当前位置: 仪器信息网 > 行业主题 > >

氨氮含量

仪器信息网氨氮含量专题为您整合氨氮含量相关的最新文章,在氨氮含量专题,您不仅可以免费浏览氨氮含量的资讯, 同时您还可以浏览氨氮含量的相关资料、解决方案,参与社区氨氮含量话题讨论。

氨氮含量相关的资讯

  • 技术资讯:水中的氨氮含量测定方式
    氨氮(NH3—N)以游离氮(NH3)或(NH4+)形式存在于水中,两者的组成比取决于水的PH值和水温。当PH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐,甚至继续转变为硝酸盐。水中氨氮的测定一般都采用纳氏试剂光度法,氨与碘化汞钾的碱性溶液反应,生成淡黄到棕色的配合物碘化氨基合氧汞,选用410-425nm波段进行测定,测出吸收光度,用标准曲线法来得出水中的氨氮含量。不过这种方法的低检出限为0.25mg/L,测定上限为2mg/L,需要注意的是合成物的颜色深浅与氨氮的含量成正比,所以大家在检测之前可以根据颜色的深浅来进行粗略的估计。当干扰较多或氨氮含量较少时,大家可以采用蒸馏法,使氨从碱性溶液中成气态逸出来进行检测,不过这种方法操作复杂,精密度和准确度都比较差。
  • 分析水质中氮含量主要成分是在于几方面
    水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。地表水中氮、磷物质超标时,微生物大量繁殖,浮游生物生长旺盛,出现富营养化状态。  目前,国标针对水质中氮的分析主要分总氮、氨氮、硝态氮、凯氏氮4个方面。  1、总氮  总氮是指可溶性及悬浮颗粒中的含氮量(通常测定硝酸盐氮、亚硝酸盐氮、无机铵盐、溶解态氨几大部分有机含氮化合物中氮的总和)。可溶性总氮是指水中可溶性及含可过滤性固体(小于0.45μm颗粒物)的含氮量。总氮是衡量水质的重要指标之一。  总氮的测定方法,一是采用分别测定有机氮和无机氮化合物(氨氮、亚硝酸盐氮、硝酸盐氮)后加和的办法。二是以过硫酸钾氧化,使有机氮和无机氮转变为硝酸盐后,通过离子选择电极法对溶液中的硝酸根离子进行测量,也可以用紫外法或还原为亚硝酸盐后,用偶氮比色法,以及离子色谱法进行测定。  2、氨氮  氨氮是指游离氨(或称非离子氨,NH3)或离子氨(NH4+)形态存在的氨。pH较高,游离氨的比例较高;反之,铵盐的比例高。  氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。  氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH值及水温有密切关系,一般情况,pH值及水温愈高,毒性愈强。  常用来测定氨的两个近似灵敏度的比色方法是经典的纳氏试剂法和苯酚-次氯酸盐法;滴定法和电极法也常用来测定氨;当氨氮含量高时,也可采用蒸馏-滴定法。(国标有纳氏试剂法、水杨酸分光光度法、蒸馏-滴定法)  3、凯氏氮  凯氏氮是以凯氏法测得的的含氮量。它包括氨氮和在此条件下能被转化为铵盐而测定的有机氮化合物。此类有机氮主要指蛋白质、胨、氨基酸、核酸、尿素以及大量合成的,氮为负三价的有机氮化合物。不包括叠氮化合物、联氮、偶氮、腙、硝酸盐、腈、硝基、亚硝基、肟和半卡巴腙类含氮化合物。由于水中一般存在的有机化合物多为前者,因此,在测定凯氏氮和氨氮后,其差值即称之为有机氮。  测定原理是加入硫酸加热消解,使有机物中的胺基以及游离氨和铵盐均转变为硫酸氢铵,消解后的液体,使呈碱性蒸馏出氨,吸收于硼酸溶液,然后以滴定法或光度法测定氨含量。测定凯氏氮或有机氮,主要是为了了解水体受污染状况,尤其在评价湖泊和水库的富营养化时,是个有意义的指标。  4、硝态氮  1).硝酸盐  水中硝酸盐是在有氧条件下,各种形态含氮化合物中稳定的氮化合物,通常用以表示含氮有机物无机化作用最终阶段的分解产物。当水样中仅含有硝酸盐而不存在其他有机或无机的氮化合物时,认为有机氮化合物分解完全。如果水中含有较多量的硝酸盐同时含有其他含氮化合物时,则表示有污染物已经进入水系,水的“自净”作用尚在进行。  硝酸盐氮的测定方法有离子选择电极法、酚二磺酸分光光度法、镉柱还原法、紫外分光光度法、戴氏合金换元法、离子色谱法、紫外法。  其中电极法测量方便,范围宽,而且价格便宜,对水样要求较低;酚二磺酸分光光度法测量范围宽,显色稳定;镉柱还原法适用于水中低含量硝酸盐测定;戴氏合金换元法适用于污染严重并带深色水样;离子色谱法需要专用仪器,但可于其他阴离子联合测定。  2).亚硝酸盐  亚硝酸盐是氮循环的中间产物。亚硝态氮不稳定,可以氧化成硝酸盐氮,也可以还原成氨氮。因此,在测定其含量的同时,并了解水中硝酸盐和氨的含量,则可以判断水系被含氮化合物污染的程度及自净情况。  水中亚硝酸盐的测定方法通常采用重氮-偶联反应,使生成红紫色染料。该方法灵敏度高、检出限低、选择性强。重氮试剂选用对氨基苯磺酰胺和对氨基苯磺酸,偶联试剂为N-(1-萘基)-乙二胺和α-萘胺(有毒),N-(1-萘基)-乙二胺用得较多。  亚硝酸盐氮的测定方法有N-(1-萘基)-乙二胺分光光度法、萃取分光光度法、离子色谱法、气相色谱法等。(国标采用N-(1-萘基)-乙二胺分光光度法、气相色谱法等)
  • 蛋白质含量测定新方案——排除假蛋白氮(NPN)的干扰
    不法商人添加非法添加物的根本原因是,本来劣质产品中蛋白质含量就很低,需要添加用凯氏定氮法查不出的含氮物质充数。因为现行的凯氏定氮蛋白质测定方法局限于:只能测试总有机氮含量,而非特定的蛋白质中氮含量,因此,方法缺陷被不法商人所投机利用,使伪劣产品蒙混达标。 传统上,蛋白质的测定一直采用凯氏定氮法。该法的误区是:通过氧化还原反应,把低价氮氧化并转为氨盐,再通过氨盐中氮元素的量换算成蛋白质的含量。凯氏定氮针对有机氮化合物,主要是指蛋白质,aa,核酸,尿素等N3-化合物。非蛋白质的含氮化合物,,如三聚氰胺等,在凯氏定氮过程中,被同样消化成(NH4)2SO4,造成蛋白值虚高,我们统称这些化合物为假蛋白氮(NPN)。 从食品安全控制可靠性上考虑,解决问题的根本方法,是直接测试食品中的真蛋白质含量。因为,如果能够一次直接测定食品中真蛋白质含量,那么就堵住了市场监管上的漏洞,使伪劣产品无所遁形。因此添加假蛋白质物质,如三聚氰胺等就毫无意义了。区别蛋白质与NPN的意义在于可以获得真实准确的蛋白质含量。从根本上解决了问题,厂商只能提供达标产品。这对需要进行蛋白质检测行业如食品、饲料及蛋白研究和管理领域具有重要的价值。呼吁中国国家有关部门将真蛋白质检测尽快纳入预防性安全监控标准。 1.食品行业的蛋白质问题 监控食品加工过程中的所有流程节点,包括原料采购、浓缩、勾兑、干燥、储存等。如假劣奶粉的危害就在于产品未达到国家蛋白标准限定,但在&ldquo 国标&rdquo 的凯氏定氮法检测后通过检测,其原因就在于搀加大量的NPN,造成蛋白质含量虚高。所添加的NPN大部分是化工产品,严重威胁食品安全。 2.饲料行业的蛋白质问题 饲料行业同样面临NPN造成的危害。例如最近引起社会关注的三聚氰胺。三聚氰胺含氮量达66%,白色无味,与蛋白粉外观相似,是被不法厂商大量使用的NPN。与&ldquo 瘦肉精&rdquo 、&ldquo 苏丹红&rdquo 等少数违禁添加剂一样,损害动物机体健康,并最终通过食物链转移到人体内。三聚氰胺高温下会形成氰化物,长期或反复接触对肾脏器官形成巨大损害。 3.其他研究领域的蛋白质问题 植物原料中NPN的含量随季节、地域及品种变化很大。精确检测蛋白质含量,排除NPN干扰对于保证科学研究的严谨性具有重要意义。 美国CEM 公司的真蛋白质SPRINT分析仪,是目前唯一的真蛋白质测试仪,其主要特点: 1.直接测量&ldquo 真蛋白质&rdquo ,而非总氮含量 2.所有类型样品检测(液体、固体、粉末状、奶油、肉类、坚果类、谷物、种子等); 3.测量时间只需两分钟;全自动操作,无需有经验的化学家; 4.对三聚氰胺等非法添加剂,不会产生错误的蛋白质测量结果,精确性和准确度等优于凯氏定氮法; 5.对非氮蛋白质的测定无需校准,直接测量; 6.无需化学试剂;相比目前的检测方法,具有更低的操作成本; screen.width-300)this.width=screen.width-300" border="0" alt="" src="https://img1.17img.cn/17img/old/NewsImags/2008328164614.jpg" / http://www.analyx.com.cn/products/list.asp?classid=122
  • 使用超高效合相色谱系统测定氨苯砜片(Dapsone)的色谱含量
