当前位置: 仪器信息网 > 行业主题 > >

安装过程

仪器信息网安装过程专题为您整合安装过程相关的最新文章,在安装过程专题,您不仅可以免费浏览安装过程的资讯, 同时您还可以浏览安装过程的相关资料、解决方案,参与社区安装过程话题讨论。

安装过程相关的资讯

  • 气调包装 | 烘焙产品包装过程中的质量控制
    产品安全仍然是食品生产商的首要任务。高质量的原材料,严格的生产工艺以及包装类型和技术是影响产品安全的主要因素,有助于在产品的整个货架期内保持高营养和感官特征。导致烘焙产品变质和货架期缩短的最常见因素是:微生物生长、老化、水分损失/增加。“延长烘焙产品的货架期通过应用MAP包装技术,可以避免上述因素并延长烘焙产品的货架期。烘焙产品通常采用高CO2浓度包装,并最大限度地降低残留O2水平,几项研究证明了高CO2在降低烘焙产品老化率方面的积极作用。这意味着烘焙产品包装需要用N2和CO2等混合气体冲洗包装中的大部分O2。在烘焙行业,乙醇作为防腐剂会在密封前喷入或注射到包装中,或者通过使用卡片、含有粉末状硅胶的小袋添加。但乙醇会干扰用于质量控制和保证的气体分析仪的O2传感器,需要注意使用正确的传感器方案,保证测试数据的准确性和可重复性。烘焙产品的天然孔隙结构,在储存过程中更容易释放O2到包装的顶部空间中,因此O2含量很难降至最低。在线MAP监控让一切处于控制之中,减少对操作人员的依赖,节省气体并提高您的整体质量控制。MAP可以确保正确比例的气体混合物(CO2/N2)存在于包装的顶部空间中,并将残余O2降至最低。在线气体分析仪是一种实时监测每个包装内氧气和二氧化碳浓度的仪器。一旦参数超出预设限值,分析仪会提醒操作员或自动停止包装线,用户可以完全控制流程并实现可追溯性。烘焙产品MAP应用参考“助力可持续包装的研发供应商为了实现可持续包装的目标,通过引入新材料和不同的解决方案来实现。减少、再利用、回收——这三个概念总结了包装专业人员面临的主要挑战。常见的解决方案:- 减小厚度- 单一材料和功能涂层的使用- 引入新的生物基、生物源可堆肥材料- 回收材料的使用- 纸基材料,可能与其他材料和涂层结合在包装过程中,材料会受到机械和热应力的影响,了解整个供应链过程中包装材料如何反应变得极其重要。这些“新”包装材料的引入已被证明在保护食品免受机械应变方面是有效的,但它增加了确保阻隔性能和密封完整性的挑战。即使包装最初是密封的,几天、几周或几个月后,由于环境变化或运输等其他物理因素破坏,它也可能失去密封完整性。破损的包装可能导致食品流失或变质,除了造成食物、材料、资源的不可持续和浪费外,它更损害了品牌声誉或因误食影响到生命安全。因此,包装类型和包装完整性对烘焙产品是否会暴露在高O2环境中、在储存过程中返潮或水分蒸发、添加的气体混合物(CO2+N2)泄漏等有重大影响。除了选择具有适当阻隔性能的包装材料外,确保包装密封无泄漏更是重要保障。“烘焙包装的密封完整性测试通过选择标准化程序,就可以对包装进行密封完整性测试。通过产生的数据帮助用户选择正确的包装解决方案。它还提供时间、温度、压力、不同密封系统的有效性等信息,以帮助设置正确的包装线密封参数。最常见的标准规范用户使用特定的国际测试规范来建立密封完整性和泄漏测试的程序。最常见的标准是:ASTM F-1140、F-2054、F-2095、F-2096、ISO 11607等。MOCON已经开发、销售和服务用于食品包装(MAP)应用的气体分析仪和泄漏检测设备40年了,MOCON了解不同食物的成分以及它们对MAP气体的反应,我们可以帮助您顺利过渡到MAP包装延长产品的货架期,配合我们的包装泄漏检测设备,保证生产线上的每一个产品的密封完整性。
  • GISAXS用于监测超高分子量嵌段共聚物快速自组装过程的结构演变
    超高分子量嵌段共聚物自组装的挑战 嵌段共聚物(BCPs)是一种特殊材料,具有两个或以上化学上不同的单体单元形成不连续的高分子嵌段,转而又以共价键连接在一起。在融化相,这些材料组成嵌段之间的热力学不相容造成微相分离。这导致了周期性纳米材料(四种常见结构见图1)的形成,它们的形态可以通过改变分子组成来控制,而它们的尺寸和周期性则由分子量的变化来决定。它们的结构和组成多样性提供了获得多种表面纳米结构的可能性,这些表面纳米结构可用于大量应用,例如纳米电子学、抗反射涂层、光学活性表面化学传感器或药物输送。图1. 四种基本共聚物结构。 对于使用可见光的光电应用,需要具有横向周期性大于150nm的BCPs。因此,出现了一种子类材料,叫做超高分子量(UHMW)嵌段共聚物。长链聚合物的高度缠结特性形成了这些BCPs,但是却引起了自组装过程的其他问题。尤其是相分离的缓慢开始使得近乎所有过程都不适合工业应用。近期,一组来自都柏林大学、波尔多大学和谢菲尔德大学的研究人员提出了UHMW BCPs(800kg/mol)的超快自组装的方法,在气相溶剂退火法(SVA)阶段利用可控的溶胀动力学,从而退火时间与平常数小时或数天相比将缩短到分钟。在他们的研究工作中,证明了通过快速并控制使膜膨胀到非常高的溶剂浓度,有可能在10分钟内诱导UHMW poly(styrene)-b-poly-2-vinylpyridine (PS-b-P2VP)系统的相分离。为了得到这个结果,大量研究了干膜厚度、聚合物膜内溶剂浓度、溶胀时间和速率对BCP膜的形态和结构演化的影响。GISAXS测试揭示了溶剂浓度对UHMW嵌段共聚物结构的影响 具有高分子量体系的长聚合物链在干膜中显示有较高的链缠结。已知UHMW BCP的聚合物流动性是高度依赖于溶胀比的,那在SVA过程中通过向BCP膜中加入相对中性的溶剂是有可能解决这一问题的。这样溶剂的分子将在两个嵌段之间产生屏蔽作用,从而减少聚合物之间的相互作用。在上述研究中,选用了氯仿和四氢呋喃(THF)的混合物作为退火溶剂。 随后用掠入射小角X射线散射(GISAXS)研究166nm的BCP膜在宏观区域上随溶剂浓度变化的形态演变。与透射模式下的SAXS实验相比,掠入射模式(X射线光束在样品表面反射)转变成了表面敏感探测技术,在大表面区域上分析材料的结构且无需额外的样品制备。如图1所观察到的,通过GISAXS测试随着溶剂浓度的增加,内部结构发生了明显的变化。铸膜样品只出现微弱的散射点,表明表面主要是无序的胶束结构。随着溶剂浓度的增加,从GISAXS散射图谱上明显看出,ϕs~0.80以下,BCP链仍处于缠结状态而无法自组装成界限清晰的微区。只有在浓度等于或高于0.8时,有序垂直层状形态才开始逐步形成。使用散射峰的位置,计算结构在ϕs = 0.83和ϕs = 0.86的平面域间距分别是(~ 184 nm)和(~ 191 nm),而一旦溶剂浓度的值达到0.88结构会失序。图2.(a-h)二维GISAXS散射数据。8个图中显示PS-B-P2VP膜的形态随退火溶剂浓度ϕs的变化而变化。(i)在每个样品的Yoneda位置的1DGISAXS图像。强度分布显示为一阶散射峰,二阶散射峰分别用红色和蓝色表示为1和2。 铸膜(在没有溶剂的情况下测试)出现一个弱散射峰,用绿色表示为m。 通过AFM分析对这些值进行了进一步的证实,并且典型的FIB/SEM实验结果证明层状结构在整个膜上的延伸。为了证明BPC结构的传输能力,自组装膜也被用作模板制备金属氧化物纳米结构。这些材料也被进一步用作硬膜,来生产统一的高宽比硅纳米壁结构(高500nm,间距190nm)。 这一研究工作为超高分子量嵌段共聚物在工业适用的时间内通过高精度气相退火进行自组装的可行性奠定了基础。在大约10分钟的时间内实现了相分离,产生了间距超过190nm的层状特征。在整个过程中,GISAXS测量与其他探测技术共同用于控制过程的效率并评估不同参数的影响。
  • 仪器新应用!东京大学使用多种表征揭示纳米片自组装过程!
