项目名称:清华大学超声扫描显微镜预算金额:200.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01超声扫描显微镜1套是设备用途介绍 :利用材料内部组织因密度不同而对超声波声阻抗、超声波吸收与反射程度产生差异的特点,实现对材料内部缺陷的定性分析,在半导体封装及材料等行业中具有广泛的应用。对器件内部的结构、夹杂物、裂纹、分层、空洞等进行检测,是提供高分辨率无损检测的重要手段。简要技术指标 :1)最大扫描速率≥610mm/s;2)扫描精度:可设置最小扫描步进≤5μm,最大扫描步进≥500μm。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.
  • 显微镜应用于生物病理
    生物显微镜在医学领域中具有广泛的应用,尤其是在生物病理学中。作为医院进行病理检验的重要工具,生物显微镜可以帮助医生进行精确的诊断和治疗。同时,它也是医学教育中的重要教具,用于学生观察和学习病理切片成像。生物显微镜是一种高精度的光学仪器,能够将物体放大并呈现出清晰的图像。在生物病理学中,医生可以通过使用生物显微镜观察病理切片,以确定病变的性质、程度和范围。因此,生物显微镜是病理诊断中不可或缺的工具。在病理学中,病理切片是一种非常重要的样本。它是由医生从患者体内切割下来的一小部分组织,经过处理后制成的一种薄片。通过将病理切片放在生物显微镜下观察,医生可以清楚地看到组织的结构和细胞的变化,这对于疾病的诊断和治疗非常重要。除了在病理诊断中的应用外,生物显微镜还可以用于医学教育。学生可以使用它来观察病理切片,学习和识别各种疾病的特征。这对于医学生和医学研究人员来说是非常重要的,因为它有助于提高他们的诊断能力和研究进展。生物显微镜系列产品◆病理研究用显微镜NE900 系列病理学研究已不再仅仅局限于 HE 染色制片,已经发展为以此为基础,加上荧光染色、免疫组织化学、分子生物学、分子遗传学和细胞学等多种生物技术辅助手段为辅的多元学科交叉时代。 NE900系列是病理学研究中使用频率最高的一款显微镜,多种机型可供您选择,其光学品质优异,结构稳定以及优秀的人性化设计,可以满足HE 染色、免疫组化、荧光染色、FISH、组织微阵列等多种病理样品的观察及成像需求。配合电动平台、自动聚焦、电动物镜转换,触摸屏控制器以及功能强大的成像软件;通过各部分之间的精密连接,实现显微镜的观察、图像采集及图像处理等功能,减少重复性操作,减少病理结果因解读能力不同造成的结果偏差。◆NE600系列是病理诊断中使用频率最高的一款显微镜,成像真实,结构稳定,更有良好的人机互动设计,在最舒适的姿势下进行操作,大大提高病理工作者的工作效率。 NE600 采用模块化设计,能够提供明场、暗场、相称、偏光等成像的显微仪器配置方案,可以满足包括 HE 染色、特殊染色、免疫组化、免疫荧光染色等多种病理样本的观察和成像需求。 胃组织切片 肌腱 TUNEL观察细胞凋亡情况生物显微镜在生物病理学和医学教育中扮演着重要的角色,它的应用范围涵盖了病理诊断、医学研究和教育等方面。随着科技的不断发展,相信未来还会有更多创新和应用在生物显微镜领域中出现。
  • 新品首发!DSX1000 数码显微镜强势来袭!
    奥林巴斯公司(代表董事兼总裁:竹內康雄)宣布在全球范围内推出 DSX1000 数码显微镜,它极大地改善了用户的检验工作流程,能够通过简易的操作实现对各种样品的分析。这款新产品由奥林巴斯科学事业于2019年6月3日面向全球发布。 DSX 系列数码显微镜将我们卓越的光学技术与先进的数字技术融为一体。DSX1000 数码显微镜用于观察和测量各种样品,包括电子元件和金属材料。此显微镜使用简单,只要放上样品,就可以轻松地完成 3D 观察、测量、报告自动生成等一系列操作。 您只需要一台 DSX1000 显微镜就可满足各种观察和分析需要,改善检验的工作流程。镜头数量增加至 15 个,涵盖20-7,000X的放大倍率。用户还可以利用该显微镜的六种观察方法,对各种样品进行观察与测量。比如突出显示样品表面的不规则和轮廓形貌。显微镜头部和载物台可以分别进行± 90°的自由角度调节,从而满足对各种复杂外形样品的任意角度观察。另外,新开发的算法可以实现更快的 3D 图像采集,与奥林巴斯传统数码显微镜相比,速度快了近十倍。最后,我们将根据每位用户的工作环境校准显微镜,以帮助用户实现精确、高效的观察和测量。新 品 首 发NEW ARRIVAL主要特点放大倍率范围 20–7,000X,可旋转式载物台。可迅速切换物镜和六种观察方式。远心光学系统保证了在整个放大范围内的测量准确度。放大倍率范围 20–7,000X,可旋转式载物台DSX1000 数码显微镜新增了 5 个物镜,物镜总数达到 15 个。20-7,000X 的放大倍率范围实现了精确观察,而长工作距离物镜则实现了对不规则样品的观察,例如电路板和机加工零件。显微镜头部和载物台都可以旋转± 90°,更易于观察和分析薄样品,如晶圆,或大型样品,如汽车部件。 可调节的头部和载物台显微镜头部和载物台可以分别旋转± 90°使用高分辨率长工作距离的物镜长工作距离使用户能够观察不规则形状的电子基板。 20–7,000X 放大倍率下的晶圆图像对比可迅速切换物镜和六种观察方式显微镜的电动变焦光路结合了先进的观察功能,可实现六种观察方法和对比度增强功能:明场、暗场、MIX、偏光、简易偏振和微分干涉。偏光观察和对比度增强功能可以突出样品表面的不规则和轮廓形貌。例如,此功能可用于在观察晶圆表面较大的不规则形状与细微破损和划痕之间快速切换。从而用户可以观察到使用其他方法难以检测到的对象。太阳能电池图像对比(左图:明场观察,右图:偏光观察)单侧光线照射突出了表面的不规则形状。该项技术适用于观察不规则形状、扭曲的样品和槽口。集成电路 (IC) 芯片图像对比(左图:常规;右图:带对比度增强功能)色彩清晰明亮的图像替代了明暗图像。远心光学系统保证了在整个放大范围内的测量精确性。*汽车制造商、精密设备和其他产品制造商必须精确测量和分析产品的规格,以证明产品的安全性。DSX1000 数码显微镜使用远心光学系统,在整个放大范围内图像失真极低,实现了有保证的准确度和重复性的高精度测量。为了确保准确度,在完成 DSX1000 显微镜的安装后,奥林巴斯的技术人员将根据客户使用环境对每台显微镜进行校准。 奥林巴斯将于 2019 年 10 月 12 日迎来百年华诞。