    使用ACQUITY UPC2系统测定氨苯砜片(Dapsone)的色谱含量 目的 使用沃特世(Waters® )ACQUITY UPC2&trade 系统将药典中氨苯砜含量的正相HPLC测定方法转换为超临界流体色谱(SFC)方法。 背景 目前,美国药典(USP)规定了含有氨苯砜(4,4&rsquo -二氨基二苯砜,CAS #80-08-0)药物片剂的正相HPLC分析方法。使用4.0 x 300 mm,10µ m的硅胶柱(L3)进行等度分离,流动相为正己烷、异丙醇、乙腈和乙酸乙酯(7:1:1:1)的混合溶液。该方法的运行时间约为12.5min(最后一个主峰出峰时间的2倍,流速1.5mL/min)。如大多数药典中的方法一样,本方法经过验证且可靠。但是,该方法使用了正己烷和乙酸乙酯溶剂。出于健康、安全和环保的原因,许多实验室都想减少这些溶剂的使用。超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主流动相,以极性溶剂(如甲醇)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,减少溶剂的消耗和处理,降低每次分析的成本,同时增强了健康、安全和环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。 对寻求更高效、更低成本的氨苯砜片分析方法的实验室而言,ACQUITY UPC2系统不愧为理想之选,该方法同时加强了健康、安全和环境方面的保护。 解决方案 使用目前美国药典(USP)方法,制备和分析氨苯砜标准品和片剂样品,如图1所示(该样品也用于SFC分析)。使用目前USP方法的分析结果与使用ACQUITY UPC2方法得到的结果进行对比,如图2所示。 SFC方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,3.0 x 50 mm,1.7µ m 柱温: 45 ° C 流动相: 85% CO2:15% MeOH 流速: 3.0 mL/min, 背压: 130 bar/1885 psi 检测器: UV /PDA,254 nm 药典方法所列出的适应性条件是最低要求(相对标准偏差不得大于2%)。标准品6次重复进样,目前正相HPLC方法得到的保留时间和峰面积的相对标准偏差(%)分别为0.1%,1.1%。超高效合相色谱方法UltraPerformance Convergence Chromatography&trade (UPC2)重复6次进样得到的实验结果符合USP药典系统适应性要求(保留时间RSD值0.8%,峰面积RSD值0.9%),且运行速度(1.75 min)大大加快。两种方法测定片剂样品的分析结果高度一致。本例中,每次正相HPLC分析使用正己烷13.1mL,异丙醇、乙腈和乙酸乙酯各1.9mL 。相比之下,UPC2方法仅消耗约0.50mL甲醇。这说明了通过将正相色谱方法转换为UPC2方法可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相色谱HPLC分析成本大约为1.08美元;相比之下,UPC2仅为0.01美元。 总结 使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好;速度是目前的HPLC方法的7倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,则实验室生产率提高,每个样本的分析成本降低。ACQUITY UPC2系统是实验室将目前的正相HPLC方法转换为更高效、更省钱的UPC2的方法的一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。 联系方式: 叶晓晨 沃特世科技(上海)有限公司市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 使用全自动凯氏定氮仪测定土壤氮含量
    使用全自动凯氏定氮仪测定土壤氮含量 一、参考文献:HJ 717-2014 土壤质量 全氮的测定 凯氏法 二、 凯氏法原理:样品在浓硫酸和催化剂硫酸铜、硫酸钾高温硝化反应,把有机的氮结构转化成无机的硫酸氮形式的氮,(为了使得样品消化时不产生挂壁,必须采用样品孔间温差小和带程序升温功能的消化炉,否则会产生挂壁现象,导致消化失败)消化完成后,需要将样品冷却到40℃左右,再把消化管放入定氮仪上。仪器对消化管内自动添加稀释液、碱,反应杯内自动添加硼酸和显色剂。对消化管内样品加热蒸馏,产生氨气和水蒸气结合形成氨水,氨水通过冷凝管冷却流到反应杯内被硼酸吸收,生成硼酸氨,同时用标准硫酸进行滴定,直到蒸馏结束和滴定到终点。三、仪器设备和试剂:1.全自动定氮仪SKD-1000(上海沛欧分析仪器有限公司)2.消化炉SKD-20S2(上海沛欧分析仪器有限公司)3.万分之一天平标准硫酸浓度:0.01mol/L40%的氢氧化钠水溶液2%的硼酸+甲基红和嗅甲酚绿混合的指示剂催化剂(硫酸铜:硫酸钾为1:10的混合物)蒸馏水样品为上海水产研究所提供的土壤标准品:665mgN/KG(允许误差±50mg) 四、操作条件和程序: 1,把2个土壤样品移入2个消化管内,2个消化管再放入5克催化剂,1g的样品加入98%浓硫酸10ml,空白放相同的催化剂和浓硫酸,按序号放入消化炉,盖上排废气装置,打开抽气泵上水龙头开关。 消化炉温度-时间曲线设置:180度(5分钟)--250度(10分钟)---350度(10分钟)----380度(60分钟)。 程序段R:斜率(min/℃)T:保温时间C:目标温度12005180218010 25031805350420060380 消化炉根据时间-温度曲线自动升温和保温,直到消化结束。把消化架取下放在冷却架上,冷却到40℃左右。定氮仪设置:加稀释液40ml、氢氧化钠40ml、标准酸硫酸 0.01(moL/L)、硼酸和指示剂加50ml(仪器定量设置),蒸馏方式:定时(6分钟)、蒸馏功率百分之100(1500W)、加碱方式:间段式加碱。 输入2个样品的编号、重量、标准酸浓度氮含量计算公式N%=1.401(v-v0)c/mN%---------氮含量v--------消耗标准酸体积(ml)V0------空白消化标准酸体积(ml)C--------标准硫酸浓度(mol/L)m--------样品体积(ml)土壤标准品:665mgn/KG(允许误差±50mg)编号样品重量g空白(ul)标准酸浓度mo/l样品消耗标准酸量mlN含量%示值误差%11.001312200.015.9720.0664(=664mgn/kg)-1mg21.019812200.016.0820.0667(=667mgn/kg)+2mg 实验单位:上海水产研究所2018年8月24日
  • 可检测石油产品中硫及氮含量---轻质石油产品硫含量测定仪
    分析仪器作为专用设备,在电力、石化、制药、科学研究等领域都有着重要的作用,各异的功能要求造成了多样繁杂的分析仪器仪表种类,即使是同样功能的分析仪器,具体到每个行业,又有不同的要求。各类分析仪表仪器之间的原理、设计、制造等有较大区别,每一款分析仪器涉及的专业知识广而深,导致自主研发和市场开发的难度非常大,存在较高的技术壁垒。繁杂多样的下游需求结构和技术壁垒造成了行业细分市场分割特征明显。在细分领域中,常有 1~2 家技术优势、服务较好的企业在市场上具有压倒性优势,但总体企业市场规模仍普遍较小。国内还缺乏综合性横跨多领域具有明显优势地位的仪器仪表供应商。故在此基础上还是有一定的发展空间的。A1330轻质石油产品硫含量测定仪是依据SH/T 0253设计制造的,应用微库仑分析技术,采用氧化法将样品通过裂解炉氧化为可滴定离子,在滴定池中滴定,根据电解滴定过程中所消耗的电量,依据法拉第定律,计算出样品中硫的含量,适用于沸点40~310℃的轻质石油产品。硫含量范围为0.5~1000ppm的试样,大于1000ppm的试样应稀释后测定。本仪器也可测氯的含量。仪器特点1、人机直接对话,操作便捷。2、计算机控制整个分析、数据处理等过程,显示全过程工作状态,根据需要可将参数、结果存盘或打印。3、采用**元器件,减少了仪器噪声,提高了检测速度。4、具有性能稳定可靠,操作简便,分析精度高,重复性好等特点。技术参数偏压范围:0 ~ 500mv测量范围:0.1~10000 ng/μl控温范围:室温~1000℃控温精度:±1℃测量精度:    样品浓度(ng/μl) 0.2 RSD(%)35   样品浓度(ng/μl) 1.0 RSD(%)10   样品浓度(ng/μl) 100 RSD(%)5   样品浓度(ng/μl)1000 RSD(%)2气源要求:普氮和普氧工作电源:AC220V±10% 50Hz功  率:3.5KW外形尺寸:主机:410×350×75(mm)     温控:530×420×360(mm)     搅拌器:290×270×360(mm) 进样器:350×130×140(mm)
  • 水中六价铬含量的测定
    一、背景介绍铬是一种银白色的坚硬金属,是人体必需的微量元素,在肌体的糖代谢和脂代谢中发挥特殊作用。三价的铬是对人体有益的元素,而六价铬是有毒的。六价铬化合物是生态环境部会同卫生健康委制定的《有毒有害水污染物名录(第|一批)》列入物质,对环境危害持久;动物饮用受六价铬污染水体,会致使多个组织器官吸收,然后引起致癌危害;人体吸入六价铬可致癌。《生活饮用水卫生标准》、GB/T 14848-2017《地下水质量标准》等水质标准对六价铬含量均有限值要求,故我们需要对水中六价铬含量进行检测。下面我们将具体介绍六价铬含量检测的标准要求、测试方法、具体测试过程及结果。二、标准及限值六价铬的测定方法有多种,例如原子吸收光谱法、离子色谱、极谱法、分光光度法等。其中二苯碳酰二肼分光光度法测试性价比高,检测仪器可设计成便携式,易于携带保管二苯碳酰二肼分光光度法:在酸性溶液中,六价铬可与二苯碳酰二肼反应生成紫红色络合物,在特定波长处比色定量。下列是各标准中六价铬的限值及对应的检测方法。表1六价铬的检测标准及限值标准编号标准名称限值GB 5749-2006GB5749-XXXX征求意见稿生活饮用水卫生标准0.05mg/LGB/T 14848-2017地下水质量标准≤0.10 mg/L(Ⅳ类)三、六价铬含量测定1. 检测仪器:DGB-480型多参数水质分析仪2. 检测试剂:六价铬试剂包:铬试剂A、铬试剂B、铬试剂C铬标准溶液:ρ=100.0mg/L3. 检测流程及结果:参数方法号方法国家标准检出限mg/L测量范围mg/L重复性测量误差六价铬2二苯碳酰二肼法GB/T 5750.60.0200.02-2.003.0%±5%或±0.05 mg/L图 1 六价铬含量测定流程图2 六价铬含量测定显色图(从左到右依次为2mg/L、1.6mg/L、1mg/L、0.25mg/L、0mg/L) 图3 六价铬含量测定曲线图4. 结果总结:l 对2mg/L、1.6mg/L、1mg/L、0.25mg/L、0mg/L的六价铬标准溶液进行检测,结果良好。l 采用DGB-480型多参数水质分析仪测定水中六价铬含量,测量方法为国家标准方法。测试仪器体积小巧,配套有六价铬检测试剂和校准试剂,测试方便,测试性价比高。 四、检测仪器介绍DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置Ø浊度、色度、臭氧、亚硝酸盐氮、尿素、六价铬、总铬、锰、总氮、硝酸盐氮、硝酸盐、甲醛、水硬度、锌、亚硝酸盐、余氯、总氯、二氧化氯、高锰酸盐指数、低浓度CODCr、高浓度CODCr、镉、氨氮、铵离子、总磷、总磷酸盐、镍、亚铁离子、铁、亚硫酸盐、过氧化氢、铝、铅、铜、钙、汞、硼、砷、氟、阴离子洗涤剂、银、溴酸盐、硫酸盐、钼、钴、钡、氯化物、铍、氯酸盐、挥发酚、硫化物、氰化物、亚氯酸盐等50多种检测项目和方法,直接调用,测量快速、简便。既可以配套雷磁专用试剂盒检测也可以自制试剂检测,使用灵活。主要应用于生活饮用水、地表水、自来水、污水、游泳池水等水质的现场测定或者实验室分析。