    【科学背景】随着纳米科技的快速发展,无序胶体颗粒的自组装成为了研究的热点,特别是对于构建层次结构纳米材料的需求日益增加。在这个背景下,胶体液晶相和超晶格的形成引起了广泛关注。这些结构具有重要的电、光、催化、机械、离子/分子传输和能源等功能材料应用潜力。其中,无机纳米片由于其多样的材料和功能性质,以及自发形成的介相,备受关注。然而,由于纳米片尺寸的多分散性和不规则形状,精确设计其组装结构和功能成为了一个挑战。现有研究主要集中在液晶相和一维超晶格的组装,但由于结构的不可逆性和限制,微细的结构控制变得困难。此外,纳米片的表面性质以及与其他功能物种的组合设计也是一个待解决的问题。为了解决这些问题,日本东京大学Takashi Kato教授、Nobuyoshi Miyamoto教授在“Science Advances”期刊上发表了题为“Monodisperse nanosheet mesophases”的研究论文,引起了不小的关注!他们通过调控纳米片之间的微弱吸引相互作用和熵相互作用,成功地实现了单分散钛酸盐纳米片形成高度调控的超结构介相。通过使用透射电子显微镜、偏光光学显微镜、小角度X射线散射和共聚焦激光扫描显微镜等技术,他们详细研究了纳米片组装过程,并实现了对介相的可逆调控。【科学亮点】(1) 实验首次展示了通过微调弱吸引相互作用和熵相互作用,单分散的钛酸盐纳米片(mNSs)可逆地形成高度调控的超结构介相。(2)通过透射电子显微镜(TEM)、偏光光学显微镜(POM)、小角度X射线散射(SAXS)和共聚焦激光扫描显微镜(CLSM)等技术,作者清晰地观察到了柱状纳米纤维(ColNFs)、柱状向列液晶(ColNF-Nems)和ColNF束(ColNF-Buns)的可逆形成。(3) 实验结果表明,控制对离子浓度、纳米片浓度、溶剂和温度等条件可以精确调控所形成的超结构介相,这为层次结构纳米制造提供了新的可能性。此外,相较于之前报道的单分散纳米片系统,本研究所使用的钛酸盐mNSs是唯一的阴离子系统,为通过与阳离子功能物种的组合进行材料设计提供了新的思路。【科学图文】图1:由离子强度和纳米片浓度控制的mNSs的ColNFs、ColNF-Nem和ColNF-Buns的形成。图2. mNS/水/EtOH胶体溶液的乙醇浓度依赖性的介相形态。图3. 不同阳离子种类的插层进入ColNFs。图4. 温度控制下TBA+/mNS水胶体的介相形成。【科学结论】本文揭示了通过微调弱吸引相互作用和熵相互作用,可以实现对无机纳米片的高度控制自组装,从而形成具有特定结构和功能的超结构介相。这一研究为设计和合成具有特定功能的纳米材料提供了新的思路和方法。通过理解纳米片自组装的机制,作者可以进一步探索材料自组装的规律,从而设计出更加复杂和多样化的纳米结构,拓展材料的应用领域。此外,本研究还为开发具有自修复功能的新型材料奠定了基础,这对于解决传统材料在应用过程中的损伤和老化问题具有重要意义。通过将这一方法应用于其他材料体系,可以为电子学、光学、催化剂等领域的材料设计和应用提供新的思路和可能性。原文详情:Nobuyoshi Miyamoto et al. ,Monodisperse nanosheet mesophases.Sci. Adv.10,eadk6452(2024).DOI:10.1126/sciadv.adk6452
  • 生物安全柜安装需要接排风管道吗
    生物安全柜安装需要接排风管道吗 生物安全柜一般需要接排放管道,以便将过滤后的废气排放到室外或通风系统中去。排放管道一般要求材质耐腐蚀、密封性好,并且要满足当地环保法规的要求。在安装过程中,需要注意排放管道的安装位置和角度,以避免废气的倒灌和积存。如果不能接排放管道,则需要采用内循环的方式过滤废气,并定期更换过滤器。 生物安全柜排放管道的安装应该由专业的安装人员进行,需要遵循以下步骤: 确定排放管道的走向和位置,以确保安装后可以顺畅排放废气,同时不影响其他设备和通道的使用。 确定排放口的位置,一般建议将排放口设置在屋顶或者墙外,以减少对室内环境和人员的影响。 安装排放管道,一般采用PVC或者不锈钢材质的管道,根据实际情况选择管道直径和长度。 安装排放口,确保排放口与管道连接紧密,不漏气,同时需要安装排气风机,以保证排放的废气能够及时排出。 安装排放管道过程中需要注意防水、防火等安全问题,同时需要遵守相关的安全规范和法规,确保安装过程安全可靠。 需要注意的是,生物安全柜的排放管道应该与通风系统的排放管道分开,以避免交叉污染和交叉感染的风险。
  • 上海新诺到访西湖大学进行仪器设备安装指导
    上海新诺到访西湖大学进行仪器设备安装指导 近期,杭州市西湖大学采购了我们的RYJ-600Z系列设备,上海新诺仪器受邀为西湖大学安装调试RYJ-600Z1全自动热压机。在安装过程中积极配合客户的需求,提供优质的服务并顺利完成安装。对客户提出的热压机相关问题,技术人员详细介绍了设备的使用方法、维护、及日常使用中的注意事项等相关知识。在技术人员的指导下,客户现场进行了热压机的操作,设备的良好性能令客户非常满意!过硬的专业知识和工作能力,也为客户留下了深刻印象。能被肯定,被信任,被认可是对我们莫大的幸运!借此机会,感恩所有的客户,是你们让我们不断进步,我们也会一如既往的用心服务每一位选择我们的客户!上海新诺仪器公司作为仪器行业的供应商,将始终秉承助力科研领域的发展,一如既往的支持广大科研人员的创新研究,为广大用户提供更加优质的服务!未来,公司也将继续秉承“创新、品质、服务”的企业精神,不断提高产品质量和服务水平!