  • 1300万!厦门市计量检定测试院透射电子显微镜及配套装置采购项目
    一、项目基本情况项目编号:[350201]HRC[GK]2024003项目名称:透射电子显微镜及配套装置采购方式:公开招标预算金额:13,000,000.00元采购包1(透射电子显微镜及配套装置采购项目):采购包预算金额:13,000,000.00元采购包最高限价: 13,000,000.00元投标保证金: 0元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02120800-光学计量标准器具透射电子显微镜及配套装置1(套)是1.分辨率: 1)点分辨率:≤0.25nm; 2)线分辨率:≤0.10nm; 3)信息分辨率:≤0.12nm; 4)二次电子分辨率:≤1.0nm。 2.加速电压: 1)加速电压:20kV-200kV,加速电压连续可调; 2)加速电压稳定度:≤ 1ppm/1min。 3.电子枪: 1)超稳定、高亮度肖特基场发射电子枪; 2)束流:1nm束斑电流 ≥ 1.5 nA。 4.TEM放大倍率: 1)TEM最大放大倍率:≥1.05M×。 5.相机长度范围不小于:15 mm~2000 mm。 6.物镜:采用恒功率透镜设计。 7. 扫描透射系统(STEM): 1)分辨率:≤0.16 nm; 2)探头:可以配置三个探头,包括高角环形暗场(HAADF)探头,明场(BF)和环形暗场(DF)探头; 3) HRTEM和HRSTEM之间切换后稳定时间短,仅需点击鼠标即可在TEM与STEM模式间相互切换,可在几秒种之内完成。 8.样品台: 1)样品移动范围:X/Y:≥± 1mm;Z ≥±0.375 mm; 2)高视野低背底双倾样品杆最大倾斜角度:α: ±35°,β:±30°。 9.具备能谱仪(EDS)功能。 10.数字化成像系统: 1)≥1600万像素CMOS相机 2)具有大动态范围可以满足拍摄衍射花样,高读取速度(25fps),适合拍摄动态录像。 3)安装位置:底部安装。 11.真空系统: 1)真空度:电子枪真空度≤5 *10-6 Pa;样品区真空度≤2 *10-5 Pa (冷阱); 2)换样时间≤90秒。13,000,000.00工业本采购包不接受联合体投标合同履行期限:自合同签订之日起270日二、获取招标文件时间: 2024-06-04 至 2024-06-12 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:厦门市计量检定测试院地址:福建省厦门市思明区湖滨南路170号四楼联系方式:0592-26994282.采购代理机构信息(如有)名称:华睿诚项目管理有限公司地址:厦门市湖里区湖里大道6号北方商务大厦211单元联系方式:0592-57307313.项目联系方式项目联系人:郑维琳、许荣、屈涛、王彩华电话:0592-5730731网址: zfcg.czt.fujian.gov.cn开户名:华睿诚项目管理有限公司
  • 显微课堂 | 徕卡晶圆检测显微镜 令人信服的技术细节
    晶圆或 LCD 和 TFT 的检验、过程控制和缺陷分析必须快速、精确并符合人体工学。LeicaDM8000M和 DM12000M晶圆检测显微镜提供了一个创新而高性价的系统解决方案,帮助客户充满信心地应对现在和未来的检验挑战。除了大视野和高分辨率光学部件,系统还采用了高度人性化的设计和全内置的 LED 照明,可以从不同角度照亮样品。DM8000 M / DM12000 M 是一个模块化大型平台检测显微镜平台,可用于 8"/200 mm 和 12"/300 mm 样品检测。 手动检测版本 电动版本DM8000 M/DM12000 M01进入检测领域的第一步查看样品表面的更多信息,在更短的研究时间内改进产品质量决策。 宏观物镜(Plan APO 0.7x)4倍与常规扫描物镜的视野,用于快速浏览样品紫外照明可获得更高分辨率,可与斜照明技术相结合,从任意角度以高分辨率查看样品,获得更多样品表面信息,且检验结果精确符合人体工程学的设计和自动化功能可实现快速、低疲劳操作,避免在重复性样品检测过程中注意力不集中通过手动、编码和电动功能支持智能工作流程,加快样品检测速度02快速样品详览从用于快速浏览样本的微距物镜(Plan APO 0.7x)到用于观察最精细细节的微距物镜。 使用 25 mm (FOV) 目镜,可看到 35.7 毫米的样品表面一目了然地看到在高倍放大镜下 "看不见 "的宏观缺陷,如材料样品中的曝光缺失区域、鲨鱼齿结构或流动结构需要检测宏观结构时,无需对样品进行耗时的扫描只需切换到更高倍率(Obj. HC PL APO 150x/0.90 IVIS BD)即可看到最细微的细节03在更短时间内获得更多样品表面信息紫外照明可获得更高分辨率,可与斜照明技术相结合,获得更多样品表面信息。 以高倍率(150 倍)的彩色模式,通过明场、暗场或DIC模式检查样品,以发现样品缺陷通过激活紫外线照明来提高光学分辨率,以观察最精细的结构以高分辨率将对比度较低的表面转化为清晰的结构拓扑图,快速发现缺陷04通过智能功能支持工作流程通过手动、编码和电动功能支持智能工作流程,加快样品检测速度。 