当前位置: 仪器信息网 > 行业主题 > >

氨基酸丁酸

仪器信息网氨基酸丁酸专题为您整合氨基酸丁酸相关的最新文章,在氨基酸丁酸专题,您不仅可以免费浏览氨基酸丁酸的资讯, 同时您还可以浏览氨基酸丁酸的相关资料、解决方案,参与社区氨基酸丁酸话题讨论。

氨基酸丁酸相关的论坛

  • γ-氨基丁酸 (GABA) 的 HPLC 分析

    文献报道采用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url] (HPLC) 方法测定不同发酵食品中的 γ-氨基丁酸 (GABA) 和谷氨酸 (Glu) 含量。提取最佳溶剂是 75% EtOH 和水,再加上 4% 磺基水杨酸作为后处理。提取的氨基酸在室温下用邻苯二甲醛 (OPA) 衍生 2 分钟,并通过带有荧光检测器 (λex = 340 nm 和 λem = 455 nm) 的 HPLC 分析。与植物和大豆发酵产品相比,动物发酵产品的 GABA 含量更高。将 HPLC 方法获得的结果与分光光度法获得的结果比较,用 HPLC 法测得的所有 GABA 含量都远低于用分光光度法测得的值,这是由于分光光度法使用的着色剂与 GABA 以外的其他氨基酸的非特异性反应干扰测定。因此,食品中的 GABA 含量只能通过 HPLC 来测量。详见https://doi.org/10.1007/s12161-020-01734-2

  • 测氨基丁酸方法

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]测氨基丁酸的文献

  • 【原创大赛】黄酒中γ-氨基丁酸含量测定的辛酸历程

    【原创大赛】黄酒中γ-氨基丁酸含量测定的辛酸历程

    黄酒中γ-氨基丁酸含量测定的辛酸历程 近日实验室收到一批黄酒样品,该批黄酒是用发芽糙米为原料酿造而成,客户要求测定黄酒中的γ-氨基丁酸含量。由于之前实验室以丹磺酰氯为衍生试剂,建立了高效液相色谱法测定发芽糙米中γ-氨基丁酸含量的实验方法,并对实验方法的线性、精密度以及回收率进行了确认,均可以满足发芽糙米中γ-氨基丁酸含量测定要求,因此拿到黄酒样品后直接按照发芽糙米的前处理方法和色谱方法进行分析。链接如下:http://bbs.instrument.com.cn/shtml/20141226/5591256/。然而事与愿违,在测定的液相色谱图中压根就没有见到γ-氨基丁酸的色谱峰,反而在11.5min左右有个小的色谱峰,其峰高与发芽糙米中γ-氨基丁酸峰高有点相似,初步怀疑是保留时间发生了漂移,与发芽糙米样品色谱图对比后发现,在发芽糙米样品色谱图中该保留时间处也出现了一个相似的小峰,因此将该色谱峰是γ-氨基丁酸的可能性排除。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311333_530568_1669358_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/12/201412311334_530570_1669358_3.jpg 原本该实验到此结束,准备将实验结果反馈给客户:黄酒中γ-氨基丁酸的检测结果为“未检出”。为了保证数据的准确性和可靠性,在黄酒样品中进行加标实验,结果在加标的色谱图中也未在相应的保留时间出峰,而且11.5min左右的色谱峰也没有增大,因此决定先将“未检出”的结果搁置,并对实验方法进行分析。 经过对样品前处理过程和色谱方法的分析,觉得可能造成加标样品中γ-氨基丁酸未检出的原因可能有:(1)保留时间漂移。由于流动相需要调节pH值,同时样品前处理过程中也涉及到酸、碱溶液的使用,怀疑是流动相或者样品pH的改变导致保留时间的漂移,从而未在原有的保留时间出现应有的色谱峰。然而重新配制流动相和前处理样品,加标样品测定结果依然是“未检出”,对比加标和不加标样品的色谱图,两者几乎一样,也没有峰面积或峰高变化明显的色谱峰;(2)衍生试剂失效。丹磺酰氯对光和湿敏感,不稳定,放置时间久了会生产二氯亚砜并继续分解成其他物质,影响其在有机溶剂中的溶解度,也会影响结果。可是为了排除衍生试剂的问题,重新打开一瓶刚购置不久的丹磺酰氯试剂,并重新试验,结果仍然不理想;(3)衍生条件控制不当。之前用相似的方法测定牛磺酸含量以及测定发芽糙米中γ-氨基丁酸含量时曾出现过衍生过程条件控制不当造成衍生不完全或者不能衍生的情况,可是与黄酒样品同一批处理的γ-氨基丁酸标准溶液和发芽糙米样品均能衍生成功,并正常出峰,为何唯独黄酒样品不出峰呢?在百思不得其解之际,看到同事在滴定黄酒中总酸,忽然间若有所悟:黄酒中的γ-氨基丁酸需要在碱性条件下才能与丹磺酰氯发生衍生反应,而黄酒是酸性介质,pH值一般在3~5之间,同时黄酒为酿造产物,对酸碱性具有一定的缓冲能力。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311336_530572_1669358_3.jpg 通过比较发现:黄酒为酸性样品,缓冲能力较强,按照发芽糙米样品前处理方法直接加入0.5mL 碳酸钠(pH9.8)可能不能达到合适的衍生反应条件,最终导致黄酒样品中γ-氨基丁酸“未检出”。 找到问题后调整实验方案,先将黄酒样品调整至中性,然后再按照发芽糙米样品方法进行前处理。调整实验方案后,黄酒样品中γ-氨基丁酸测定的色谱图如下图。从色谱图中可以发现,经过实验方案的调整黄酒样品中检出了γ-氨基丁酸的存在。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311337_530573_166