  • 江门中微子实验中心探测器不锈钢主结构安装完成
    6月24日,江门中微子实验(JUNO)地下700米的实验大厅内,中心探测器不锈钢主结构最后一个拼装单元吊装合拢,标志着中心探测器不锈钢主结构安装工作顺利完成。 江门中微子实验核心探测设备——中心探测器位于地下实验大厅内44米深的水池中央,其不锈钢主结构设计采用直径约41米的球形网壳结构形式,也称作不锈钢网壳,作为探测器的主支撑结构,它将承载35.4米直径的有机玻璃球、两万吨液体闪烁体、两万只20英寸光电倍增管、两万五千只3英寸光电倍增管、前端电子学、电缆、防磁线圈、隔光板等诸多关键部件。 不锈钢主结构由预制的焊接H型钢通过12万套高强螺栓拼接而成,结构制造精度要求非常高,连接孔与环槽铆钉的安装间隙不超过1毫米,球形网壳网格拼装精度小于3毫米,是目前国内最大的单体不锈钢主结构。自2013年立项以来,高能所与设计、生产企业协同攻关,攻克诸多工艺技术难题,解决了大型不锈钢复杂结构焊接变形问题,通过特殊工装和工法完成了所有构件在工厂的高精度预拼装;研发了不锈钢表面粗化技术,该技术将不锈钢表面抗滑移系数从普通的0.2提高到0.5以上;同时针对JUNO项目的特殊需求研制了高强不锈钢短尾环槽铆钉。 不锈钢主结构项目负责人、现场安装经理何伟表示:不锈钢主结构设计与预研过程中获得了多项技术发明专利授权,同时带动提升了相关制造企业的创新发展和综合实力;其中不锈钢短尾环槽铆钉技术经中国机械通用零部件工业协会鉴定,首次用于不锈钢钢结构领域,相关标准据此发布,填补了国内空白。在不锈钢网壳现场安装过程中,为了保证安装质量、提高安装速度,同时满足实验高洁净度的要求,工程技术人员不断摸索优化拼装单元和安装工法,并且改进了铆钉枪的使用,有效减少了铆接不良率和返修数量,保证了质量和工期。 江门中微子实验项目采用单主线多副线并行的高效建设方案。在中心探测器不锈钢网壳安装过程中,同步进行了反符合探测器主支撑结构和有机玻璃升降平台的现场安装。其中,反符合探测器主支撑结构分布于直径43.5米的大型圆柱形池壁内侧,为悬挂不锈钢钢结构位于防水HDPE膜外,具有大长细比自重预应力的特点。该结构准确紧贴池壁,充分提高探测体积,同时43米通长无侧支撑,从根本上解决混凝土穿透处高压地下水渗漏难题。该结构作为池壁承载的主结构,承载探测器的各种电缆、光纤、液闪和纯水管路、tyvek反射纸以及水切伦科夫探测器刻度光源等。 不锈钢主结构的合拢也意味着有机玻璃球现场安装的开始,中心探测器结构中的有机玻璃球直径35.4米,壁厚120毫米,重600多吨,是世界上最大的单体有机玻璃结构,生产和建造在国内外都无先例,如何突破传统工艺,在短期内顺利完成这一球体建造是项目组面临的又一巨大挑战。 江门中微子实验位于广东省江门市开平市,是由中科院和广东省共同建设的大科学装置,同时也是一个大型的国际合作项目。2015年开始建设,计划2023年建成运行,以测定中微子质量顺序、精确测量中微子混合参数为主要科学目标,并进行其他多项科学前沿研究。江门中微子实验的实施将使我国在中微子研究领域的领先地位得到进一步巩固,并成为国际中微子研究的中心之一。
  • 布鲁克公司纳米表面仪器部国内首台红外原子力显微镜安装调试成功
    近日,国内首台红外原子力显微镜(Inspire)在北京化工大学安装调试成功。 Inspire™ 系统是Bruker公司最新推出的基于AFM的纳米尺度下红外表征系统。它可以在通常的AFM成像速度下,采集样品的红外反射和吸收图像,从而获得样品的化学成分信息。结合Bruker独有的PeakForce TappingTM ,在获得高分辨形貌的同时,可获得样品的模量、粘附力等力学信息,样品的电导性、功函数等电学信息,和纳米尺度上的化学成分信息,提供了材料多维度的关联信息,为材料科学微观尺度的检测提供了新的视野。Inspire红外原子力显微镜安装过程安装过程样品测试结果了解更多的产品信息请进入http://www.instrument.com.cn/netshow/SH100735/ 或直接登陆布鲁克公司官网。
  • 德国Diosna实验室流化床在中国医药研发中心顺利安装
    德国Diosna公司的一步制粒干燥机/实验室流化床MiniLab XP于2020年6月在中国医药研发中心顺利安装并通过验收,在一周的安装过程中,做了大量的应用实验,包含:湿法制粒后的样品干燥、一步喷雾造粒过程、Wurster底喷微丸包衣过程;分别对球形微丸和不规则微丸进行了多次包衣,样品表面的包衣层十分均匀,效果良好;同时对MiniLab XP的新颖控制功能进行了演示和验证:粘合剂喷雾压力和过滤袋反吹压力的数字显示和控制,MiniLab XP所有的实验参数和配方实现了PLC控制的全程数字化,便于用户轻松地完成重复性实验和一致性验证。德国Diosna公司是世界上No 1 混合湿法制粒机的发明者,也是世界上早期实现不同锅体可更换的设计者,拥有多项zhuanili技术,提供从实验室类型的小型研发设备,到大规模生产的整条制粒干燥生产线:湿法制粒+整粒+流化床+整粒+片剂包衣;实验室流化床MiniLab XP内置变频风机、内置六个过滤袋,进风流量、进风温度、样品温度、出风温度数字显示和控制,可编程全自动控制造粒过程,可以选择:1升、3升、5升、7升的罐体,最MAX样品处理量达到3.25公斤,同时适合实验室的少量样品和中试放大的研发实验。
  • 抽湿机内氟的安装和检测