只需点击一下按钮,即可根据所选方法自动调整照明和对比度设置,从而节省时间并避免出错集成的 LED 可见光和紫外照明可在几秒钟内切换不同的照明技术,保证污染不会进入无尘间保持,确保洁净室的清洁内置聚焦探测器,用于检测高反射表面,可快速、轻松地找到正确的聚焦位置相关产品 DM8000 M DM12000M 徕卡显微咨询电话:400-877-0075 关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。   DM 2500P 技术参数   1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光   2. 目镜:10X/22mm视域   3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度   5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um   6. 可双向调中孔位的物镜转盘,5孔位   7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺   8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱   9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱   DM 2500P 主要特点   1. 无限远光学校正系统,图像清晰,高反差   2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱   3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力   4. 检偏镜可180度旋转   5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整   7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护   8. 调节工具可放在镜体上方便随时取用   9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变   10. 各种滤片都经过防热处理   11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动   江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。   工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。   摘自南通醋酸纤维素工程技术研究中心网站
  • 显微镜用半导体制冷C接USB3.0 CCD相机-广州明慧
    MH系列双级半导体深度制冷温度可控C接口USB3.0 CCD相机显微镜制冷CCD相机MHC600-MC基本特性:MHC600-MC制冷ccd相机搭载了Sony ExView HAD CCD或HAD CCD等高性能图像传感器,针对传感器固有的热噪声,专门设计了高效制冷模块使得相机传感器的工作温度比环境温度低达-50度。针对低温结雾现象,设计了防结雾结构,确保传感器表面在低温情况下不会防结雾。MHC600-MC制冷ccd相机这一独有技术大大降低了图像噪声,保证了图像质量的获取。显微镜制冷CCD相机MHC600-MC的优势:基于SONY CCD传感器的科学级专业相机;双级专业设计的高性能TE冷却结构,结构灵巧,散热速度快;温度任意可控,超低噪声,最高达50度温度降幅 精巧防结雾结构,确保传感器在超低温度情况下传感器表面不会结雾;高速USB3.0接口,传输速度高达5Gbits/s,实现快速预览 Ultra-Fine颜色处理引擎,实现完美颜色再现能力;相机附送高级图像处理软件以实现对相机的控制与捕获图像的处理。软件触发或外部触发,支持视频同软件/硬件触发模式捕获单帧或多帧图像;支持长达1小时的精准曝光控制技术;IR-CUT双AR膜保护玻璃(可选);随相机提供高级视频与图像处理应用软件 提供Windows/Linux/macOS/Android多平台标准SDK。显微镜制冷CCD相机MHC600-MC可用于弱光或荧光图像的拍摄,其主要应用有:明场显微镜;暗场,微分干涉 (DIC) 显微镜;活体细胞成像,细胞或组织病理学检测,细胞学;缺陷分析,半导体检测,精密测量;微光荧光成像,GFP 或 RFP 分析,荧光原位杂交(FISH);荧光共振能量转移显微镜,全内反射荧光显微镜,实时共聚焦显微镜,失效性分析,天体照相。
  • 一文看懂透射电子显微镜TEM
    p   透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。 /p p   strong  1 背景知识 /strong /p p   在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。 /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height=" 316" width=" 521" / /p /center p style=" text-align: center " strong 电子束与样品之间的相互作用图 /strong /p p & nbsp & nbsp & nbsp 来源:《Characterization Techniques of Nanomaterials》[书] /p p   透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。 /p p    strong 2 TEM系统组件 /strong /p p   TEM系统由以下几部分组成: /p p   电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。 /p p   聚光镜:将电子束聚集得到平行光源。 /p p   样品杆:装载需观察的样品。 /p p   物镜:聚焦成像,一次放大。 /p p   中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。 /p p   投影镜:三次放大。 /p p   荧光屏:将电子信号转化为可见光,供操作者观察。 /p p   CCD相机:电荷耦合元件,将光学影像转化为数字信号。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height=" 359" width=" 358" / /center p style=" text-align: center " strong 透射电镜基本构造示意图 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 3 原 理 /strong /p p   透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height=" 333" width=" 422" / /center p style=" text-align: center " strong 电镜和光镜光路图及电镜物镜成像原理 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 4 样品制备 /strong /p p   由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。 /p p   试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。 /p p   制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height=" 296" width=" 406" / /center p style=" text-align: center " strong 超细颗粒制备方法示意图 /strong /p p & nbsp & nbsp & nbsp 来源:公开资料 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height=" 325" width=" 404" / br/ strong 材料薄膜制备过程示意图 /strong /center p   来源:公开资料 /p p   strong  5 图像类别 /strong /p p    strong (1)明暗场衬度图像 /strong /p p   明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。 /p p   暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height=" 306" width=" 237" / br/ strong 明暗场光路示意图 /strong /center center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height=" 318" width=" 294" / br/ strong 硅内部位错明暗场图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (2)高分辨TEM(HRTEM)图像 /strong /p p   HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height=" 312" width=" 213" / /center p style=" text-align: center " strong HRTEM光路示意图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height=" 234" width=" 321" / br/ strong 硅纳米线的HRTEM图像 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (3)电子衍射图像 /strong /p p   选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。 /p p   会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。 /p p   微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br/ /p p    /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height=" 296" width=" 227" / /p p strong 电子衍射光路示意图 /strong /p /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height=" 174" width=" 173" / /center p style=" text-align: center " strong 单晶氧化锌电子衍射图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height=" 174" width=" 175" / /center p style=" text-align: center " strong strong 无定形氮化硅电子衍射图 /strong /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height=" 174" width=" 170" / br/ strong 锆镍铜合金电子衍射图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong 6 设备厂家 /strong /p p   世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。 /p p    strong 7 疑难解答 /strong /p p    strong TEM和SEM的区别: /strong /p p   当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。 /p p   SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。 /p p    strong 简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理: /strong /p p   单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。 /p p   多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。 /p p   非晶的衍射花样为一个圆斑。 /p p   strong  什么是衍射衬度?它与质厚衬度有什么区别? /strong /p p   晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。 /p p    strong 8 参考书籍 /strong /p p   《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /p p   《电子衍射分析方法》 黄孝瑛著 /p p   《透射电子显微学进展》 叶恒强,王元明主编 /p p   《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /p p   《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。 /p p   来源:中国科学院科普文章《透射电子显微镜基本知识介绍》 /p
  • 如何选择一台适合自己的显微镜——光学部件物镜的选择(下)
    小伙伴们,我又来了~本期给大家带来显微镜物镜的知识。啥是物镜,我想地球人都知道~物镜是显微镜的灵魂所在,物镜是影响清晰度的最重要部件,先来了解下物镜的重要参数。在选择物镜时需要考虑以下几个问题:1、需要多大的放大倍数?● 物镜可以根据其放大倍率分为三大类。其中包括:低倍物镜(2x、4x/5x和10x),中倍物镜(20x、40x)和高倍物镜(60x/63x、100x)。除了物镜的放大倍率不同外,物镜使用的介质也不同。例如,对于高倍镜头(60x和100x),经常使用浸油来获得高分辨率。放大倍率较低的镜头则采用空气作为介质。2、选择哪种观察方式?● 显微物镜有很多类型,应用场景也各有不同,根据观察方式的不同,也有不同种类。一般在物镜的外壳上会标注物镜的观察方式。● BF:明场;DF:暗场;PH:相差;PO:偏光;DIC:微分干涉;FL:荧光观察(蓝、绿、紫等);UVFL:紫外荧光观察。3、如何选择一个成像效果好的物镜?● ①要选择有平场矫正功能的物镜,即标有Plan。 ②主要根据色差校正的能力来判断成像效果:消色差物镜(Achromatic):仅能校正红蓝光的色差。半复消色差物镜(FL):能校正红绿蓝三色光的色差。全复消色差物镜(Apo):能对红绿蓝三色光的色差校正两次,同时能校正红、蓝两色光的球差。● 看透明切片可选择平场消色差物镜(Ach)。看荧光可选择半复消色差物镜(FL),而且有长工作距离可选,既可以看玻片也可以看培养皿。若需要更好的成像效果可选择全复消色差物镜(Apo),但Apo物镜没有长工作距离的,只适用于看玻片,不适合看培养皿或培养瓶等厚的样品。4、对分辨率的要求是什么?● 显微镜的分辨率是能分辨两点间的最小距离,能分辨的距离越小分辨率越高。数值孔径(NA值)与分辨率成正比,NA = n * sin α。与放大率成正比,与景深成反比。同样的放大倍数下,NA值越高越好。在工作距离都满足的情况下选择NA值高的物镜。5、需要多长的工作距离(WD)● 根据工作距离的不同,可以分为:①普通工作距离物镜:工作距离小,可以观察切片,但不能观察培养皿。②长工作距离物镜:用于倒置显微镜,可以满足组织、悬浮液等材料的镜检。6、所使用的玻片或培养板的厚度是多少?● 在标注物镜的光学类型的后面(∞/0)(210/0),也就是斜杠后面这个数字代表的是适用玻片厚度,(∞/0.17)(210/0.17),适用玻片厚度就是0.17毫米。如果用了不合适的盖玻片,则会出现很明显的球差(不同角度的光线没有会聚在同一高度)从而降低成像的对比度和分辨率。NA值越高的物镜对盖玻片厚度越敏感,所以要选择正规的盖玻片。有些高NA值的物镜以及长工作距离的物镜有可调的盖玻片厚度调节环可以对不同厚度的玻璃进行矫正,可用于培养皿的观察,观察时调节到相应的培养皿的厚度,或使用共聚焦培养皿,中间厚度也为0.17。
  • 南理工发明三维显微镜 成本8万或打破垄断