  • 煤中碳氢氮含量检测标准方法比对
    目前,市场上关于煤中煤中碳氢氮含量检测的标准方法,主要采用《GBT476-2008 煤中碳和氢的测定方法》和《GBT30733---2014煤中碳氢氮的测定仪器法》,二者分别有何优劣,今天就让小编来给大家做一个全面的比对。1.测试原理《GBT476-2008 煤中碳和氢的测定方法》:采用俗称的二节炉或三节炉,通过吸收剂将煤中碳元素燃烧产生的二氧化碳吸收、氢元素燃烧产生的水蒸气吸收,由吸收剂的增量来确定煤中碳元素的含量。《GBT30733---2014 煤中碳氢氮的测定仪器法》:采用红外光谱法和热导法,煤样完全燃烧后,煤中碳元素转化为二氧化碳、氢元素转化为水蒸气、氮元素转化为氮氧化物,燃烧后的气体根据朗伯-比尔定律(不同气体在红外区有不同的吸收波段,而在特定波段,气体吸收红外光强与其浓度成一定的函数关系),计算得到被测煤样的碳氢元素含量。取一定量的气体进行还原后,进入热导池测试得到氮元素含量。2.自动化程度《GBT476-2008 煤中碳和氢的测定方法》:仪器主要包括净化系统、燃烧系统、吸收系统三大部分,每个系统均需在使用前填充试剂或其他材料,操作繁琐,若试剂或材料填充不好,将直接影响测试结果。测试结束后,需仔细、小心进行U型吸收管表面的干燥、擦拭及称量操作,稍有不慎,则会导致测试结果异常。从空白样测试(空白试验不成功则无法进行测试样的测定)、气体收集、冷却、称量到计算均需人工操作,过程繁琐、难度大,且测试结果的准确度无法保证。《GBT30733---2014 煤中碳氢氮的测定仪器法》:每次测试前开启计算机及仪器,点击升温后仪器自动恒温、控温,操作人员只需将当天需测试的所有煤样一次性称量好后放入放样盘即可(预留空白样测试孔位),录入空白样及测试样信息后,点击开始实验,仪器将自动完成所有样品的测试。3.主要试剂及材料《GBT476-2008 煤中碳和氢的测定方法》:铬酸铅(需用蒸馏水调成糊状,挤压成型,放入高温炉中,在850℃下灼烧2h,取出冷却备用)、银丝卷、高锰酸银、二氧化锰、无水高氯酸镁、铜丝卷、氧化铜、氧气、三氧化钨、碱石棉、真空硅脂、硫酸等。三节炉:需用铬酸铅和银丝卷消除硫和氯对碳测定的影响;二节炉:需用高锰酸银热解产物消除硫和氯对碳测定的影响;三节炉/二节炉:需用粒状二氧化锰消除氮对碳的测定的影响。《GBT30733---2014 煤中碳氢氮的测定仪器法》:氧气、氮气、氦气、氧化钙、无水高氯酸镁、碱石棉、线状铜、铜线、氮催化剂。4.测试时间《GBT476-2008 煤中碳和氢的测定方法》: 约30min/个《GBT30733---2014 煤中碳氢氮的测定仪器法》:约5min/个5.测试示意图《GBT476-2008 煤中碳和氢的测定方法》: 三节炉和二节炉碳氢测定示意图《GBT30733---2014 煤中碳氢氮的测定仪器法》:三德科技SDCHN536碳氢氮元素分析仪测试气路示意图结论《GBT30733---2014煤中碳氢氮的测定仪器法》与《GBT476-2008 煤中碳和氢的测定方法》相比,具备以下显著优势:01自动化程度高,操作步骤简单;02所需试剂及材料种类少;03测试速度快。《GBT30733---2014煤中碳氢氮的测定仪器法》是煤中碳元素测定的优选方法。
  • 家中甲醛含量超标 竟是新床垫惹祸
    黄先生是一名年轻的公务员,新买的房子装修后不久,家中便喜添千金。由于老人房和婴儿房有异味,黄先生夫妇担心室内空气质量不达标,一直不敢让女儿回家居住。本报联合广西分析测试研究中心(以下简称“测试中心”)为其进行了免费环保检测后,结果却有点出乎意料,老人房和婴儿房各项“体检”指标合格,主卧房却出现了甲醛超标的现象。   环保检测档案   业主:黄先生 地址:南宁市文雅苑小区 户型:三房两厅 面积:120平方米   装修时间:2009年7月下旬装修完 检测机构:广西分析测试研究中心   年轻父母装修环保放首位   11月6日,记者与测试中心的检测人员来到黄先生新家时,获悉当天恰好是他女儿满百天的日子。由于担心有装修污染,女儿出生之后,夫妇俩不敢把她接回新家住,三个多月来一直住在旧房子里。“检测之后,如果新房空气质量没问题,就可以放心把女儿接回来了。”黄先生高兴地说。   装修期间,妻子已经有孕在身,新房的环保问题成为夫妇俩的重点考虑因素,因此即使工作再忙、跑市场再辛苦,黄先生也宁愿采取自购建材的方式,这样可以做到对每一样材料严格把关。装修尽量简单化,家中只做了少量吊顶,其他木作均能免则免。材料方面,除厨卫和阳台地面用瓷砖外,其他全部铺耐磨且易于打理的复合木地板,经过挑选,他购买了某品牌E0级的复合木地板,把环保放在首位。   黄先生说,包括橱柜、木地板、涂料及家具在内,他选购的都是市场上知名度较高的品牌产品,但全部装修完成后,他心里依然不太放心,主要是刚装修完时新房内依然有异味,尤其是老人房,一进门就感觉很呛。此外家里大面积铺装了复合木地板,尽管选的是环保安全系数最高的E0级,但因为女儿还太小,“不怕一万就怕万一”,他和妻子都特别担心新房空气污染物会超标,因此迫切希望做环保检测,给新房来一次全面“体检”。   甲醛检测仪现场大显身手   检测当天,黄先生按照检测中心的要求,提前一小时将家中所有门窗关闭。   上午9时30分,检测人员进入新房后,运用空气采样设备和仪器,分别在客厅(连餐厅)、老人房、主卧室和婴儿房进行了空气样本采集,以便随后在检测中心室验室对甲醛、TVOC、苯和氨四项空气污染物进行分析测试。   在采样的同时,甲醛现场检测仪也开始大显身手。检测中心工程师苏先生用这台仪器对每个房间做了甲醛检测追踪。在老人房,摆放的是一套从旧房搬过来的板式家具,使用已有三年时间,黄先生说原先在旧房子时并未感觉有异味,不知是否因为老人房面积较小的原因,搬过来后一直有味道。但用甲醛检测仪现场检测的结果显示,该房甲醛含量并未超标。   婴儿房除了地面铺复合木地板、墙面刷白之外,几乎没有做任何装修,内置一套新购买的松木儿童家具。这个房间的环保问题也是主人最为关心的,现场检测显示,其甲醛含量同样是在国家限定安全范围之内。   “看来购买环保性能较好的品牌建材产品,装修出来的新房还是能令人满意的。”黄先生说,除了注意选购环保材料之外,他在新房装修完后还采取了一些简单的治理措施,比如经常开门窗通风换气,还买了几百元的活性炭,将炭包放置在各个角落和新家具上。此外,搬家时还买了很多盆绿色植物,如吊兰、芦荟等,希望能尽快消除室内残留的有毒有害气体。   原来担心有问题的老人房和婴儿房,甲醛检测均合格,这让黄先生松了一口气。不过接下来主卧室的检测则让他有些吃惊,甲醛检测仪进入室内后不久,屏幕上显示的甲醛含量数值便开始往上升,很快便突破了0.08毫克/立方米的国家标准安全范围。主卧室甲醛含量超标,这个现场检测结果真让他有点意外。   新床垫为甲醛超标“源头”   黄先生家主卧室的装修其实也不复杂,地面铺E0级复合木地板,一面墙贴了壁纸设计为卧室背景墙,新购置了一套包括衣柜、梳妆台、床头柜、大床在内的品牌家具。黄先生猜测,也许是新家具前几天才进场,通风时间不够,才会出现甲醛超标的现象。   主卧室为何会甲醛超标?有没有办法追踪到主要污染源?苏工表示,甲醛检测仪的功能很强大,它不仅能检测出空气中甲醛含量是否超标,而且还能查找出甲醛的主要污染源。   于是,甲醛检测仪再次大显身手,苏工将检测仪的探头逐一放置在衣柜、床头柜、床垫等室内家具上,结果检测到床垫时发现数值较高,他告诉黄先生:“甲醛含量超标的主要原因是床垫。”   “床垫?”黄先生听了甚为吃惊,他疑惑地问道,“只听说板材、木制品容易出现甲醛污染,床垫也会含有甲醛吗?”   “你的床垫有一面是棕垫吧?”苏工问。黄先生点头。苏工说,在他们以前所做过的一些检测中,也发现过好几例床垫甲醛含量超标的案例,而且均是含棕的床垫。他说,棕垫因为在生产制作过程中也要使用到黏合剂或胶水,如果厂家所使用的胶水不环保,甲醛含量就会偏高。   听了专业人士的解释,黄先生这才明白过来,他连声称“真是没想到”。他说在装修之前做足了功课,因为了解板式家具、木地板、板材等木制品最容易出现甲醛污染,因此尽量少做木作,没想到防不胜防,还是有自己不太了解的环保盲点。   室内空气质量总体较好   11月11日,对黄先生新房进行采样分析后,检测中心出具了盖有CMA认证标志的正式检测报告。甲醛含量方面,实验室里得出的检测结果与现场检测结果基本一致,主卧室甲醛含量达到0.13毫克/立方米,超过了国家标准所限定的0.08毫克/立方米。客厅、老人房和婴儿房的甲醛含量分别为0.01、0.03、0.03毫克/立方米,均在国家限定安全标准之内。   此外,苯、TVOC和氨三项污染物,客厅、老人房、婴儿房和主卧室四个点均未超标,显示出该套房子室内空气质量总体较好。   测试中心检测人员表示,由于业主在装修前后采取的一些措施比较到位,比如在装修过程中选择品牌建材、装修尽量简化、少作木工,装修之后多通风、在室内放置炭包和绿色植物等,因此该套房子除主卧室甲醛含量超标之外,其他空间污染物数值都较低,符合国家标准。有不少装修业主担心大面积铺设复合木地板容易造成污染,从这一检测案例来看,选购环保安全系数较高的品牌木地板,环保方面是较有保障的。而主卧室甲醛含量超标,主要污染源在于含棕的床垫,业主应当尽可能地给主卧室通风换气,如果空气能够对流更好,如果条件允许,可以把床垫拿到大太阳下暴晒,加速甲醛的挥发。由于家中有老人和仅几个月大的婴儿,属于抵抗力较弱的人群,因此建议给主卧室采取环保治理手段,待室内空气中甲醛含量符合国家标准后再居住比较安全。
  • 牛奶里的蛋白质含量,你了解吗?