    抽湿机内氟的安装和检测氟氯昂制冷剂是一种渗透性强、极易泄漏的物质。在把抽湿机投入到正常运行中的时候,必须把抽湿机可能漏的点查一遍,如果有泄漏的必须赶紧给予修复,最后再灌放制冷剂。在以往除湿机的直排安装过程中,完全是根据工人的经验去直排安装。依靠氟氯昂在管道里流动的压力把管道里多余的空气排出。 这样,就有可能会造成氟里昂多放,或少放。“亏氟”对抽湿机的影响:1.会造成机器长时间工作,没有或减少机器的停机时间,会减少机器的使用寿命。2.室内湿度因为机器“亏氟”,而达不到您满意的效果,甚至于很差。“盈氟”对抽湿机的影响:1.会造成机器反复的工作------停机------工作------停机,同样会减少机器的使用寿命。 2.由于机器“盈氟”,反复的开关机,加剧了除湿机的耗能。查抽湿机系统泄漏的方法很多,一般有以下几种:(1) 直观检查法。抽湿机系统泄漏一般情况是由连接管断裂或管路中各连接处渗透引起,前若一眼可见,而后则者要仔细检查,因R22有很强的渗透性,并含有冷冻机油,因此,渗透处一般可能的少许油迹,当发现某连接处有油迹时,此处可能为泄漏点。(2) 水中发泡法。在压缩机加液管口焊上1只直角截止阀,从此处充放8﹡105~10﹡105帕压力的氮气,然后关闭直角截止阀,将制冷系统浸入水箱中,观察产生的气泡在何处,则此处即为泄漏点。(3) 肥皂水检漏法。将制冷系统充入8﹡105~10﹡105帕压力的氮气,用毛笔或泡沫塑料浸上肥皂水,涂刷在抽湿机系统各可能泄漏的部位上。当出现有肥皂泡冒起时,此处即为泄漏点。(4)卤素检漏灯,电子检漏法。将制冷系统充入制冷剂,把卤素检漏税灯点着,手拿卤素灯上的塑料管,使其管口靠近制冷系统各可能泄漏部份上,逐步移动检查,当发现火焰颜色成为紫蓝色,即表示此处有大量泄漏。用电子检漏仪检漏,即把开关打开,调节其灵敏位置,用吸嘴对着各可能泄漏部位移动,当检漏仪发出泄漏报警时,此处即为泄漏点。
  • 恭喜甘肃新能源公司ENERGY-30安装完毕
    为甘肃祥天新能源公司提供的ENERGY 30傅里叶红外光谱仪于今日安装完毕,仪器指标完全符合国标GB T23801-2009中间馏分油中脂肪酸甲酯含量测定。为新能源公司提供了测量仪器,更好的服务于企业。安装过程介绍: 我公司白总经理带领技术小组,前往甘肃玉门为甘肃新能源公司安装ENERGY 30红外傅里叶,并对内部的具体的部件进行调试和校对。搭配电脑软件的安装,根据公司的内部需求,于今日安装完毕这款傅里叶红外光谱仪,获得了公司的一致好评。 安装效果展示 感谢甘肃新能源有限公司对本公司的认可,我们会继续为更多企业提供优质的产品和服务有需要的企业和高校可以随时咨询。
  • 水分测定仪:售后服务上门安装调试记
    在炎炎夏日,我们的售后工程师肩负着重要的使命,踏上了前往广东的征程。此次出行的目标明确——为用户提供AKF-V1卡尔费休水分测定仪的上门安装调试服务,并协助用户进行样品测试。AKF-V1 卡尔费休水分测定仪是一款具备高精度和高可靠性的先进仪器。它采用了先进的卡尔费休滴定法原理,能够准确测定各种样品中的微量水分含量。 该仪器配备了精密的滴定系统,确保滴定过程的准确性和重复性。其智能化的控制系统,能自动控制滴定速度和终点判断,大大提高了测试效率和精度。同时,仪器还具备良好的兼容性,可以适应多种不同类型的样品容器和测试条件。 在外观设计上,AKF-V1 卡尔费休水分测定仪紧凑美观,操作界面简洁直观,方便用户进行操作和数据读取。 售后工程师抵达广东用户所在地,首先,工程师对AKF-V1 卡尔费休水分测定仪进行了精心的安装,严格按照操作规程,对AKF-V1卡尔费休水分测定仪进行了细致的安装,从仪器配件的组装到管路的连接,每一步都力求精准与安全。在安装过程中,工程师还向客户的技术人员详细讲解了仪器的工作原理、操作流程及日常维护要点,增强了客户对仪器的认知与信心。安装完成后,调试环节更是关键。工程师凭借着丰富的经验和专业的知识,对仪器的各项参数进行了细致入微的调试,以保障仪器的测量精度和稳定性达到理想状态。 在完成仪器的安调工作后,工程师并未停歇,而是紧接着协助用户开展 样品水分含量测试。耐心地向用户讲解测试的步骤和要点,手把手地指导用户进行操作,及时解答用户在测试过程中提出的疑问。 经过一系列严谨的操作和反复的测试,最终成功完成了 N-B0C-乙二胺样品的测试,为用户提供了准确可靠的数据。 为了确保客户能够独立、高效地使用AKF-V1卡尔费休水分测定仪,工程师还提供了全面的操作培训,包括仪器的日常维护、故障排查技巧及数据处理方法。耐心解答了客户提出的每一个疑问,确保客户团队掌握了仪器的使用要领。同时,我司承诺提供长期的技术支持与定期回访,确保仪器始终保持理想工作状态,为客户提供持续的技术保障与服务支持。 这次广东之行,我们的售后工程师以专业、高效和负责的态度,圆满完成了任务,赢得了用户的高度赞誉和信任。他们用实际行动诠释了优质服务的内涵,为公司树立了良好的形象。
  • 医药生物行业—禾工科仪服务入微_滴定分析仪器安装调试
    近日,我司派出技术工程师前往江苏省某医药生物公司,针对其新购置的AKF-v6卡尔费休水分仪和CT-1PLUS电位滴定仪进行了现场安装及精准调试工作。这两款仪器均为我司的经典仪器产品,曾荣获“国产好仪器”殊荣。此次任务的目标是确保这两款精密仪器可以快速稳定地投入使用,助力企业提升产品质量检测效率和精确度。 工程师抵达现场后,严格按照预先制定的安装计划和操作规范,对AKF-V6水分仪进行了细致入微的安装作业。该型号水分仪采用先进的卡尔费休库仑法原理,具有测量精度高、仪器稳定可靠等特点,适用于各类医药样品的水分含量测定。工程师对硬件进行组装,同时对软件系统进行设置与校准,确保了仪器各项参数的准确性。 对于电位滴定仪的安装调试工作,工程师同样展现出了专业严谨的工作态度。这款电位滴定仪集自动滴定、数据处理和结果打印等功能于一体,广泛应用于药物成分分析、酸碱滴定等领域。在安装过程中,工程师仔细检查了所有线路连接,并对滴定精度、终点判断等关键性能进行了严格的测试与优化,同时还进行了PH电极校正。 整个安装调试过程,工程师始终坚持以客户需求为导向,秉持“精心、精细、精致”的服务理念,积极解答用户在使用过程中可能遇到的问题,同时对其操作人员进行了详细的设备操作培训和技术指导,以保证客户能在后续使用中充分发挥出这两台仪器的效能。
  • 天美公司携手DNS厂家安装第一台RT-3全自动溶出度仪