    p   屏幕上圆形立体的巨噬细胞正在慢慢地伸出“触角”,吞噬着周围的残骸,看上去有几分触目惊心……这一画面来自于南京理工大学电光学院研究生们发明的一种新型三维显微镜。由于彻底改变显微镜现有成像方式,该作品近日在第十四届“挑战杯”全国大学生课外学术科技作品决赛中一举夺得特等奖。 /p p style=" text-align: center " img title=" OArg-fxkwuwk9559544.jpg" src=" http://img1.17img.cn/17img/images/201511/noimg/6b5403c5-f630-42cf-8980-f2f4542441e1.jpg" / /p p    strong 真实的巨噬细胞像个怪物 /strong /p p   记者昨天在现场看到,随着工作人员的操作,显微镜看到的影像显示在屏幕上,只见一个“张牙舞爪”的圆形家伙正在吞噬着周围的“杂物”,像极了卡通片里的怪物。“这就是巨噬细胞的真实模样,它是我们身体的护卫者,遇到细菌病毒就会消灭它们。”电光学院研二的林飞指着屏幕说。 /p p   这种新型显微镜叫SCscope。乍看之下,它和传统显微镜在外形上并没有太大区别。仔细观察才发现,原来它的照明光源与成像焦距都是可以通过软件灵活操控的。“显微镜通过可编程照明产生不同的光线照射样品,并采用电控变焦透镜快速扫描物体不同的焦面,配合软件中的图像重构算法,便可完成视野内所有细胞的同时三维成像。” /p p   林飞告诉记者,传统显微镜成像是平面的,而通过三维显微镜,任一细胞的厚度、尺寸都可以随着鼠标的选取精确地获得。 /p p    strong 千人合影可以看清脸上的痣 /strong /p p   “显微镜经过四百多年的发展,仍然没有摆脱‘可见即所得’的传统成像模式,而我们的作品革命性地采用‘计算成像’的全新概念,这为显微镜的功能与性能带来了跨越式的提升。”林飞说。 /p p   据了解,目前常用的细胞显微镜观测需要对细胞进行染色或标记,或通过外界激发光源对细胞成像进行分析,但这些标记以及长时间的曝光往往对细胞有一定的伤害,甚至导致细胞的死亡,无法获知细胞真实长生状况。 /p p   而SCscope显微镜不但不用把活细胞染色,而且可以看到三维立体的细胞,并且在任意视角观察,“可以生成高达2.8亿像素的‘全视场、高分辨’图像,这就好比在一张千人大合影中,可以看清每个人脸上的痣。” /p p   值得注意的是,这个新型显微镜还在同一系统中集成了明场显微镜、暗场显微镜、相衬显微镜、微分干涉显微镜等现有多种专用显微镜的成像功能,且可以做到“一键切换”,使得显微镜功能更加多样,成本更加低廉。 /p p strong   打破国外光学显微镜的垄断 /strong /p p   林飞说,这款显微镜成本8万多元,相当于现用显微镜的三分之一,可大大降低医疗检测的门槛。目前,已经在南京部分医院进行试用。 /p p   指导老师左超副教授说,SCscope改变了传统显微成像系统获取信息方式,提升其获取信息能力,有望在生物医学、材料科学、工业检测、科研教学等众多领域得到广泛应用。相关核心技术已申请国家发明专利4项。目前国内已有多家单位前来洽谈合作,如果该作品投入生产并在相关行业大力推广应用,将有望推动我国显微镜产业的技术革新,将打破国外高端光学显微仪器的长期垄断地位。 /p p /p
  • 模块化显微光学光谱系统满足仪器多功能需求——点亮光谱仪器“高光”时刻
    2012-2021年,光谱仪器及技术突飞猛进,相关的新产品、新技术层出不穷:拉曼、近红外、激光诱导击穿光谱、太赫兹、高光谱、超快光谱、光谱成像......不仅给科研注入了新的活力,更是给企业带来了客观的经济效益。“光谱十年”之际,仪器信息网特别策划《点亮光谱仪器 “高光”时刻》系列活动,以期盘点光谱仪器及相关技术的突出成果,展现光谱仪器及相关厂商的“高光”时刻。从最简单的光学光谱模块到定制化的解决方案,HORIBA Scientific(Jobin Yvon光谱技术)旗下的光学光谱部门一直致力于光谱仪部件及集成光谱仪系统的研制和生产,可提供各种规格的单色仪、探测器、光源、附件及应用软件,可为科研人员组建高性能的光谱测量系统。本期,我们特别邀请到了HORIBA 科学仪器事业部技术支持工程师吴鹤讲述HORIBA光谱仪的“高光”时刻。HORIBA 科学仪器事业部技术支持工程师 吴鹤仪器信息网:过去十年间,哪些光谱技术的进步让您印象深刻?HORIBA:对于不同的科研人员,其具体需求也不尽相同,模块化光学光谱搭建系统凭借其高度灵活性在光谱技术研究领域占据着重要地位,针对不同的应用如拉曼、光致发光、暗场散射、时间分辨光致发光、等离子体发射、可调单色光源等可提供灵活多样的解决方案。另外,随着对微结构或材料的研究日趋广泛,模块化显微光学光谱搭建系统也应运而生,且在各个研究领域有广泛应用。仪器信息网:截至目前,贵公司有哪几款光谱仪器曾经获得“科学仪器优秀新品”奖 ?该仪器研发的背后有什么样特别的故事? HORIBA:HORIBA Scientific(Jobin Yvon光谱技术)有着两百多年的光学光谱研究历史,顺应技术的发展、时代的进步,不断进行技术革新。Horiba的多款仪器包括拉曼、荧光、光学光谱搭建系统多次获得仪器信息网颁发的各类奖项。其中,MicOS显微光谱测量系统获得了“2013年科学仪器行业优秀新产品奖”。一般来说,采用标准显微镜与光谱仪耦合测量光谱常采用光纤耦合方式,一方面,信号损失大,耦合效率较低,另一方面,很多样品在应用显微镜测量时会遇到困难,比如:侧面发光样品或者在正置低温恒温器中的样品。在做光致发光光谱测量时,若应用多个波长激发,标准显微镜的灵活性会受到限制。MicOS开创性地将显微测量和光谱测量高效率地耦合于一体,光谱仪最多可同时接三个探测器,能与多个激发波长匹配,并且可提供物镜朝下或物镜侧向的两种配置选择,以满足不同客户的特定需求。仪器信息网:获奖产品的销售情况如何?解决了哪些关键问题?有哪些典型用户或典型的应用案例?行业影响力及用户的反馈情况如何?HORIBA:MicOS显微光谱测量系统用户遍布全球,用途多种多样,如二维材料特性研究、电致发光材料的表征、半导体材料或器件的质量检测和缺陷研究等等。