  • 关于γ-氨基丁酸测定的问题

    有哪位高人测过γ-氨基丁酸,我查到的标准是QB/T4587-2013,具体操作中,有哪位高人做过,帮忙指导一下,有哪些注意的,谢谢

  • 【转帖】使用waters的AQC衍生氨基酸的人注意了

    [size=4][color=#000080]  使用waters的AQC衍生氨基酸的人注意了[/color][/size][size=4][color=#000080]  脯氨酸与γ-氨基丁酸采用上述方法时,很难分离,从而对脯氨酸的测定产生一定影响。而γ-氨基丁酸又是人体内常见的神经递质,可由谷氨酸脱羧基生成,故广泛存在。对于来自生物提取物(工艺较滥时),这种情况尤为明显。[/color][/size][size=4][color=#000080]  另外,用大连伊利特的DNFB(2,4-二硝基氟苯)衍生氨基酸,结果脯氨酸和γ-氨基丁酸分离度也不好,大家注意一下。[/color][/size]

  • 液质联用分析体液中未衍生化氨基酸的方法

    [color=#444444]看了很多文献的报道,使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]分析体液中未衍生化的氨基酸时,他们都使用离子对试剂全氟酸(例如全氟庚酸、全氟丁酸等),但是我现在希望不使用任何离子对试剂的帮助,通过反相液相色谱柱进行分离氨基酸,并通过质谱进行定性定量分析。我想问的问题就是我的方案的可行性有多大,有意义吗?(因为如果我的想法可行的话,国外为什么很多报道还是使用离子对试剂呢?)[/color][color=#444444]希望大家帮我多提宝贵意见,谢谢。[/color]