    2013年11月25日-12月5日,天美(中国)科学仪器有限公司携手DNS厂家安装了中国医学科学院药物研究所购买的RT-3全自动溶出度仪。RT-3全自动溶出度仪,代表着溶出度仪的世界最高技术水平,在全球众多知名药企都有广泛应用。但在中国尚属第一台,DNS公司非常重视,分别选派负责设计、软件和电子方面的三位工程师前来共同安装,天美公司也有多位专业工程师一起协助安装。DNS RT-3全自动溶出度仪全貌中国医学科学院药物研究所采购前调研了不同品牌的溶出度仪,经过技术对比、在同行用户中了解使用情况等,并经过试用DNS半自动溶出度仪后,最终决定采购DNS全自动溶出度仪。此系统包含自动脱气单元、监控单元、自动过滤单元、自动收集单元和六连池在线UV、溶媒自动回补等模块,可全自动实现自动加样、自动清洗溶出杯和管路、自动取样、自动回补溶媒、自动计算测试结果等,实现了溶出实验的全自动化,最大可实现10个批次样品的无人值守的全自动溶出,节省人力的同时也提高了实验效率。DNS公司的溶出度仪凭借其独到的技术及稳定的仪器性能在业界有着良好的市场占有率和用户口碑。安装过程中,DNS工程师依据3Q的要求进行了相关测试,并取得了优异的测试结果。测试结果出来后,参与验收的用户代表王老师高兴的说:溶出结果恰好在要求范围的最中间!非常完美的响应了我们的需求!用户共有8人接受了操作培训和维护培训,在操作培训中,厂家工程师耐心的系统介绍了如何编辑一个全自动溶出实验程序,如何进行日常维护,并逐一拆开需要用户需要周期性维护的部件示范如何更换,并请用户亲自体验。在用户表示掌握了基本的操作方法和基本的维护能力后,DNS工程师和天美工程师才放心离开,历时9天的DNS溶出度仪安装和应用培训顺利结束。公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 梅特勒托利多利用现代化过程提高盈利能力研讨会
    遵守食品行业的法律法规及规章制度对食品安全至关重要,尤其是对于净含量的控制,无论是对于生产者或是消费者,都有着重要的意义。而在灌装生产过程中,过程质量的控制相当困难,从&ldquo 稳定的容易控制&rdquo 到&ldquo 离散性高的难以控制&rdquo ,情况多种多样。   但是无论多么困难,梅特勒托利多都有合适的SPC或SQC解决方案来给您的灌装过程提供强有力的支持,帮助您控制产品净含量,在确保灌装过程符合法规的前提下控制过量灌装。   欢迎您参加本次免费在线研讨会,利用现代化过程与质量控制系统提高您的盈利能力!   在线网络研讨会&mdash &mdash 通过互联网和电话您就能轻松参加! 点击这里,在线报名   免费在线网络研讨会   会议时间:2010年5月14日, 下午3:00-4:00 (北京时间)   会议时长:1小时   语言:中文   主题:   利用现代化过程与质量控制系统提高盈利能力   -- 如何改善灌装控制   -- 降低过量灌装的同时符合法律规范   -- 统计质量控制(SQC)的优势以及人工SQC   -- 先进的抽样检测方法案例解析   -- 梅特勒托利多提供的SQC解决方案   -- 如何变手动方式为整体方式   -- 投资回报分析   主讲人:奚炜,梅特勒托利多   本活动最终解释权归梅特勒托利多所有
  • 超分辨成像技术看清细胞“刽子手”的行刑过程
    近日,中国科学院院士、厦门大学教授韩家淮和厦门大学副教授陈鑫团队借助单分子定位超分辨成像技术“随机光学重建显微镜(STORM)”,首次揭示了“坏死小体”在细胞中的组织结构特征及其对细胞死亡的决定作用,为人类相关疾病治疗干预提供了新思路。相关论文已在《自然细胞生物学》上发表。超清成像技术让推论“眼见为实”细胞是生命体的基本功能单元,而决定细胞命运的关键一环是细胞的程序性死亡。在细胞程序性死亡中,有一种形式叫“坏死样凋亡”,其中起决定作用的一个重要信号处理枢纽就是“坏死小体”复合物。“坏死小体”在死亡细胞中的结构究竟如何?“坏死小体”如何精准发力决定细胞死亡命运?这些涉及多个核心分子(RIP1/RIP3/MLKL)的招募激活和信号放大/转变等复杂过程。由于细胞体尺寸非常微小,例如哺乳动物细胞一般在几十微米,要观察到其内部“坏死小体”的精准调控机制难度可想而知。在此前的研究中,科学家曾借助常规共聚焦荧光显微镜,观察到细胞死亡过程会产生大小不等的“坏死小体”点状信号,提示了该信号枢纽很可能存在动态组装过程。但“坏死小体”在细胞中是如何精准处理复杂信号,进而决定细胞死亡的始终是一个未解的谜团。韩家淮院士和陈鑫团队借助于蓬勃发展的超分辨成像技术,尝试了多种目前较成熟的技术流派,最终找到了精准观察“坏死小体”运行机制的利器——单分子定位超分辨成像技术(STORM)。研究人员通过对STORM成像全流程进行细致优化,在生物样本上实现了优于常规共聚焦显微镜10倍以上的分辨率(13—18纳米定位精度)。这些技术的提升使许多原本看不见、看不清的研究对象变得清晰明朗,让原来靠推测得到的结论“眼见为实”。“坏死小体”这样杀死细胞在历时8年的研究中,团队成员成功观察到死亡细胞中的“坏死小体”由初始点团样结构演化为直径约50纳米,长度约200—600纳米的规则棒状结构的组装模式,并且在该规则棒状结构中呈现出明显的由RIP1/RIP3组成的马赛克状分布。进一步的观察研究发现,只有马赛克状分布中的RIP3区域满足一定的尺度要求(如四聚体及以上),才能有效地诱导下游效应分子MLKL发生多聚化,进而靶向细胞膜导致细胞死亡发生。同时,通过抑制关键因子RIP1的激酶活性可以阻碍“坏死小体”的有序马赛克样棒状结构的产生,从而抑制细胞死亡。此外,RIP3激酶活性缺失导致的细胞死亡模式转变也有赖于该结构中的RIP1多聚化程度,这提示了团队发现的“坏死小体”马赛克样组织结构很可能是细胞内控制死亡方式的信号选择模块。“该结果在细胞原位揭示了关键信号枢纽纳米尺度上的组织特性及其对信号传递/放大/转换的贡献,为发展特异性抑制程序性细胞死亡的干预手段提供了潜在的切入点,希望我们的发现能够对帕金森病、多发性硬化症等神经退行性疾病、脓毒症等病原菌感染性疾病的临床应对和治疗有所帮助。”韩家淮介绍。有望解析更多生物大分子复合物细胞内数量众多的生物大分子复合物都是控制生命活动的核心功能枢纽,如DNA复制/转录起始复合物和细胞器膜上的各类转运复合物等。现代生物学的理论基石——细胞学说诞生至今已近两百年,但人类始终无法彻底解析任一细胞在稳态/应激条件下的分子水平精细结构,自然也无法随心所欲地改造/控制细胞,实现保障人类健康和社会进步的宏伟目标。目前单颗粒冷冻电镜技术是解析蛋白质结构的利器,但面对细胞内结构巨大、成分复杂、高度异质的功能复合物,其仍存在较明显局限性。韩家淮院士和陈鑫团队的工作证明纳米尺度光学成像是解析此类大型生物大分子复合物的组织特征和功能模式的可行方案之一。