MicOS将显微测量和光谱测量高效率地耦合于一体,将显微探测头直接与iHR三光栅光谱仪耦合,光谱仪最多可同时接三个探测器,使其可覆盖紫外、可见、近红外的宽光谱范围(200nm~1600nm);能与多个激发波长匹配,灵活性极强且易于操作;内置数码相机设计,可实时观察样品;可提供物镜朝下或物镜侧向的两种配置选择,便于测量侧向发光器件或放置在正置低温恒温器中的样品;配合自动平台可进行mapping测量。MicOS系统已有很多工业用户,在工业生产中,无论是器件的研发过程还是质量检测过程,MicOS系统都发挥着十分重要的作用。仪器信息网:贵公司光谱仪器的生产工艺是如何把控的?在产品的质控及生产车间管理方面有什么独特的地方? HORIBA:HORIBA Scientific有着十分丰富的光学光谱研究、设计和生产经验,根据客户的实际需求,既可以单独提供光谱仪、探测器、光源、以及光栅等部件,也可以提供完整的解决方案,并且对于生产的仪器都有严格的质量把控。对于单独的部件,在生产时会进行质量测试,确保部件质量,对于外购附件也同样对其质量严格把关;对于整套的系统,有标准的技术参数和验收流程,依据标准进行整体的性能测试,以保证整套系统的性能与质量。仪器信息网:未来贵公司光谱产品线的发展规划,重点发展哪些类别的光谱产品?HORIBA:HORIBA Scientific自创立以来,始终致力于科研级光学光谱产品的研发生产,顺应技术进步与时代潮流,不断创新与发展。除了模块化光学光谱部件与系统,HORIBA还提供高性能整机系统,包括拉曼光谱仪、荧光光谱仪、粒度分析仪、椭圆偏振光谱仪、射频辉光放电光谱仪(GD-OES)、等离子体共振成像仪(SPRi)、阴极荧光光谱仪、碳硫氧氮氢分析仪以及各种OEM光谱仪。涉及的应用包括材料、化学、生命科学、制药、环境、地质、能源、光伏、考古、艺术品等等,对于不同的测量及应用需求提供合适的解决方案。仪器信息网:从行业发展角度来说,您认为目前光谱仪器整体技术水平怎么样?未来最具前景的光谱仪器或者技术是什么?最具前景的应用将体现在哪些方面?HORIBA:光谱技术作为重要的分析技术,所涉领域非常广泛。目前微纳材料及显微结构的研究仍然十分热门,因此显微光谱的测量需求只增不减。另外,随着研究方向的多样化,对仪器的多功能性要求也日益增强。HORIBA Scientific的MicOS系统将显微探测头与iHR三光栅光谱仪高效耦合,配置灵活、可覆盖光谱范围宽,易于通过内置相机观察样品情况,可以进行mapping测试,是显微水平光致发光、电致发光和光调制反射光谱研究的理想选择。另外,HORIBA scientific新推出的SMS(Standard Microscope Spectroscopy Systems)是基于iHR光谱仪与标准显微镜通过定制化耦合模块(MicroSpex)集成的系统,该模块与标准显微镜耦合可适用于从深紫外到近红外的显微光谱测量,如显微拉曼、显微光致发光、暗场散射、显微时间分辨光致发光、反射/透射、电致发光等多种光谱研究,灵活性高,可根据需求进行搭建的定制化系统,为用户提供高质量光谱测量与成像。
  • 中国科大张斗国教授团队在单个纳米尺度物体无标记光学显微成像方面取得新进展
    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授课题组提出并实现了一种基于矢量光场调控原理的动量空间偏振滤波器件。将该滤波器件安装于传统无标记光学显微镜的出射端,它可以对出射光场的背景噪声进行高效抑制,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果以“Cascaded momentum-space-polarization filters enable label-free black-field microscopy for single nanoparticles analysis”为题在线发表在综合性学术期刊《美国国家科学院院刊》(PNAS)。单纳米级物质的无标记光学成像对于各种生物医学、物理和化学研究极为重要。其中一个核心挑战是背景强度远远大于单个纳米物体的散射光强度。在这里提出了一种由级联动量空间偏振滤波器组成的光学模块,它可以进行矢量场调制,阻挡大部分背景场,使背景几乎变黑;相反,只有一小部分散射被阻挡,从而明显提高成像对比度。为了解决这个问题,张斗国教授课题组设计并实现了一种动量空间偏振滤波器件,它可在动量空间进行矢量场偏振调控,大幅度过滤、抑制各类背景噪声,只有单个纳米尺度物体的光散射信号能透过该滤波器件,被探测器采集到,从而实现了单个纳米尺度物体的高对比度、高信噪比的成像探测。作为一种应用展示,该动量空间偏振滤波器件被加载到传统全内反射显微镜(Total internal reflection microscopy, TIRM)的出射端,用于单个纳米尺度物体的成像与传感。加载该滤波器后,TIRM被转化为黑场光学显微镜(Black field microscopy (BFM),相对于常规的无标记暗场光学显微镜,BFM具有更低(更黑)背景噪音,更高探测灵敏度)。BFM可以实时记录了此变化过程,证明BFM可应用于单个纳米颗粒化学反应过程的实时记录,为实时探测单个纳米尺度物体物性演化过程中所发生的物理-化学反应探测提供了新型光子学技术。该动量空间滤波器件的突出特点是:在不改变显微镜内部结构的情况下,它可以使常规的无标记光学显微镜,如表面等离激元共振显微镜、TIRM等近场光学显微镜,具有黑场成像功能,从而大幅度提升其对单个纳米尺度物体的探测灵敏度。本研究工作所发展黑场显微镜为单个纳米颗粒的分析提供了新平台,有望在生物学、物理学、环境科学和材料科学等领域得到广泛应用。该研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。
  • 热烈祝贺ECHO Revolve正倒置一体电动荧光显微镜获得2021缪斯(MUSE)国际设计奖铂金奖