    牛奶里的蛋白质含量,你了解吗?近日,我们中国家喻户晓的品牌蒙牛伊利出大事了。一篇名为《深扒蒙牛伊利6大罪状,媒体不敢说,那就我来说》的文章刷屏全网。国产的牛奶的品质越来越受到大家的质疑,不仅质疑其参数的真伪,更质疑其国内与出口欧美的牛奶质量标准的不一致性。同时也造就了越来越多的人追求进口品牌的牛奶,特别是产地为欧洲的奶制品。此举为何人之过?牛奶中的蛋白质是供给机体的重要营养成分,其含量的准确测定非常重要。目前大部分客户主要采用传统的凯氏定氮法,投资成本低,但是操作流程冗长且繁琐、需要使用大量化学试剂等。杜马斯燃烧法测是近来一直备受广大用户所青睐的全自动、简单快速、绿色环保的氮/蛋白质含量测定方法。德国元素Elementar作为世界上第一台杜马斯测氮/蛋白质分析仪的发明者,具有非常丰富的经验。德国元素最新款的rapid N exceed与rapid MAX N exceed 氮/蛋白质分析仪,具有操作简单、测量快速、结果准确、维护简便等多重优势。 rapid N exceed rapid MAX N exceed 专为精确测定氮/蛋白质含量而设计-- 60、80或120位自动进样转盘或90位机械臂坩埚进样-- 专利EAS REGAINER® 和 REDUCTOR® 还原技术,确保使用寿命更长-- 可采用CO2 作为载气,使用成本更低-- 燃烧炉与热导检测池10年质
  • 奶粉里的蛋白质含量,你了解吗?
    近日湖南郴州永兴县“大头娃娃”事件一经爆出引起了社会的广泛关注,问题奶粉再次被推向了风头浪尖。孩子是祖国的未来,孩子的健康成长关乎国家的命运,所以严控奶粉质量事关重大。奶粉中的蛋白质是供给机体的重要营养成分,同时根据标签法,在奶粉的包装中,蛋白质含量也是其中一项重要指标。目前大部分客户主要采用传统的凯氏定氮法,投资成本低,但是操作流程冗长且繁琐、需要使用大量化学试剂等。杜马斯燃烧法测是近来一直备受广大用户所青睐的全自动、简单快速、绿色环保的氮/蛋白质含量测定方法。德国元素Elementar作为世界上第一台杜马斯测氮/蛋白质分析仪的发明者,具有非常丰富的经验。德国元素最新款的rapid N exceed与rapid MAX N exceed 氮/蛋白质分析仪,具有操作简单、测量快速、结果准确、维护简便等多重优势。 rapid N exceed rapid MAX N exceed专为精确测定氮/蛋白质含量而设计60、80或120位自动进样转盘或90位机械臂坩埚进样专利EAS REGAINER® 和 REDUCTOR® 还原技术,确保使用寿命更长可采用CO2 作为载气,使用成本更低燃烧炉与热导检测池10年质保
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 赫施曼助力水质氨氮检测
    氨氮含量是判定水质污染度的一个重要指标,氨氮以游离氨或铵盐形式存在于水中,水体受生活污水、农业排水、水产养殖以及某些焦化厂、化肥厂等工业废水污染后,氨氮浓度将明显增加。现行标准中,HJ 535-2009(纳氏试剂分光光度)法适用于地表水、地下水、生活污水和工业废水中氨氮的测定,其原理为:氨氮与纳氏试剂反应生成淡红棕色络合物,其吸光度与氨氮含量成正比,于波长420nm处测量吸光度。分析步骤为制作校准曲线、样品测定和空白试验。标准曲线的制作方法为:在8个50ml比色管中,分别加入0.00、0.50、1.00、2.00、4.00、6.00、8.00和10.00ml氨氮标准工作溶液,加水至标线。加入10ml酒石酸钾钠溶液,摇匀,再加入纳氏试剂,摇匀。放置10min后,在波长420nm下,用20mm比色皿,以水作参比,测量吸光度。以空白校正后的吸光度为纵坐标,以其对应的氨氮含量(ug)为横坐标,绘制校准曲线。绘制校准曲线中需要配置不同浓度的溶液,需要添加不同体积的标准工作溶液和稀释液。赫施曼的opus电子稀释配液系统,可以通过触摸屏在一个分液程序中设定多达10个独立的分液体积,按下分液键就可以进行一组分液,且分液体积参数(程序)还可保存和调用,不必每次设置,避免了重复劳动与输错数值,降低了成本与风险。 水质的氨氮检测还可用水杨酸分光光度法(HJ 536-2009),也需要配制标准曲线,分析步骤基本相同。分光光度法作为经典的含量检测方法,在水质检测中有广泛应用,也有大量的标准曲线的制作,需要毫升级的多体积分液,很多需要现用现配,赫施曼的opus电子稀释配液系统非常适用这类工作,分液程序设置好后可直接调用,让检测更加简单、便捷、可靠。
  • 上新福利!爱必信新品活性&含量检测试剂盒
    好消息!好消息! 爱必信活性&含量检测试剂盒上新啦! 本次上新包含200余个酶活性及小分子含量检测试剂盒,覆盖常见酶类如蛋白酶、激酶、连接酶、代谢酶类、凋亡相关酶类等100余种,以及金属离子、糖类、脂类、酸类、酮类、氨类、维生素类等100余种常见生物相关小分子,总有一款适合您! 我们的试剂盒支持多种样本类型,含血清, 血浆, 尿液, 唾液, 乳汁, 细胞培养上清, 组织提取物, 细胞裂解液, 其他生物液体样本等,或者食品, 果汁, 饮料, 其他农产品,动物饲料, 酶制剂, 面包改良剂混合物, 其他材料等。 本次上新福利,限时支持8折优惠,截止2021年5月31日,机会不容错过。产品信息:更多请点击》》货号英文名称中文名称abs580001Acid Phosphatase Microplate Assay Kit酸性磷酸酶 (ACP)abs580002Alanine Transaminase Microplate Assay Kit谷丙转氨酶 (ALT)abs580003Alkaline Phosphatase Microplate Assay Kit碱性磷酸酶 (ALP)abs580004Aspartate Transaminase Microplate Assay Kit谷草转氨酶 (AST)abs580005Glutamate Microplate Assay Kit谷氨酸abs580006Glutathione Microplate Assay Kit谷胱甘肽abs580007Lactate Dehydrogenase Microplate Assay Kit乳酸脱氢酶abs580008NAD/NADH Microplate Assay Kit辅酶ⅠNAD(H)abs580009NADP/NADPH Microplate Assay Kit辅酶ⅡNADP(H)abs580010Superoxide Dismutase Microplate Assay Kit超氧化物歧化酶 (SOD)abs580011Malondialdehyde Microplate Assay Kit丙二醛 (MDA)abs580012Hydrogen Peroxide Microplate Assay Kit过氧化氢 (H2O2)abs580013Polyphenol Oxidase Microplate Assay Kit多酚氧化酶abs580014Nitrate Reductase Microplate Assay Kit硝酸还原酶abs580015Trehalase Microplate Assay Kit海藻糖酶abs580016Pyruvate Microplate Assay Kit丙酮酸abs580017NADPase Microplate Assay KitNADP磷酸酶abs580018Phenylalanine ammonia-lyase Microplate Assay Kit苯丙氨酸解氨酶abs580019Na+/K+ ATPase Microplate Assay KitNa+K+-ATP酶abs580020Ca2+/Mg2+ ATPase Microplate Assay KitCa2+Mg2+-ATP酶abs580021Glutamine Synthetase Microplate Assay Kit谷氨酰胺合成酶 (GS)abs580022Starch Microplate Assay Kit淀粉abs580023Alpha-Amylase Microplate Assay Kitα-淀粉酶abs580024Beta-Amylase Microplate Assay Kitβ-淀粉酶abs580025Glucose Microplate Assay Kit葡萄糖abs580026Acid Invertase Microplate Assay Kit酸性转化酶abs580027Neutral Invertase Microplate Assay Kit中性转化酶abs580028Beta-1,3-Glucanase Microplate Assay Kitβ-1,3葡聚糖酶abs580029Trehalose Microplate Assay Kit海藻糖abs580030NADPH-Cytochrome c Reductase Microplate Assay KitNADPH-细胞色素C还原酶 Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)... 爱必信(上海)生物科技有限公司联系邮箱:info@absin.cn公众平台:爱必信生物
  • 德国元素:成功助力科学攻坚,提升玉米蛋白含量