  • 有望减缓温室气体增加,科学家用冷冻电镜全面解析微生物一氧化二氮还原酶组装过程
    无味无毒的气体一氧化二氮(N2O,nitrous oxide)可以通过生物和非生物两类过程形成,这导致大气中 N2O 浓度每年稳定增加 0.2-0.3 %。一氧化二氮是一种消耗臭氧的物质;它的全球变暖潜力超过了二氧化碳的 300 倍,因此已经被认为是 21 世纪最关键的人为排放物。微生物可以将 N2O 转化为 N2,这是反硝化过程的最后一步,这一反应完全由一氧化二氮还原酶(N2OR 酶)催化。大气中 N2O 释放和不断积累的一个主要因素是,在高流量氮的环境下,微生物还原 N2O 的能力有限。因此,利用 N2OR 酶的性能进行农业或生物修复应用是相当有意义的,这需要对该酶及其反应过程有一个详细的了解。除了 [ 4Cu:2S ] CuZ 簇,它还含有混合价的双铜电子转移中心 CuA,这使其成为目前已知最复杂的含铜酶。各种真核生物和原核生物酶在涉及氧运输、电子转移或氧化还原催化的过程中都会使用过渡金属铜,但其巨大的细胞毒性、对铁硫簇代谢的不利影响以及产生活性氧的倾向性,使得细胞内必须进行严格的平衡和调节。N2O 还原剂通过完全在细胞质外组装 CuA 和 CuZ 来规避与细胞内铜有关的风险,尽管 apo-N2OR 已经以折叠状态通过 Tat 途径被输出。然而,这种策略导致了新的复杂情况,特别是包括在周质中没有还原当量和高能化合物,如核苷三磷酸酯。I 族 N2O 还 原催化剂的共同结构包括两个核苷酸结合结构域(NosF)和两个跨膜结构域(NosY)。一些细菌输出体进一步与附属蛋白相互作用,以建立复杂的运输系统,NosD 蛋白被认为是与 NosFY 一起发挥这种作用。由于 NosDFY 的实际货物分子尚未被确定,不能排除 CuZ 成熟所需的周质硫源。为了了解 N2OR 成熟的分子基础,这项研究制作并表征了 NosDFY 复合物,并通过冷冻电子显微镜(cryo-EM)研究了它与 NosL 和 N2OR 的相互作用,揭示了由细胞质中 ATP 水解驱动的周质酶铜位点的顺序组装线。2022 年 7 月 27 日,德国弗莱堡大学生物物化学研究所所长奥利弗 艾因斯(Oliver Einsle)与美国范 安德尔(Van Andel)研究所首席研究员杜娟合作,在 Nature 发表其最新论文,题为《一氧化二氮还原酶的组装机制中的分子相互作用》(Molecular interplay of an assembly machinery for nitrous oxide reductase ) [ 1 ] 。该工作详细地解析了 N2OR 酶的三维结构和组装机理。▲图 | 相关论文(来源:Nature)p. stutzeri (施氏假单胞,一种革兰氏阴性细菌)在大肠杆菌中被生产为稳定的五亚基复合物 NosDF2Y2,并在膜部分溶解后通过色谱方法分离出来。NosF2Y2 异源四聚体形成了复合物的核心,45kDa 的 NosD 蛋白从其中突出到周质中,成为一个细长的 β 螺旋,与糖类结合的蛋白质以及糖水解酶家族具有结构相似性。NosD 的主轴从与 NosFY 对相关的双轴上倾斜,打破了分子的对称性。在 NosD-NosY 界面,NosD 的 C 端折叠成三个 α - 螺旋(hI-III),部分位于膜内,紧紧楔入 NosY 二聚体。▲图 | 无核苷酸状态下 P.stutzeri NosDFY 的三维结构(来源:Nature)为了描述 NosDFY 的 ATP 结合状态,研究者们产生了一个 NosF(E154Q)变体。在这一变体中,非活性谷氨酰胺取代了催化性谷氨酸残基 154,且该单点变体的 ATP 水解活性降低得十分明显。当在特定的背景下表达时,它会使得 N2OR 酶缺乏活性位点 CuZ 簇,从而导致功能失调。无效的 E154Q 变体使 NosF 处于 ATP 结合状态,正如其他 ABC 蛋白(ATP 结合盒式蛋白,ATP-binding cassette transporter)已经报道的那样。具体来说,ATP 的结合使得 NosF2 二聚体大幅度闭合,这一动作将直接传导到 NosY 二聚体,从而实现关闭跨膜间隙,最终诱导 NosD 在周质中发生复杂的构象变化。这一过程可以用三种主要的旋转模式来描述。▲图 | NosDFY 及铜与 NosD 的结合的构型动力学(来源:Nature)据悉,NosDFYL 在正十二烷基 β -D- 麦芽糖苷(DDM)中会被分离出来,并被重组到糖二醇胶束(GDN)和膜支架蛋白(MSP)纳米盘中,以 3.3- (纳米盘)或 3.04- (GDN 胶束)的分辨率进行冷冻电镜观察。NosL 在复合物中的位置立即变得清楚,其 N 端被解析到 NosL ( C24 ) 的脂质附着点,该位点正好位于膜界面,而脂质附着点本身并没有被解析。这种排列明晰了 NosL 实际上并不像以前提出的那样位于外膜中,而是位于细胞质膜的外叶中。▲图 | 无核苷酸的 NosDFY 接受来自 NosL 的 Cu+(来源:Nature)在三个组成部分的相互作用中,ATP 驱动的 NosD 的旋转运动控制着与其伙伴 NosL 和 N2OR 的相互作用,其具体相互作用模式见下图。