    2021缪斯(MUSE)国际设计奖近日揭晓,美国ECHO Revolve正倒置一体电动荧光显微镜凭借出色的设计荣获2021缪斯(MUSE)国际设计奖铂金奖。ECHO Revolve正倒置一体电动荧光显微镜是世界上第一款多功能显微镜,将四台显微镜合二为一,可轻松在正置和倒置之间进行转换。使用户不再因为所拍摄样品的不同而分别购置正置和倒置两类显微设备,一机满足多种样品成像,具备眀场、暗场、相衬、荧光和偏光等功能,是真正的多面手。同时显著降低了设备成本,节省实验空间。传统显微镜操作繁琐,很难上手。ECHO Revolve正倒置一体电动荧光显微镜打破传统,采用12.9英寸Retina显微屏,触控操作,智能控制,成像更便捷,给您带来前所未有的使用体验。使枯燥的实验变得简单有趣,轻松获得您想要的图片。美国缪斯设计奖创办于美国纽约,是一项针对来自各设计领域创意专业人士及公司的国际设计竞赛,该奖项由美国国际设计奖项协会(IAA)主办。据官方统计:缪斯设计奖共收到来自全球100多个国家/地区的近3.8w个参赛作品,是极具国际影响力的奖项。ECHO Revolve正倒置一体电动荧光显微镜获得此奖,说明ECHO Revolve正倒置一体电动荧光显微镜在设计理念,仪器功能上得到大家的认可和肯定,ECHO Revolve正倒置一体电动荧光显微镜必将在自己的领域发挥极致,大放异彩。来源:https://design.museaward.com/winner-info.php?id=6364|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 体视显微镜的创新点及在大健康市场领域的应用
    体视显微镜显微镜有很多种,体视显微镜是其中的一种,比如还有生物显微镜、金相显微镜等。体视显微镜,又叫实体显微镜、立体显微镜或解剖镜。体视显微镜是一种常用的显微镜,具有正像立体感的目视仪器,不需要专门进行加工制作样品,可以直接放在体视显微镜镜头下进行观察,它能够通过放大和放映图像,使我们能够观察和研究微小的物体和细胞结构,从不同角度观察物体,使双眼引起立体感觉的双目显微镜,工作效率极高。体视显微镜创新点:1、双目镜筒中的左右两束光不是平行的,而是具有一定夹角的,一般为12度到15度,这个角称为体视角。因此成像会有三维立体感。观察者可以更加真实地感受到样品的立体形态,更好地理解样品的结构和特性。2、由于体视显微镜的棱镜把图像倒转过来,使观察者看到的图像是直立的,便于操作。3、虽然放大倍率不及其它光学显微镜的倍率大(如生物显微镜和金相显微镜的放大倍率可达1000倍甚至更大),但体视显微镜优点就是工作距离长,视场直径大。景深大,便于观察物体的全貌。4、体视显微镜操作简单,放大倍数一般在7X~45X、7X~63X。其他更高端科研级体视显微镜型号NSZ818,变焦倍率比达到 1:18 ,10X目镜能够实现7.5-135X的放大倍数。果蝇转基因 转基因育种体视显微镜用途上也最为广泛,主要用途如下:1、动物学、植物学、昆虫学、组织学、矿物学、考古学、地质学和皮肤病学等的研究。2、在纺织工业中,用于原料及棉毛织物的检验。3、在电子工业中,作为元器件检查,焊点检查等操作工具。4、各种材料的裂缝构成,气孔形状腐蚀情况等表面现象的检查。5、在制造小型精密零件时,用于机床工具的装置、工作过程的观察、精密零件的检查以及装配工具。MHZ-101/MHZ-201体视显微镜可将微小物体放大并形成正的立体像,具有工作距离长,成像清晰而平稳、视场宽阔、清晰度高、倍率连续可调和操作方便等特点。根据人机工程学要求设计,45度倾斜观察,长时间工作而不感觉颈肩不适。特别适用于科研、高教、农林地质、珠宝、医学卫生、公安部门作观察分析、生物解剖。近年来还广泛应用于电子工业和仪器仪表等行业作细小精密零件的检验、装配修理用。MHZ-201体视显微镜MHZ-201体视显微镜技术参数表:◆放大倍数: 标准配置:7X~63X 选配目镜及辅助物镜,连续变倍◆物镜: 标准配置:连续变倍物镜 变倍比9:1 确保像面齐焦性◆观察头: 45°倾斜,360°旋转◆目镜: 标准配置: 10X/20mm,宽视野,广角,高眼点,为佩带眼镜的观察者提供方便◆可选目镜: 10X、15X、 20X 、25X◆工作距离:标准配置110mm(有效距离)◆可选辅助物镜:0.5X工作距离165mm/1.5X/2X ◆显微镜摄像头:C接口的USB2.0和USB3.0相机可选◆荧光照明器:LED落射荧光照明器/环形荧光照明器NSZ818科研级平行光体视显微镜NSZ818科研级平行光体视显微镜在大健康市场领域的主要应用:1、用于蛋白质结晶过程和晶体的高对比度观察和成像。2、作为分子生物学、细胞生物学、神经生物学、发育生物学、胚胎学、系统生物学、结构生物学的从宏观到微观高分辨观察与成像研究工具。3、用于斑马鱼、小鼠、线虫等模式生物和各种透明样本、微观细胞组织、亚细胞结构的明场、浮雕相衬;可升级为荧光观察和成像系统。4、数码体视显微镜作文书纸币的真假判辨,大样品上的颜料残留物分析和鉴定,区分轻微的结构偏差和真实的色彩。5、广泛应用于纺织制品、化工化学、塑料制品、电子制造、机械制造、医药制造、食品加工、印刷业、高等院校、考古研究等众多领域。体视显微镜NSZ818技术参数:◆光学系统:平行光(伽利略型)复消色差光学系统◆变倍比:1:18,变倍范围0.75-13.5X◆物镜:PLAN APO 1X(NA 0.15, WD 60mm)◆放大率:7.5-135X◆目镜(F.O.V.mm):三目 20°固定倾角镜筒 可变倾角三目镜筒,范围为 0-30°◆可选目镜:10X(23) 10X(22)15X(16) 20X(12)◆底座:LED 立体照明底座(OIC 内置照明器)◆支持观察方式:明场,荧光,斜照明,简易偏光,暗场
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制