    如今,玉米已成为世界上最高产的农作物之一,全球年产12亿吨,中国年产2.7亿吨。其中,70%的玉米都是用作饲料,玉米产量高,有效能量多,是最常用且用量最大的一种饲料,故有“饲料之王”的美称。随着人们生活质量的提高,对肉蛋奶的需求不断增加,玉米的消费量也日益增加,致使近年来玉米进口量也不断提升。由于普通玉米籽粒蛋白含量较低,大部分杂交种籽粒蛋白含量不到8%,因此饲料中需要补充大豆蛋白,然而大豆严重依赖进口,这些成为了我国畜禽养殖业的“卡脖子”问题。如果普通玉米蛋白含量每提高一个百分点,相当于中国可以少进口近800万吨大豆!因此,提高玉米蛋白含量不仅是保障国家粮食安全的重大战略需求,也是保障我国畜禽养殖业和饲料加工业健康发展的重要途径之一。中国科学院分子植物科学卓越创新中心研究团队于2012年开始进行玉米高蛋白供体材料的寻找、蛋白含量测定、遗传分析以及群体构建。此外,研究团队在三亚南繁基地进行了大规模田间试验,将野生玉米高蛋白基因Thp9-T杂交导入我国推广面积最大的玉米生产栽培品种郑单958中,可以显著提高杂交种籽粒蛋白含量,表明该基因在培育高蛋白玉米中具有重要的应用潜能。同时,在减少氮肥施用条件下,可以有效保持玉米的生物量以及植株和籽粒中氮含量水平,这对于在低氮条件下促进玉米高产、稳产具有重要意义。德国元素elementar rapid N exceed 杜马斯定氮仪为巫永睿研究组的玉米蛋白研究提供了精准的蛋白质含量测定。“德国元素elementar的杜马斯定氮仪准确的测定了我们研究材料的蛋白表型,对于我们克隆野生玉米高蛋白基因至关重要。”——中国科学院分子植物科学卓越创新中心巫永睿课题组德国元素elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪。逐步推动了杜马斯定氮法在法规中的应用。如今,国际上(如美国、加拿大、德国等)已经将杜马斯定氮法应用在食品、饮料、宠物食品、饲料和肥料等领域。1964年,德国元素elementar第一台杜马斯氮/蛋白质分析仪德国元素elementar杜马斯定氮仪rapid N exceed® 杜马斯定氮仪经济型氮/蛋白质测定解决方案rapid N exceed® 快速氮/蛋白质分析仪,对重量高达1克的样品,仍能准确测定氮或蛋白质的含量。新型EAS REGAINER催化剂可确保在不消耗还原金属的情况下结合燃烧后过量的氧气。EAS REDUCTOR管(还原管)的寿命可处理高达2000个样品。rapid MAX N exceed 杜马斯定氮仪高通量、高灵活性氮/蛋白质测定解决方案rapid MAX N exceed 利用不锈钢坩埚进样,可容纳高达重量为5g或体积为5ml的样品,同时具备自动除灰功能。且可以选择氦气或氩气作为载气。直立的坩埚设计可确保任何液体样品的最佳燃烧,如:牛奶、啤酒、软饮、果汁、酱油等,与独特的二级燃烧技术相结合,可为您提供可靠的、无基质效应的测试结果。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 生物质燃烧影响城市PM10蛋白质含量
    日前,中国科大极地环境研究室教授谢周清课题组发现,生物质燃烧影响城市PM10的蛋白质含量,研究成果近日在线发表在英国《大气环境》杂志上。   空气中存在许多液态或固态微粒悬浮物,被称为气溶胶,直径在10微米以下的可吸入颗粒物叫PM10。其中,生物气溶胶是当前全球变化和公共健康关注的研究热点之一,其浓度一般用大气中总蛋白质含量来表示。由于汽车尾气能改变一些生物气溶胶的化学结构,使其成为能导致严重过敏反应的过敏原,这被认为是近年来城市中哮喘等过敏性疾病发病率升高的一种可能原因。   谢周清课题组对2008年6月至2009年2月在合肥市采集的PM10进行了总蛋白质以及微量元素和水溶性离子成分的分析研究,发现城区PM10中总蛋白质的含量范围在每立方米2.08~36.71微克,平均值为每立方米11.42微克,明显高于目前世界上3个地区公布的数据——美国北卡罗莱纳州、洛杉矶和人口密度较大的墨西哥城的含量分别为每立方米0~0.2微克、1.0~5.8微克、0~2.54微克。   论文第一作者康辉博士介绍,合肥城区大气中蛋白质含量呈明显的季节变化:夏季最低,每立方米2.08微克 从夏季到秋季含量逐渐增加,11月达到峰值,每立方米36.71微克。PM10中蛋白质的浓度与采样期间的降雨量呈相反的变化趋势,且秋冬季多雾天蛋白质的浓度和大气污染指数都呈现高值。   除气象因素外,PM10中蛋白质浓度的变化与空气污染指数和平均可见度分别呈显著的正相关和反相关关系。通过进一步对2008年9月到2009年1月期间出现高含量蛋白质的原因进行探讨,研究人员发现,PM10总蛋白含量与代表生物质燃烧影响的水溶性钾离子以及代表人为污染影响的硝酸根显著相关。9~11月是合肥地区的农作物收获季节,除动植物和人为排放影响外,生物质燃烧可能是PM10蛋白质含量增大的重要原因。   审稿人认为“这是一项迫切需要的研究工作”,并指出“这份数据独一无二,对评估城市大气污染有重要价值,特别是为理解人体健康的风险评估作出了贡献”。
  • 凯氏定氮法检测脱脂奶粉中蛋白质的含量
    蛋白质是复杂的含氮有机化合物,分子量很大,大部分高达数万至数百万,分子的长链从数纳米至100nm,它们由20种氨基酸通过酰胺键以一定的方式结合,并具有一定的空间结构,所含的主要化学元素为C、H、O、N,在某些蛋白质中还含有P、Cu、Fe、I等元素,但氮的相对丰度基本稳定,是区别于其它有机化合物的主要标志。不同蛋白质的氨基酸构成比例及方式不同,所以各种蛋白质其含氮量也不同。一般蛋白质含氮量平均为16%,即1份氮素相当于6.25份蛋白质,此即蛋白质系数。 意大利VELP凯氏定氮仪在环保节能方面具有性能, 的蒸汽发生器和钛冷凝器,蒸馏滴定同步进行,分析速度快,冷却水用量仅0.5升/分钟,降低能耗从而节约了成本。因此该仪器被广泛应用于各类蛋白质检测的实验研究。 测定脱脂奶粉中蛋白质的含量,对掌握其营养价值和品质的变化,保障人体健康,合理配料,为乳制品深加工提供数据十分重要,此外,蛋白质分解产物对乳制品的色、香、味都有一定作用,所以测定具有深远意义。
  • 两会速递:氨氮排放量下降2%,吉天仪器流动注射来把关!
    提要  《2019年国务院政府工作报告》中提出,强化水、土壤污染防治,今年化学需氧量、氨氮排放量要下降2%。加快治理黑臭水体,推进重点流域和近岸海域综合整治。  习近平总书记提出“人与自然是生命共同体,人类必须尊重自然、顺应自然、保护自然”。 我们要认识到,山水林田湖是一个生命共同体。多年来,中国水资源质量不断下降,水环境持续恶化,由于污染所导致的缺水和事故不断发生,不仅使工厂停产、农业减产甚至绝收,并且造成了不良的社会影响和较大的经济损失。  氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。我国现行的相关环保标准中涉及氨氮废水排放指标的有《地表水环境质量标准》(GB3838-2002)、《地下水环境质量标准》(GB/T14848-93)、《污水综合排放标准》(GB8978-1996)等。在环保部发布的多项国家环境保护标准(水质)中,流动注射方法名列其中。《水质 氨氮的测定 流动注射-水杨酸分光光度法》(HJ 666-2013),就为水中的氨氮含量的测定提供了专业可靠的检测方法。  聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)全自动流动注射分析仪,对水质中的氨氮进行了实际样品分析及加标回收率的测定。符合环保部发布的国家环境保护标准,快速简便、灵敏度和准确度高,是未来环境行业水质检测的重要发展趋势。FIA6000+全自动流动注射分析仪  FIA 6000+应用非稳态FIA理论,保证了分析过程快速准确;进样系统方便、自动化程度高、反应系统安全、高效;检测系统稳定、可靠、应用灵活;全中文操作系统,让您的检测更方便快捷。 iFIA7全自动多参数流动注射分析仪  iFIA7采用专利的智能流路控制系统,自动分配分析流路及前处理模块、准确地控制注入样品的体积和液体流速,大大提高了检测的精度和重现性。同时,内置自动化清洗程序,可以避免不同项目交叉污染。不论您的需求是水、废水检测、土壤、植物提取液检测、还是食品检测,iFIA7都是您值得信赖的伙伴。
  • ATAGO全自动折光仪RX-5000 α成功应用于尿素含量的测定
    尿素是常用的氮肥品种。在尿素的生产和使用中,均要求能快速、准确地测定尿素的含量。目前,虽已有多种测定尿素含量的方法,但各有自己的优点和使用范围,因此测定标准并没有统一。根据现存尿素的测定过程,可分为间接测定和直接测定。间接测定通过脲酶将尿素分解为氨、硝酸盐或氮气,然后利用现有标准方法测定含氮物质的量,并据此计算出尿素的浓度;直接测定则是通过加入某些能够和尿素反应生成带色产物的物质,通过比色等方法进行测定。目前间接测定溶液中尿素含量的方法以H2SO4消化比色法为代表;直接测定法以二甲氨基苯甲醛(PDAB)比色法应用最广。 华南农业大学资源环境学院郑丽行、樊小林教授与上海化工院国家化肥检测中心刘刚,杨一合作,采用ATAGO 折光仪RX-5000 &alpha 直接测定纯尿素溶液中尿素的含量,并与二甲氨基苯甲醛(PDAB)比色法以及H2SO4消化比色法的测定结果进行比较。结果发现,折光率与溶液中尿素含量呈极显著线性相关,相关性曲线为Y=7025.7X-9361.7 (25℃)最小检出限位0.5g/Kg,最大检出限为600g/Kg。 他们的研究建立了测定尿素含量的折光率法,此方法具有检测范围广,准确度高、精度高、测量速度快,工作效率高、简单易行等特点。另外,该法测定过程不需要任何化学药品,在节约成本的同时,还避免了化学试剂可能造成的环境污染。 此方法既可作为尿素企业及缓/控释尿素企业尿素释放率质量控制的检验方法,也可以作为教学、科研部门测定尿素含量的方法。 技术指标: 1.能够快速且高精度地测量各种液体的折射率,Brix,浓度; 2.具有内置的恒温装置,无需外接水浴,实现温度控制; 3.测量范围:折射指数(nD):1.32700 至 1.58000; 4.分辨率:折射指数(nD):0.00001;温度:0.01° C; 5.测量精度:折射指数(nD):± 0.00004; 6.重复性:折射指数(nD):± 0.00002; 7.※可根据用户需求,自定义60个样本曲线; 8.SUS316不锈钢样品槽提高耐蚀性和耐伤性,蓝宝石棱镜精准耐用。 Atago全自动折光仪Rx5000a