负载铜的 NosL 只能在无核苷酸状态下与 NosDFY 结合,在这种状态下,NosD 上的铜结合点朝向膜,允许 Cu+ 从 NosL 转移到 NosD。随后 ATP 与 NosF 的结合引发了 NosD 的旋转,而与膜相连的 NosL 无法跟随,导致其释放。在这种构象中,NosD 现在可以通过相同的界面与 N2OR 相互作用,将其 " 含铜货物 " 转移到该酶的金属位点。然后 NosF 中的 ATP 水解使 NosDFY 回到其无核苷酸的开放构象,而 N2OR 二聚体向膜的移动最终将迫使其释放,并释放出 NosD 上 HMM 三联体的铜结合位点,以装载 NosL 的另一个金属阳离子。在任何一个方向,各自的相互作用伙伴的释放都是通过 NosD 的旋转运动机械地触发的,NosDFY 及其伙伴的复合物的结构十分详细地显示了 ATP 驱动的 NosD 的变形如何使单核伴侣 NosL 的单个铜离子逐步转移,最终组装成四核 CuZ 簇。因此,ABC 运体 NosDFY 作为一个跨膜能量转换器,动态地促进新生酶与 NosD 的铜供体的结合和分离,将一个主要的活性转运蛋白重新利用为 ATP 驱动的杠杆,跨越分隔两个非常不同的细胞区间的边界。▲图 | 铜从 NosL 经 NosDFY 到 N2OR 的运输模型(来源:Nature)总之,该研究以 NosDFY 与 NosL 和 N2OR 酶组成的复合结构为解析对象,这一结构中含有高度复杂的铜位点,利用冷冻电镜,复合结构的组装途径被完全展示。在这一途径中,NosDFY 作充当机械能量转换器的角色,而并不直接起到转运作用。这项工作是科学家首次解析如此复杂的 N2O 还原酶结构,将为微生物 N2O 降解提供完整的理论支撑,并有望推动 N2O 还原降解的技术研究。
  • 冻干过程中西林瓶破损现象分析
    冻干工艺是将液体产品在容器内进行冷冻,然后在低压环境下,通过升华形式进行干燥。而冻干制剂生产过程中可能会遇到的一个问题,就是作为容器包材的玻璃西林瓶偶尔出现破裂或破损,虽然这种现象相对罕见,但一旦发生,就可能是一个严重的问题,因为它会导致产品损失、甚至带来溢出产品和破碎玻璃渣对设备内部造成的污染。由于整个冻干过程会处于一定温差范围内进行,因此一些观点认为,这种破损现象与包材热应力有关,可以通过改变西林瓶的热性能来减少发生概率。 但事实是这样吗?本文将告诉你答案。西林瓶破损原因及种类分析在本篇引用文章中,作者通过分析西林瓶破裂形式来寻求答案,尽管文章研究的主体针对管制瓶,但破损现象在模制瓶和管制瓶上都可能发生。当然精确判断西林瓶破损的原因是复杂的,因为在冻干过程中可能会出现几种明显不同类型的破损。这些破损类型有不同的原因,需要采取不同的纠正措施。此文将重点介绍更常见的管制西林瓶的破损类型,即在大多数情况下,断裂模式如下图1所示。这种模式的特点是在玻璃瓶外表面下侧壁区域出现垂直断裂,有时在原点上方和/或下方出现分叉。 图1:冻干过程中的典型瓶裂现象当力作用在玻璃物体上时,玻璃会发生弹性变形(应变),从而产生压缩应力和拉伸应力。这些应力在玻璃中的独特分布取决于瓶型设计因素、玻璃厚度分布以及施加在物体上的力的类型。玻璃只有在拉伸应力的影响下才会破损,裂纹会沿着垂直于拉伸应力分布的方向扩展。因此,裂纹样式对应于破损时作用在玻璃物体上的力的类型是仅有的,从而有助于识别导致破裂事件的力。破裂西林瓶的不同裂纹样式示例如下图2和下图3所示。图2中的西林瓶被一个内部压力打破,这个压力是通过将西林瓶装满水,并使装满的瓶子承受液压而产生的。 图2:由于内部压力而造成的瓶裂压力最初很低,一直升高,直到小瓶破裂。断裂样式由垂直裂纹组成,该裂纹在断裂发生的精确位置上下出现分支。上图2-a)中的西林瓶显示出广泛的破裂,这是典型的相对高压。上图2-b)中的小瓶在低得多的压力下破损,显示出一个相对简单的样式,仅由一条直直的垂直裂缝构成,在下端为环状裂缝。下图3中的西林瓶被热冲击力打破,热冲击力是通过西林瓶在烘箱中加热,然后浸入冷水浴中产生的。断裂样式包括许多弯曲裂纹贯穿侧壁和瓶底区域。下图3-a)中的西林瓶在侧壁上显示出广泛的裂纹,表明在破损时存在相对较高的温差。下图3-b)中的西林瓶在较低的温差下破损,并且显示出一个相对简单的样式,该样式仅由瓶子底部周围的单个环向裂纹构成。 图3:由于热冲击而导致的瓶裂根据一些文献中总结的断裂判断方法,如上图2和上图3中的示例所示,可以得出一个假设判断,即上图1中所示的断裂样式是由于施加在西林瓶内表面的力导致瓶子向外膨胀而破裂的独特特征。同时,对在正常商业操作条件下生产的一种管制瓶进行了计算机应力分析。分析中使用的玻璃瓶的轮廓和玻璃厚度分布如下图4所示,并模拟了水冻结成冰时的膨胀水平力。下图5中显示的分析结果表明,向外膨胀力在玻璃内外表面产生的拉伸应力几乎相等,同时伴随厚度远小于圆柱体直径的薄壁圆柱体的膨胀。断裂起源将发生在外表面的该区域,因为与内表面相比,该表面具有足够严重缺陷的可能性更大。冻干过程中温度梯度是否会影响西林瓶破损?破损是否也可能是由于温度梯度产生的应力引起的呢?毕竟冻干过程中存在假定的温度梯度现象。如果温度梯度引起的断裂应力被认为与冻干过程中玻璃瓶的破损有关,则断裂样式将包括侧壁和底部区域的弯曲裂纹,其起源很可能位于底部或跟部区域的玻璃外表面,如图3所示。这与图1所示的商业生产期间破裂的西林瓶观察到的破裂样式形成直接对比。另外事实上,在正常的冻干过程中,装满药品的小瓶放在冻干机腔体内的板层上。冷量通过板层内的导热流体传导板层金属面,再缓慢冷却西林瓶的支承面区域,同时伴随辐射、对流冷却西林瓶周围的环境。由于装满产品的西林瓶瓶从室温到大约-40°C的总冷却时间通常需要较长时间才能完成,因此假设玻璃瓶内外表面之间可能产生的任何瞬时温度梯度都相对非常小。为了验证这一假设,使用理论公式来估计产生许多商业破损事件中观察到的应力大小所需的温度梯度。为了达到27.6 MPa的总断裂应力,玻璃瓶内外表面之间需要125°C的温差。对于69.0 MPa的断裂应力,需要314°C的温差。而在正常的商业冻干过程中,西林瓶冷却的方式相对柔和,玻璃中不太可能产生如此高的温度梯度。