  • 【资料】氨基酸检测如何做的更好

    [size=3][font=宋体]氨基酸检测最早是用氨基酸分析仪,不过早过时了,现在用[/font][font=Times New Roman]HPLC[/font][font=宋体]的比较多,采用[/font][font=Times New Roman]HPLC[/font][font=宋体]柱后衍生的方法,不过弊端太多,做初步的检测还可以,但做科研课题就不行了。最好的方法是用质谱技术。多达[/font][font=Times New Roman]42[/font][font=宋体]种氨基酸的含量测定,采用质谱技术并使用[/font][font=Times New Roman]44[/font][font=宋体]种氨基酸同位素对内标,精确度和重复性都有很好的保证,和传统的毛细管电泳法、[/font][font=Times New Roman]HPLC[/font][font=宋体]法、氨基酸分析仪比较,无论是从精度上、还是检测的范围上和检测结果的准确度上都有了很大的提高和改善。[/font][/size][font=宋体][size=3]检测氨基酸的种类有:[/size][/font][font=宋体][size=3]一:必需氨基酸:[/size][/font][font=宋体][size=3]精氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸(蛋氨酸)、苯丙氨酸、苏氨酸、色氨酸、缬氨酸。[/size][/font][font=宋体][size=3]二:必需氨基酸衍生物(神经内分泌新陈代谢):[/size][/font][size=3][font=宋体]γ[/font][font=Times New Roman]-[/font][font=宋体]氨基丁酸、甘氨酸、丝胺酸、牛磺酸、酪氨酸。[/font][/size][size=3][font=宋体]三:氨[/font][font=Times New Roman]/[/font][font=宋体]能量新陈代谢:[/font][/size][size=3][font=Times New Roman]a-[/font][font=宋体]氨基已二酸、天门冬酰胺、天门冬氨酸、瓜氨酸、谷氨酸[/font][/size][font=宋体][size=3]、谷氨酰胺、鸟氨酸。[/size][/font][font=宋体][size=3]四:硫新陈代谢:[/size][/font][size=3][font=宋体]半胱氨酸、胱硫醚[/font][font=Times New Roman] [/font][font=宋体]、同型半胱氨酸。[/font][/size][font=宋体][size=3]五:附加代谢物:[/size][/font][size=3][font=宋体]α[/font][font=Times New Roman]-[/font][font=宋体]氨基正丁酸[/font][font=Times New Roman] [/font][font=宋体]、丙氨酸、鹅肌肽[/font][font=Times New Roman] [/font][font=宋体]、[/font][font=Times New Roman]b-[/font][font=宋体]丙氨酸、[/font][font=Times New Roman]b-[/font][font=宋体]氨基异丁酸、肌肽、乙醇胺、δ[/font][font=Times New Roman]-[/font][font=宋体]羟基赖氨酸[/font][font=Times New Roman] [/font][font=宋体]、羟化脯氨酸、[/font][font=Times New Roman]1-[/font][font=宋体]甲基组氨酸、[/font][font=Times New Roman]3-[/font][font=宋体]甲基组氨酸、磷酸乙醇胺、磷酸丝氨酸、脯氨酸、肌氨酸、精氨[/font][font=Times New Roman]([/font][font=宋体]基[/font][font=Times New Roman])[/font][font=宋体]琥珀酸、羟化瓜氨酸。[/font][/size][size=3][font=Times New Roman][/font][/size][size=3][font=Times New Roman] [/font][font=宋体]为了配合人体全谱氨基酸营养代谢组学的研究,公司成功开发出[b]《全谱氨基酸营养代谢组学分析系统》[/b]软件[/font][/size][font=宋体][size=3]随着科技的发展和人类的进步,营养代谢组学逐渐进人了现代科学的研究范畴,发展成一门很重要的学科。[/size][/font][size=3][font=宋体]代谢组学是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分。在营养支持方面代谢组学与系统生物学的其他技术一并用于研究营养表[/font][font=Times New Roman] [/font][font=宋体]型[/font][font=Times New Roman](nutritional phenotype)[/font][font=宋体],后者被定义为基因组、蛋白质组、代谢组、功能和行为因素的集成系统。[/font][font=Times New Roman] [/font][font=宋体]以前难以完成如此复杂的测定,而代谢组学技术的应用,可以测定许多营养代谢物与疾病及健康的关系。[/font][font=Times New Roman] [/font][font=宋体]因此,代谢组学是唯一适合探索营养与代谢复杂关系的研究方法。[/font][font=Times New Roman] [/font][font=宋体]  [/font][/size][font=宋体][size=3]氨基酸是人类营养的基础,是最重要的营养组分,因此对氨基酸的研究又是营养组学中最为重要的一环。人类对氨基酸的研究比较广泛和系统。《全谱氨基酸营养代谢组学分析系统》软件正是汇集了这方面的研究资料,给客户一系统的分析参考。[/size][/font][size=3][font=宋体]《全谱氨基酸营养代谢组学分析系统》是和全谱氨基酸检测技术相配套的一套软件分析系统。通过对人体内[/font][font=Times New Roman]42[/font][font=宋体]种氨基酸的精确检测,来揭示人体内详细的氨基酸代谢状况。[/font][font=Times New Roman]42[/font][font=宋体]种氨基酸不仅包含了[/font][font=Times New Roman]8[/font][font=宋体]种必需氨基酸、[/font][font=Times New Roman]2[/font][font=宋体]种半必需氨基酸,同时也包含了[/font][font=Times New Roman]20[/font][font=宋体]种组成蛋白的基本氨基酸和各个代谢途径中重要的氨基酸,可以从不同的代谢路径中提示人体的健康状况。不管是神经内分泌系统、氨能量代谢系统或者是硫代谢等等,各种代谢途径都可以检测到。是截止目前国际上最科学、最系统、最完善的氨基酸营养代谢组学系统。[/font][/size][font=宋体][size=3]《全谱氨基酸营养代谢组学分析系统》通过对全谱氨基酸检测结果的科学分析,和目前科学提供的理论,给客户提示检测结果的临床意义和营养补充调节建议,同时专业医生或者营养师又可以通过软件提供的每种氨基酸的详细代谢图谱来分析各个代谢路径是否出了问题,来进一步的指导。[/size][/font][size=3][font=Times New Roman][/font][/size]