  • 乳清蛋白含量新国标遭质疑:空有指标无检测标准
    乳清蛋白含量新国标有指标规定无检测标准 卫生部正研制新检验方法   雅培事件新闻追踪   南方日报讯 最近雅培奶粉身陷“质量门”事件,再度引发了人们对新国标的质疑。在新国标中明确规定乳清蛋白与酪蛋白比例指标,该指标被部分专家认为是判别奶粉是否易为幼儿消化。然而令人困惑的是,新国标里没有该项目的检测标准,在日常监管中,也非常规抽查项目。对此,国家食品安全风险评估中心也承认,由于采用现行乳清蛋白测定方法的测定结果与实际含量存在一定的误差。据悉,目前卫生部正在组织研制新的乳清蛋白的检验方法。   最近雅培与香港CER公司的“口水战”,引发人们对我国新国标乳清蛋白和酪蛋白比例指标的争议。根据我国国家标准规定,婴幼儿配方奶粉中这个比例应为6:4,而CER公司检测的结果是41:59,故CER检测报告得出雅培涉事奶粉“质量最差”。   记者昨天从国家食品安全评估中心获悉,我国《婴儿配方食品》国标中,确有要求以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。“该要求主要是参考母乳中乳清蛋白和酪蛋白的比例”,国家食品安全风险评估中心在一则《对婴儿配方食品中乳清蛋白比例的说明》中称,乳清蛋白是蛋白质的一种,为人体提供必需氨基酸等成分。   值得一提的是,虽然目前婴幼儿配方奶粉新国标中规定有乳清蛋白与酪蛋白的比例要求,在日常监管部门的抽查中,这并不是一个常规抽查项目。有乳品专家指出,目前国内缺少配方奶粉工艺标准,甚至连检测标准都没有。   国家食品安全风险评估中心也坦承,目前卫生部正在组织有关单位研制新的乳清蛋白的检验方法。
  • 赛默飞发布测定面粉中偶氮甲酰胺含量的解决方案
    2014年4月10日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布HPLC 法测定面粉中偶氮甲酰胺含量的解决方案。该方法与其他方法相比,操作简便易行,重现性与线性均能达到要求。 偶氮甲酰胺(ADA)作为食品添加剂在面粉及其制品中广泛使用,其主要目的是用来增加面筋,改善面团流变学特性和机械加工性能、借以增加面粉质量。ADA在180℃~ 220℃温度下,半小时左右即可生成氨基脲,一种与硝基呋喃类代谢产物一致的化合物。因此,建立一种测定面粉中ADA 含量的方法,从源头控制ADA 加入量,对加强卫生监督,保障人们的身体健康具有重要的现实意义。 赛默飞使用Thermo Scientific Dionex UltiMate 3000 DGLC 双三元液相色谱系统,第一时间建立了面粉中偶氮甲酰胺含量的检测方案,采用氨基柱分离,紫外检测器分析,取得了较好的分析结果,适用于该类样品的快速检测。 下载应用文章请点击:http://www.thermo.com.cn/Resources/201404/913551843.pdf 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 不同蛋白质含量的浓缩乳蛋白粉复水特性分析
    干乳粉的复水性是指干粉在加水后恢复成乳液的能力。‌复水性是衡量干制品品质的重要指标之一,特别是在衡量奶粉等干制品的质量时。复水性的好坏直接关系到奶粉在加水后能否恢复到接近原始牛奶的状态。奶粉的复水性对于保证其营养价值和口感至关重要,因为它直接影响到奶粉的实用性和消费者的接受度。‌ 蛋白质含量高且以酪蛋白为主的乳制品粉末例如浓缩乳蛋白(MPC)很难完全复水,即使经过长时间的复水。MPC包含广泛的产品类别,涵盖低、中、高蛋白粉末的复水特性尚未得到广泛研究。本研究采用综合实验方法,包括测量粒度分布随时间的变化,以及使用分析离心法测量沉降行为,以表征MPC粉末在一系列蛋白质浓度下(从成分接近脱脂奶粉的 MPC35到实际上为牛奶蛋白分离物的MPC90)的复水特性。 1. 材料和方法 1.1浓缩乳蛋白粉 1.2分散性:粒度分布 用粒度仪测量MPC悬浮液在复水化90分钟和24小时后的PSD。对于每个MPC样品,观察到一个小于1 um的峰,该峰被认为代表酪蛋白胶束,而第二个大于10 um的峰被认为代表初级粉末颗粒(喷雾干燥过程中由雾化液滴形成的非团聚颗粒)。 1.3 分散:沉降和沉降压缩 分析离心机(LUMiSizer ,L.U.M. GmbH)测量透射近红外光的强度,该强度是水平放置在光路上的细胞长度上时间和位置的函数,用于测量再水化90分钟和24小时的 MPC 悬浮液中的沉降行为。将悬浮液装入PA管(2 mm)。使用两个离心步骤进行测量,36g离心10分钟,然后168g离心10分钟。离心过程中温度保持在25℃。图中显示了离心10秒、5、10、15和20分钟后的谱线。首先绘制相边界(沉积物水相)随时间的运动,然后从池底位置(129 毫米,根据去离子水的沉降曲线确定)中减去稳态值,从而计算出沉降高度。 2. 结果与讨论——分散特性 在经过合理的复水时间后,高蛋白MPC中存在较大的不易分散的颗粒。复水90分钟后,MPC70、MPC80、MPC85 或 MPC90 中最多只有2%的颗粒由酪蛋白胶束组成(图1)。复水24小时后,酪蛋白胶束的比例增加,可能是因为它们从分散性较差的初级颗粒表面表层释放出来,而初级颗粒的比例同时下降(图1)。 图1. 在25℃的去离子水中复水90分钟(灰色条)或复水24小时(白色条)后,初级颗粒(上)和酪蛋白胶束(下)的体积(占总粒子总数的百分比)。 分析离心法用于获取有关MPC悬浮液的光学特性、初级粒子的沉降行为以及所得沉积物的可压缩性的信息。图2显示了低蛋白(MPC35)、中蛋白(MPC70)和高蛋白(MPC90) 粉末在复水90分钟后的三种代表性沉降曲线;这些蛋白质类别中的其他粉末表现出与所选 MPC 粉末非常相似的行为。根据粉末的不同,随着离心的进行,可以在样品池中识别出不同的区域:稳定分散体,即胶体悬浮液中的酪蛋白胶束;初级粒子,即最初向样品池底部集中的初级粉末颗粒,但随着时间的推移会沉淀;初始沉积物,即在低速离心过程中由初级粉末颗粒形成的沉积物;压缩沉积物,即由于离心速度增加而压缩而高度降低的沉积层。 图 2. 浓缩乳蛋白 MPC35(顶部)、MPC70(中间)和 MPC90(底部)在 25℃的去离子水中复水 90 分钟后的代表性沉降曲线,显示NIR光通过样品池的透射率随时间(1 = 10秒、2 = 5分钟、3 = 10分钟、4 = 20分钟)和样品池中的位置而变化。在样品以36g离心10分钟,然后以168g离心10分钟时捕获曲线。插图显示了一个示意图,解释了离心过程中样品池内形成的不同区域。虚线表示样品池底部的位置,从中可以计算出沉淀物的高度(如果存在)。 在MPC35中,样品以酪蛋白胶束为主,酪蛋白胶束在悬浮液中稳定且不会沉淀,因此透射率不会随时间发生变化。相反,MPC90,最初整个样品池中都存在初级粒子,这会导致10秒后透射率非常低;在离心过程中,这些粒子会形成沉淀物,导致样品池底部透射率低,而其他地方透射率高;然后,随着离心速度的提高,该沉淀物被压缩(产生更高的光密度和降低的沉淀物高度)。 复水90分钟后,MPC35没有发生任何沉淀,尽管其颗粒群中有45%以上由初级颗粒组成(图1)。相反,MPC70和MPC90中的初级颗粒在离心过程中形成了明显的沉淀层,其特征是在样品池底部形成一个光学致密区域(图2)。对于MPC70,在形成沉淀层之前,这种物质集中在靠近样品池底部的地方,而对于MPC90,它分散在样品池内的更大区域,导致透射读数远低于胶体稳定性区域。复水90分钟后,沉淀物高度随着蛋白质含量从MPC70到MPC90而增加(图3)。当施加更高的离心力时,这些样品形成的沉淀层会受到压缩,这种影响对于高蛋白粉末比的MPC70更明显(图3)。随着蛋白质含量的增加,观察到沉淀区域上方的透射值更低。 图 3. 浓缩乳蛋白(MPC)粉末经过90分钟的复水后在25 ℃下以36g离心10分钟(灰色条),然后再以168g离心10分钟(白色条)形成的沉淀物的高度。 值得注意的是所有样品在复水24小时后的沉降曲线均表明完全的悬浮稳定性,跟图2中的MPC35谱图类似,尽管悬浮液中仍残留有初级颗粒大小的物质。高蛋白 MPC 粉末的沉降行为强烈依赖于复水时间,初级颗粒在复水90分钟后沉降,但在复水24小时后不会沉降。 3. 结论 a、粉末的初始复水特性和悬浮稳定性随着蛋白含量的增加而降低。 b、经过长时间的复水后,所有的粉末都能完全悬浮。 c、LUMiSizer能区分不同粉末的复水特性和悬浮稳定性,也能做粒径检测。
  • 武汉汉江水质氨氮超标 30余万人用水受影响
    武汉市政府应急办23日晚发布消息称,汉江武汉段水质出现氨氮超标,受此影响,当晚汉江武汉段两大水厂均已紧急停产,全市260平方公里面积停止供水,30多万居民、数百家食品加工企业用水受影响。目前武汉相关部门每小时监测一次水质,出厂水质不达标严禁进入供水管网。湖北省环保厅、武汉市环保局正在排查污染源。   据武汉市政府应急办通报,23日,汉江武汉段水质出现氨氮超标,导致从这一河段取水的武汉白鹤嘴水厂、东西湖区余氏墩水厂出厂水质氨氮超标,两家水厂分别于16时许和19时许停产,受污染自来水未进入管网,但部分地区供水水压受影响。   据记者了解,本次汉江氨氮超标影响最大的是武汉东西湖区。东西湖区政府值班室工作人员告诉记者,检测汉江武汉段水质氨氮值为1.59mg/L,超过1mg/L的国家标准。东西湖区已启动紧急预案,采取应急措施争取余氏墩水厂早日恢复供水。东西湖地区供水管网独立成网,与中心城区管网不相通。东西湖区其他两个水厂正常安全供水。   武汉市应急办通报,截至23日21时,未发现出厂水质超标。相关部门已加强水厂供水水质监测,每小时监测一次,出厂水质不达标严禁进入供水管网。市区各级政府及市水务集团将全力保障居民用水安全。   武汉市环保部门称,正在对汉江武汉段污染源进行排查,并请湖北省环保厅对上游水质进行监测和调查,后续处置情况将第一时间向社会公布。
  • 干货分享|水质检测人绕不过的坎:总氮小于氨氮
    首先,我们先了解一下什么总氮?什么是氨氮?以及总氮与氨氮的区别及联系。简单来说,氨氮是总氮的组成之一,同种废水中,总氮浓度要比氨氮浓度高。两者的关系还可以用下面这张图来表示。 理论上,在水质中氨氮的含量肯定是小于总氮的,但是实际检测中,往往会出现氨氮的检测结果大于总氮的现象,为什么会产生这种现象呢?●总氮小于氨氮的几种影响因素●1、 实验环境导致的误差在实验室周围环境有卫生间或存放氨水等等,实验室的空气中含有少量的氨气,这些氨气极易溶于水,使实验用水也不同程度地含有铵离子。在实验分析中,稀释水样所用的无氨水的制备和保存往往不被重视,导致外界氨氮溶解到水样中,增加了水样的氨氮浓度误差。2、样品引入的误差由于水中的氮化合物是在不断变化着的,采集后送回实验室等待实验分析的样品, 它们的存放时间、 存放地点,光照情况等, 甚至分析人员取样的先后次序等,都会给氨氮和总氮的实验分析带来不同的误差。3、试剂和水引入的误差实验时首先要进行过硫酸钾的提纯处理,没有经过提纯的过硫酸钾溶液的吸光度远大于经过提纯的过硫酸钾溶液,且经过提纯的过硫酸钾溶液标准偏差更小,对水样测定结果的偏差影响更小。总氮实验的成败与实验用水和试剂的优劣直接相关。首先是实验用水,普通的蒸馏水不能满足要求,必须进行二次蒸馏,使用自制无氨水时,在保存水期间,要避免与实验室空气中含有氨接触,而受其重新污染。其次是试剂的选择和配制,试剂的选择也极其重要,过硫酸钾的质量影响到整个实验的成败,,其纯度关系到空白值得高低和测定结果的准确度。通过实验发现默克的过硫酸钾可以满足实验要求。 4、实验方法引入的误差氨氮的分析通常采用较为经典的纳氏试剂光度法,虽然显色要求碱性环境,但前处理过程比较简单,直接显色测定后,就可以计算得出结果。相对来说总氮的分析的前处理过程要复杂一些,要经历在碱性条件下30min的加压处理,在前处理过程中如果密封不好,也会导致在高温高压下氨氮的释放,一般很少有化验室做到每次总氮的消解用生料带密封瓶塞的,因此转化不可能为100%的转化,这当中会导致总氮过程中的氨氮释放,从而引起误差存在。5、样品浊度引入的误差总氮分析前处理能消除的浊度影响在氨氮分析中消除不了, 加上比色时常用不同种比色皿, 这几种影响因素加起来, 对最后结果带来差异。由于两种测试方法都是用测量吸光度的,样品中的悬浮物造成的浊度是样品分析中最难消除的影响因素,在总氮和氨氮的实验分析测定中, 总氮分析前处理能消除的浊度影响在氨氮分析中就消除不了,可能会对水样检测中的氨氮造成较高的情况。6、不同分析方法和分析仪器引入的误差几乎所有的分析实验方法测定样品都有一定的方法误差, 总氮和氨氮的实验分析也不例外,分析氨氮的纳氏试剂光度法有误差,分析总氮的碱性过硫酸盐分解法同样也有误差, 两种分析方法误差给最后测定结果带来的误差,有很大的不确定性。在两个项目的整个分析过程中所使用的各种量器、比色管、比色皿等多种仪器,它们都可能引入程度不同的误差 比色时所使用的分光光度计的灵敏度、精密度和准确度都可能不是一样的,引入的误差大小也不一样。特别对总氮和氨氮的比色测定采用的是可见和紫外两种不同光区的光, 引入的误差差异更大。7、数据处理引入的误差在数据处理中, 有两方面可能引入误差:一是不同的校正曲线引入的误差,虽然这两个项目使用的两条曲线都经统计检验合格,但曲线与曲线有差别,这种差别带来误差 二是对有效数字的取舍引入误差。两方面的误差总和起来就形成了两分析项目间不小的误差。样品的浓度越小,这种误差越大,这就是有些情况下,经过稀释的水样反而会出现氨氮小于总氮的情况。8、还有就是不同人员的因素导致的各种误差实验手法,误差控制上都会有不同的差别:从上面的分析可以看到氨氮和总氮在化验过程中出现的误差的情况有客观和主观的多方面的因素影响,综合的误差会导致氨氮可能超过总氮的情况发生。●如何预防误差带来的错误数据●综上所述,在污水检测中,氨氮和总氮的化验中会经常出现的氨氮高于总氮的情况,是不可避免的,特别是在一些总氮中氨氮所占的比例较大的水样中,由于多种诱发误差的原因存在,出现这种情况的几率很高。检测人员应该对于总氮和氨氮的分析时间要保持一致,消除药品样品及实验条件的干扰。
  • NA8000在石化行业废水氨氮监测中的应用
    一、背景介绍石化行业生产废水来自各个生产装置,其中常减压蒸馏、催化裂化、重整和加氢装置均会产生大量含硫污水。由于含硫污水含有较多的硫化氢、氨、酚、氰化物和油等污染物,不能直接排至污水处理场。一般污水处理场对进水中硫化氢和氨的浓度要求分别小于 50mg/L 和100mg/L,因此,该股污水需经过气提装置处理达标后才能排放到污水处理场。为了监测气提外排净化水的氨氮含量,石化厂常采用在线氨氮分析仪对排放废水氨氮进行内控监测,保障排放废水氨氮不超标,同时通过废水氨氮的含量变化也可反映装置运行的稳定情况。酸性水气提外排净化水染物物浓度较高,含油、腐蚀性强,对在线氨氮分析仪的稳定运行有比较高的挑战。中石化南京某石化企业脱硫装置排放废水之前采用国外某品牌氨氮分析仪,由于该氨氮分析仪采用的是气敏电极法测量原理,电极容易被污染,维护比较频繁——换膜、换电解液等,仪器测量不准确时维护也繁琐,因此客户更换了 HACH 的 NA8000 新款氨氮分析仪。 二、应用情况主要仪器:NA8000(主机)+CYQ-004P(预处理器)。现场安装照片如图1所示。 NA8000 在线氨氮分析仪安置在正压防爆柜内,为分析仪的正常稳定运行提供了良好的工作环境的同时满足现场防爆要求。考虑到废水水质较为复杂,水样先经换热器降温处理后再进入 CYQ-004P 预处理系统除去水样中油、悬浮物等易堵塞管路的成分,经膜过滤后再送至 NA8000 分析仪溢流杯供分析仪采样分析。 图 2 截取了 2019.8.30~2019.10.8 时间段内 NA8000 连续监测的数据结果。从结果看,NA8000 能够很好的监测废水氨氮的变化情况,且未出现较大的波动。据客户反馈,NA8000性能较好,运行期间质控样比对结果较好,数据偏差小于 10%,满足客户需求;用户对 NA8000的操作和维护等性能均非常满意。三、总结NA8000 在监测脱硫装置外排废水的应用效果比较理想,性能稳定,质控样比对结果达到客户要求,操作和维护得到客户认可,尤其在触摸大彩屏设计、量程自动切换等特点和功能设计方面便于用户学习、操作和维护。 CYQ-004P 预处理器与 CYQ-104C 预处理器相似,采用 PVDF 平板膜对水样进行精密过滤,适用于水质较差的应用工况,能够保障 NA8000 氨氮分析仪的正常稳定运行。此外,CYQ-004P 预处理器适用于工业正压防爆柜或仪表柜内安装要求,便于集成。
  • 海能仪器取得一种氮含量测定方法发明专利证书
    济南海能仪器股份有限公司关于取得发明专利证书的公告   本公司及董事会全体成员保证公告内容不存在任何虚假记载、误导性陈述或者重大遗漏,并对其内容的真实、准确和完整承担个别及连带责任。 济南海能仪器股份有限公司(以下简称&ldquo 公司&rdquo )收到国家知识产权局颁发发明专利证书,具体内容如下:   发明名称:一种利用滴定装置进行氮含量测量的方法   专 利 号:ZL 2012 1 0500561.9   专利权人:济南海能仪器股份有限公司   有 效 期:二十年 (自申请日2012年11月30日起计算)   证 书 号:第1509171号   目前该专利技术已在公司全自动凯氏定氮仪系列产品中获得应用。该发明专利的取得不会对公司近期生产经营产生重大影响,但有利于公司进一步完善知识产权保护体系,形成持续创新机制,保持技术领先地位,提升公司的核心竞争力。   特此公告。 济南海能仪器股份有限公司董事会 2014年 12月 2日
  • 杜马斯法测定食品中氮/蛋白质含量的解决方案 | 德国元素Elementar
    在我们的日常包装食品中,都会看到这样的营养标识,可以有助于我们更清晰的营养摄入,更健康的生活。其中蛋白质是构成人体细胞和组织的重要成分,人体正常值一般是60~80 g/L。蛋白质含量的测定对于食品质量的掌握具有十分重要的现实意义,因为蛋白质不仅是食品中重要的营养物质,同时也是组成人体一切细胞和组织的重要成分,其含量的多少直接决定着食物的营养价值。特别对奶制品来说,蛋白质含量的高低对定价有直接影响。目前测定蛋白质的方法主要有凯式定氮法、杜马斯法。随着社会的发展,人类对环保、高效意识的增强,越来越多的企业对杜马斯法测定蛋白质含量越来越关注。德国元素Elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、肥料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪,逐步推动了杜马斯定氮法在法规中的应用。
  • 免疫球蛋白含量测定——安东帕Abbemat系列全自动折光仪
    共同战疫 2020年 免疫球蛋白含量快速测定安东帕Abbemat系列全自动折光仪 随着新型冠状病毒感染的肺炎确诊越来越多,医疗物资需求也越来越大,其中,静注人免疫球蛋白是目前防控新冠状病毒感染肺炎的重要药品之一。人免疫球蛋白人免疫球蛋白是取健康献血员的新鲜血浆或保存期不超过2年的冰冻血浆,每批最少应由1000名以上健康献血员的血浆混合。用低温乙醇蛋白分离法分段沉淀提取免疫球蛋白组分,经超滤或冷冻干燥脱醇、浓缩和灭活病毒处理等工序制得,其免疫球蛋白纯度应不低于90%。然后配制成蛋白浓度为10%的溶液,加适量稳定剂,除菌滤过,无菌灌装制成。人免疫球蛋白作为重要的医疗用品,选择合适的含量检测方法具有重大意义。目前,中国药典明确规定人血浆中蛋白可采用折射仪法进行测定。折光率作为物质浓度和纯度的表征,可用于物质含量的测定。将折光仪用于免疫球蛋白含量的测定,不但操作简单,其快速、准确的优势,可帮助制药企业节约大量时间成本,这在需要大量生产与检测免疫球蛋白的特殊时期,尤为关键!