  • 国标QB/T4587中r-氨基丁酸检测问题

    国标QB/T4587中r-氨基丁酸检测问题

    请教下各位老师,我们用QB/T 4587-2013检测r-氨基丁酸含量,然后遇到下面的问题对照和样品的色谱图会有2个峰,不能确定第一个峰是r-氨基丁酸的峰,还是第二个峰是r-氨基丁酸的峰。有没有哪位老师有做过该方法的,能帮忙解答下。对照品谱图如下:[img=,678,272]https://ng1.17img.cn/bbsfiles/images/2021/07/202107221103479791_7924_2022385_3.jpg!w690x517.jpg[/img]进水的谱图如下:[img=,684,207]https://ng1.17img.cn/bbsfiles/images/2021/07/202107221112238041_5481_2022385_3.png!w690x213.jpg[/img]进样品空白的谱图如下:[img=,684,215]https://ng1.17img.cn/bbsfiles/images/2021/07/202107221139206496_4010_2022385_3.png!w690x213.jpg[/img]进样品的谱图如下:[img=,690,229]https://ng1.17img.cn/bbsfiles/images/2021/07/202107221140208678_3330_2022385_3.png!w690x229.jpg[/img]

  • 【原创】缺德:复合氨基酸片中氨基酸总量的85%都是味精(谷氨酸)!

    单位进了一台全自动氨基酸分析仪,刚安装好,练练手,同事拿了一瓶复合氨基酸(瓶上标注made in USA, 据说市面上很畅销),我们测了氨基酸含量,竞然主要成分是谷氨酸,占氨基酸总量的85%,我戏说以后烧菜不用放味精,放一片复合氨基酸就行,可这玩艺要几百元一瓶,一瓶(谷氨酸)要顶一大箱味精!

  • 氨基酸含量测定

    使用ACCQ.TAG 氨基柱检测甘氨酸含量,内标物质α-氨基丁酸拖尾因子比较大(药典标准0.95-1.40),新柱子开始做拖尾因子就1.3多,做三四次后拖尾因子就超标准了,请教各位大神是什么原因?

  • 氨基酸分子

    氨基酸分子中一定含有()。 A、氨基,羟基 B、羰基、羧基 C、氨基、醛基 D、氨基、羧基

  • 【资料】小麦籽粒氨基酸碳氮稳定同位素的测定与分析

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=155679]小麦籽粒氨基酸碳氮稳定同位素的测定与分析[/url]………………………………………………………………………………[color=#00008B]【目的】利用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-燃烧-同位素比值质谱仪(gas chromatography-combustion-isotope ratio masss pectrometry,GC-C-IRMS)测定小麦籽粒氨基酸碳氮稳定同位素组成。【方法】以小麦临汾50744为材料,水解得到其籽粒蛋白质氨基酸,将氨基酸标准样品以及小麦籽粒氨基酸衍生化为N-新戊酰基,O-异丙醇(N-pivaloyl-isopropyl,NPP)氨基酸酯,利用GC-C-IRMS测定其碳氮稳定同位素组成。【结果】氨基酸标准样品的碳氮同位素组成分析表明,NPP氨基酸酯的平均重现性δ^13C为0.47‰,δ^15N为0.28‰,并没有产生大的同位素分馏,因此δ^13C和δ^15N都能得到满意的测定结果。运用GC-C-IRMS测定了小麦临汾50744籽粒蛋白质氨基酸的稳定碳氮同位素的自然丰度,其中δ^13C的变化范围在-28.7‰到-34.7‰,δ^15N的变化范围为-6.2‰到9.5‰。采用系统聚类分析进行分类,根据δ^13C可以将氨基酸分为两类 根据δ^15N可以将氨基酸分为三类。【结论】运用GC-C-IRMS结合NPP氨基酸酯衍生物可以测定小麦籽粒氨基酸的稳定碳氮同位素,这对于揭示氨基酸代谢途径的差异以及逆境胁迫下氨基酸的合成差异具有重要的意义。[/color]

  • 【求助】氨基酸分析中碰见不常见的氨基酸

    最近忙氨基酸分析,用柱前衍生。发现样品有一个峰很高,尤其是水解之后更高。它不是17中氨基酸标准品中的一个,不知道是什么。。。。。。。。这样的话我怎么得知它是什么氨基酸呢?我算总量的时候可不可以用峰面积估算出这个峰代表的氨基酸的含量? 可不可以用质谱做?但是样品比较复杂。。。。。。。。。。。。。要怎么办呢?大侠们出手试试

  • 【求助】氨基酸衍生反应物

    我用液谱检测γ-氨基丁酸,用异硫氰酸苯酯衍生反应,冻干后反应物成块状,不溶解.为什么呢 ?郁闷啊!请大侠指点迷津,不胜感激!

  • 【转帖】氨基酸的主要化学反应

    氨基酸的主要化学反应(一)茚三酮反应茚三酮反应(ninhydrin reaction)这是氨基酸的α-NH2所引起的反应。α-氨基酸与水合茚三酮一起在水溶液中加热,可发生反应生成蓝紫色物质。首先是氨基酸被氧化分解,放出氨和二氧化碳,氨基酸生成醛,水合茚三酮则生成还原型茚三酮。在弱酸性溶液中,还原型茚三酮、氨和另一分子茚三酮反应,缩合生成蓝紫色物质。所有氨基酸及具有游离α-氨基的肽都产生蓝紫色,但脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,因其α-氨基被取代,所以产生不同的衍生物。此反应十分灵敏,根据反应所生成的蓝紫色的深浅,在570nm波长下进行比色就可测定样品中氨基酸的含量。也可在分离氨基酸时作为显色剂定性、定量地测定氨基酸。 (二)氨基酸与2,4-二硝基氟苯的反应 此反应又称桑格反应(Sanger reaction)。在弱碱性(pH 8~9)、暗处、室温或40℃条件下,氨基酸的α-氨基很容易与2,4-二硝基氟苯(缩写为FDNB)反应,生成黄色的2,4-二硝基氨基酸(dinitrophenyl amino acid,简称DNP-氨基酸)。该反应由F. Sanger首先发现。多肽或蛋白质的N-末端氨基酸的α-氨基也能与FDNB反应,生成一种二硝基苯肽(DNP-肽)。由于硝基苯与氨基结合牢固,不易被水解,因此当DNP-多肽被酸水解时,所有肽键均被水解,只有N-末端氨基酸仍连在DNP上,所以产物为黄色的DNP-氨基酸和其它氨基酸的混合液。混合液中只有DNP-氨基酸溶于乙酸乙酯,所以可以用乙酸乙酯抽提并将抽提液进行色谱分析,再以标准的DNP-氨基酸作为对照鉴定出此氨基酸的种类。因此2,4-二硝基氟苯法可用于鉴定多肽或蛋白质的N-末端氨基酸。(三)氨基酸与苯异硫氰酸(PITC)的反应 此反应又称艾德曼反应(Edman reaction)。在弱碱性条件下,氨基酸的α-氨基可与苯异硫氰酸(phenylisothiocyanate, PITG)反应生成相应的苯氨基硫甲酰氨基酸(简称PTC-氨基酸)。在酸性条件下,PTC-氨基酸环化形成在酸中稳定的苯乙内酰硫脲氨基酸(phenylthiohydantoin,简称PTH)。蛋白质多肽链N-末端氨基酸的α-氨基也可有此反应,生成PTC-肽,在酸性溶液中释放出末端的PTH-氨基酸和比原来少一个氨基酸残基的多肽链。PTH-氨基酸在酸性条件下极稳定并可溶于乙酸乙酯,用乙酸乙酯抽提后,经高压液相层析鉴定就可以确定肽链N-末端氨基酸的种类。该法的优点是可连续分析出N端的十几个氨基酸。瑞典科学家P. Edman首先使用该反应测定蛋白质N-末端的氨基酸。氨基酸自动顺序分析仪就是根据该反应原理而设计的。(四)α-羧基的反应 氨基酸的α-羧基和一般的羧基一样,可以和碱作用生成盐,其中重金属盐不溶于水。氨基酸的羧基还能与醇类作用,被酯化生成相应的酯。酯化作用在人工合成多肽中常用来保护氨基酸的α-羧基。例如,氨基酸在无水乙醇中通入干燥氯化氢气体,或加入二氯亚砜,然后回流,生成氨基酸酯的盐酸盐。氨基酸的α-羧基被还原可产生相应的α-氨基醇,例如被氢硼化锂还原的反应。此性质在蛋白质一级结构的测定中是鉴定C-末端氨基酸的一种方法。(五)R基的反应 氨基酸的R侧链含有官能团时也能发生化学反应,例如丝氨酸、苏氨酸和羟脯氨酸均为含有羟基的氨基酸,所以能形成酯。酪氨酸的R侧链含有苯酚基,具有还原性,所以可利用此性质定量地测定蛋白质。另外,苯酚基和组氨酸中的咪唑基具有芳香环或杂环的性质,能与重氮化合物(如对氨基苯磺酸的重氮盐)结合而生成棕红色的化合物,此反应可用于定性、定量测定。此外,半胱氨酸的侧链上的巯基(-SH)的反应性能高,在碱性溶液中容易失去硫原子并且容易被氧化而生成胱氨酸。另外,极微量的某些重金属离子,如Ag+、Hg2+,都能与-SH基反应,生成硫醇盐,从而导致含-SH酶失活。