  • 【标准解读】轻质油品中氯含量的测定 单波长色散X射线荧光光谱法
    X射线荧光光谱法是一个非常成熟的检测技术,它的原理是样品在X射线照射下产生元素特征X射线荧光,通过建立标准曲线来确定样品中元素浓度与强度的关系,在相同条件下测量未知样品,就可以得到样品的组成信息。XRF的优点是样品不需要前处理,分析速度快,可实现多元素的同时测量,但也有个缺点就是它的基体干扰严重。XRF在石化行业液体样品中测定方法的汇总NB/SH/T 0977-2019《轻质油品中氯含量的测定 单波长色散X射线荧光光谱法》标准规定了采用单波长色散X射线荧光光谱法(MWDXRF)测定轻质油品中氯含量的方法。本标准适用于汽油、柴油、石脑油、喷气燃料及馏分油等,也可用于测定氧质量分数小于5%的含氧汽油及生物柴油调和燃料。单色X射线激发去掉背景过程,简化基体校正,信噪比夜有所改善。氯含量测定范围为4.2mg/kg~430 mg/kg。另外与本标准中方法相同的标准还有NB/SH/T 0842-2017和NB/SH/T 0993-2019,分别是检测轻质液体燃料中硫的含量和汽油及相关产品中硅的含量。制定背景石油炼制过程中,油品中氯的存在会造成催化剂中毒;加工过程当中,氯的存在可能造成装置腐蚀,压缩机堵塞等;成品油使用过程中,氯的存在会造成储罐腐蚀、发动机磨损等。GB 17930-2016《车用汽油》规定,车用汽油中不得人为加入甲缩醛、苯胺类、卤素以及含磷、含硅等化合物,于是就需要一种快速、准确、灵敏的检测油品中氯含量的方法。现状分析国内外检测氯含量的标准方法方法1-5方法6-9检测样品含氯化合物转化为氯离子直接检测氯元素优点检测限较低无需前处理,操作简单方便缺点前处理复杂,使用大量试剂检测限较高制定过程标准在编制过程中主要参考了标准ASTM D7536-16,但又与有以下区别:1.适用范围从有芳烃类化合物扩大为轻质油品,包括汽油、柴油、石脑油、喷气燃料及馏分油等2.测定范围由0.7 mg/kg ~10.0 mg/kg变成了4.2 mg/kg~430 mg/kg3.按照GB/T 6683 给出了此方法的精密度公式4.增加了元素干扰适用范围参考以下标准,并结合精密度实验确定方法的适用范围。参考标准样品特点ASTM D7536芳烃类样品组成单一、馏分较窄,同时标样与样品的组成基本一致检出限为0.2 mg/kgASTM D7039轻质油品馏分较宽,样品组成相对复杂,杂原子较多,且标样与样品的组成并不完全一致测定下限为3.2mg/kgASTM D5808当氯含量小于5mg/kg时,优先选用库仑法(精密度更高)检测下限为0.5mg/kg采用XOS公司CLORA型号仪器在7个实验室对17个不同的样品(包括石脑油、汽油、馏分油、喷气燃料、柴油以及煤油)进行精密度实验,最终确定了测定范围是4.2 mg/kg -430 mg/kg,再分别对重复性和再现性进行测试,测试结果都在允差范围内。对不同类型的样品进行测定,回收率均在±10%以内;还与微库仑法进行了比对,相对偏差也在±10%以内。标准NB/SH/T 0977-2019主要内容仪器设备:分为MWDXRF、样品盒和样品膜。单波长色散X射线荧光光谱仪,包括 a)X射线源;b)入射光单色器;c) 光路;d) 固定道单色器;e)探测器。另外,样品盒建议一次性使用。要特别注意的是:建立标准曲线和测定样品时应在相同条件下进行。校准过程:建立标准曲线用工作溶液浓度应能涵盖待测试样的浓度,于是需要制定了高含量与低含量两条曲线。 试验过程:1.将试样从样品盒开口端倒入盒中,一般装入量为样品盒的3/4高度处,最小为5mm高度。2.将新的样品膜盖在样品盒开口端,并固定牢固。装好后要确保样品盒中的试样不渗漏,如有任何情况的渗漏均需重新制备样品。3.分析试样和用来建立校准曲线的标准工作溶液应使用相同批次的样品膜和样品盒。测定每一个样品都要使用新的样品膜,样品膜要绷紧,保证膜上没有气泡、褶皱,且保持干净,避免用手接触样品盒内壁、样品膜及仪器的X射线透光窗。4.试样倒入样品盒并用样品膜封好后,在样品盒上开一个小气孔以防止样品挥发造成样品膜弯曲。5.试样装入样品盒后,需立即分析。试样在样品盒中的存放时间越短越好。6.按照建立校准曲线的条件测定试样,得到试样氯荧光强度的总计数。用总计数值除以总计数时间,得到试样的Rs。元素干扰的考察:氧含量超过5%,干扰严重硫含量小于1%,无明显干扰氮含量小于2000mg/kg,没有明显干扰(作者:中国石化石油化工科学研究院 范艳璇工程师)
  • 七品牌被指夸大胶原蛋白含量 汤臣倍健拿检测报告反驳
    昨天有报道称,市场上七大品牌产品的胶原蛋白含量与标识不符,汤臣倍健等3品牌则未检出。对此,汤臣倍健昨天回应称产品各项指标都达标 而截至记者发稿,无添加、丸美、Lumi、颜如玉、无限极、安婕妤均未有明确回应。   媒体报道   7品牌被指虚假宣传   近日,有媒体报道称,记者以消费者身份在药店、超市和品牌专柜购买了Fancl(无添加)、Lumi、丸美、汤臣倍健、颜如玉、无限极、安婕妤7款口服胶原蛋白产品,送往第三方检测机构进行检测,检测项目包括雌激素、重金属汞和铅,以及羟脯氨酸。   检测结果显示,在汤臣倍健胶原蛋白粉、颜如玉胶原蛋白口服液、无限极美姿力胶原蛋白果味饮料3款产品中,并未检出胶原蛋白的特征氨基酸——羟脯氨酸。另外4款产品胶原蛋白含量则远低于宣称的含量。   不过,报道并未公布检测产品的批号以及第三方检测机构名称等信息。据悉,生产胶原蛋白产品的企业,无一不宣称其中的胶原蛋白能够起到淡斑、去除皱纹、皮肤细腻等效用,含量越多则效果越好。   企业说法   汤臣倍健拿检测报告自证   对于媒体的质疑,汤臣倍健昨天发布情况说明称:公司作为一家大型专业的膳食营养补充剂生产企业,一直严格按照国家的法律、法规以及食品安全标准组织生产经营。公司使用的胶原蛋白粉,采购自法国罗赛洛集团有限公司,经第三方权威检测机构检测显示:各项指标均符合标准,其中羟脯氨酸含量为9.33%。   汤臣倍健还公布了中国广州分析测试中心的一份检测报告证明清白。   值得注意的是,昨天,汤臣倍健股票收报70.21元,涨幅达到6.38%。   Lumi丸美等均未有回应   记者昨天联系被指虚假宣传的其他企业,但均未有明确回复。   无添加贸易(上海)有限公司一位工作人员接受记者采访时表示,公司在国内没有专门针对媒体的部门,无法回复。她还表示,公司产品都是经过海关检验检疫合格入境的。   颜如玉方面表示,正开会研究此事,到时会发声明回应。而截至记者发稿,Lumi、无限极、丸美和安婕妤均未对此做出回应。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制