  • 【资料】氨基酸与肽

    1.1概述1.1.1氨基酸基本的理化性质 一、基本物理学性质 包括基本组成和结构、溶解性、酸碱性质、立体化学、熔点、沸点、光学行为、旋光性、疏水性等。 (一)溶解性质根据氨基酸侧链与水相互作用的程度可将氨基酸分作几类。含有脂肪族和芳香族侧链的氨基酸,如Ala、Ile、Leu、Met、Pro、Val及Phe、Tyr,由于侧链的疏水性,这些氨基酸在水中的溶解度均较小;侧链带有电荷或极性集团的氨基酸,如Arg、Asp、Glu、His、Lys和Ser、Thr、Asn在水中均有比较大的溶解度;但根据电荷及极性分析也有一些例外,如脯氨酸属于带疏水基团的氨基酸,但在水中却有异常高的溶解度。 (二)氨基酸的疏水性 氨基酸的疏水性,是影响氨基酸溶解行为的重要因素,也是影响蛋白质和肽的物理化学性质(如结构、溶解度、结合脂肪的能力等)的重要因素。 按照物理化学的原理,疏水性可被定义为:在相同的条件下,一种溶于水中的溶质的自由能与溶于有机溶剂的相同溶质的自由能相比所超过的数值。估计氨基酸侧链的相对疏水性的最直接、最简单的方法就是实验测定氨基酸溶于水和溶于一种有机溶剂的自由能变化。 一般用水和乙醇之间自由能变化表示氨基酸侧链的疏水性,将此变化值标作△G′。 不同氨基酸的△G′值如下表所示。当氨基酸的△G′值为正时,其侧链具有疏水性,倾向于处在蛋白分子的内部; △G′为负时,其侧链是亲水的,倾向于处在蛋白分子的表面。需要注意的是,赖氨酸通常是蛋白质分子中亲水性的氨基酸残基,但它的△G′是正值,这是由于它的侧链含有优先选择有机环境的4个-CH2-基。 (三)氨基酸的光学性质 氨基酸中的苯丙氨酸、酪氨酸、色氨酸分子中由于有共轭体系,因此可以吸收近紫外光。它们的最大吸收波长(λmax)分别为260nm、275nm、278nm;在吸收最大波长光线的时候还会发出荧光。

  • 使用waters的AQC衍生氨基酸的人注意了

    脯氨酸与γ-氨基丁酸采用上述方法时,很难分离,从而对脯氨酸的测定产生一定影响。而γ-氨基丁酸又是人体内常见的神经递质,可由谷氨酸脱羧基生成,故广泛存在。对于来自生物提取物(工艺较滥时),这种情况尤为明显。

  • 氨基酸分析仪可以检测混合氨基酸吗?

    请教各位老师一个问题。我们有一个混合氨基酸,想用氨基酸分析仪检测。但有的检测实验室讲,高纯度的氨基酸用氨基酸分析仪检测误差会比较大,这种说法有道理吗?谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制