冻干过程中西林瓶破损原因总结 为证明上述论断,作者进行了如下几种实验,观察不同情况下的裂痕样式,进行进一步对比分析:Freezer test 冷冻设备试验(仅外向力)Liquid Nitrogen Immersion 液氮浸泡(加上显著的热梯度)GDFOvento Cold Bath Thermal Shock Test 烘箱至冷浴热冲击试验(仅热梯度) *得出结论:文章讨论的常见破损断裂类型是由于冷冻药品在预冻过程中产生的向外膨胀力导致的,而不是由于温度梯度。因此,玻璃瓶热性能的变化(玻璃瓶的设计变化或使用具有较低热膨胀系数的玻璃)不太可能对典型冻干过程中可能经历的破损频率产生显著差异。解决破损断裂问题的方法是进行详细的断裂分析。这种分析将清楚地区分破裂的原因,要么是由于西林瓶在生产、运输或灌装过程中的问题导致的玻璃强度降低,要么是由于产品在冻预过程中膨胀导致的作用力过大所导致的。如何减少冻干过程中的西林瓶破损?那么,如何减少产品在预冻过程中由于膨胀而产生的应力,从而减少冻干过程中西林瓶的破损呢? 让我们一起先来了解一下预冻过程中的成核理论。传统冻干的预冻过程中,晶核的形成都是随机的,如下: 图6:随机成核成核温度不同,产生的冰晶形态和大小各不相同,晶核生长的方向也是杂乱无章,导致产品在冻结过程中膨胀产生的应力比较大,从而导致西林瓶破损现象,尤其是瓶子比较大,装样量比较多时,破损现象更明显。经Controlyo技术控制成核后,所有样品在同一时间、同一温度瞬间成核,晶体生长方向也比较规则,*可以显著减少预冻时的应力,减少西林瓶破损现象。 图7:Controlyo控制成核经典案例分享用于治疗癌症的小分子药物 配方:2.5 wt% API 2 wt% NaCl (pH 7.7-7.9)100ml西林瓶,22ml 的灌装量每批85个样品 图8:随机成核与控制成核对比 从上图可以看出:用Controlyo技术在预冻过程中控制成核后,冻干后的产品显著降低了西林瓶破损率。Controlyo技术不仅可以显著减少破瓶率,还具有以下优势:样品更均一适用于高剂量样品或灌装体积较大的样品保证同一批样品及不同批次样品的均一性提高药效缩短干燥时间(30%左右)改善产品外观减少破瓶率提高产量减少产品复水时间以下引用是FDA出版并认可的结论:Controlyo晶核控制可以显著减少主干燥时间,提高蛋糕状外形,蛋糕形态,减少比表面积,提高瓶子间的均匀性,缩短复水时间。[文章摘译]:David R. Machak and Gary L. Smay,Failure of Glass Tubing Vials during Lyophilization,PDA J Pharm Sci and Tech 2019, 73 30-38*本文图片来源于网络,版权归原作者所有,如有侵权请立即联系我们删除。
  • 新光学显微镜技术揭示活细胞生物过程
    来自美国霍华德休斯医学研究所,Janelia研究园的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞 内的动态生物过程。他们的新方法显著的提高了结构光照明显微镜(structuredilluminationmicroscopy,SIM)的分辨率, 一种最适合活体超分辨成像的技术。      新技术所拍摄的视频生动地展现了细胞内蛋白质的运动和相互作用。它们帮助生物学家理解细胞是怎样改变它们之间的依存结构,以及重整细胞膜结构使得细胞 外的分子可以被吸收到细胞内。来自Janelia研究园的研究员EricBetzig博士,李栋博士后*和他们的同事们基于原有的SIM显微镜原理新发展 了两种新的超分辨率成像技术。超分辨率光学显微成像技术能够跨越理论的分辨率极限,在极高的分辨率下展现细胞内的精细结构。但是,到目前为止,超分辨率显 微镜技术却依然不能进行有效的活体细胞成像。   “这些方法设立了超分辨率光学显微镜的成像速度和非侵入特性的新标准,它们使得超分辨率活体细胞成像成为现实。”Betzig博士说道。在传统的 SIM显微镜中,物镜下的物体被非均匀的结构光(类似于条纹码)所照明。在实验中,几束不同的结构光用来照明物体,它们和物体在不同角度混频所产生的摩尔 条纹被相机依次采集。然后计算机提取摩尔条纹编码的信息并将其解码生成三维的高分辨率图像。最终重建的SIM图像具有高于传统显微镜图像2倍的空间分辨 率。   Betzig博士和其他两位科学家因为发展超分辨率荧光显微镜而被授予2014年诺贝尔化学奖。他说道,SIM显微镜技术之所以没有得到像其它方法那 样多的关注,是因为其它技术能够提供比两倍更高的分辨率改进效果。但是,他强调SIM拥有两大其它的超分辨率方法所没有的优势。这些其它方法包括了两种去 年获得诺贝尔奖表彰的技术:他和同事HaraldHess博士于2006年开发的光激活定位显微镜 (photoactivatedlocalizationmicroscopy,PALM),和受激辐射耗尽 (stimulatedemissiondepletion,STED)显微镜。但是,这两种技术都需要过多或过强的光来照明样品,以至于荧光蛋白很快被 漂白,细胞样品很快被损害,从而不可能长时间进行成像。然而,SIM在这些方面不一样,“我爱上了SIM,因为它的速度很快,而且它所需的照明光强度远远 小于其它方法。”Betzig博士说道。   Betzig博士在2011年MatsGustafsson博士去世后不久开始与SIM相关的研究。Gustafsson博士是SIM技术的先驱之 一,生前也是Janelia的研究员。Betzig博士那时已经深信SIM有潜力为解析细胞内部的工作机理提供重要的见解,如果SIM的空间分辨率可以被 提高,它对于生物研究的可用性将被大大增强。   在生前,Gustafsson博士和博士生HesperRego发展了一种利用饱和耗尽(saturateddepletion)的非线性SIM技 术,但这种技术在改进分辨率的同时需要使用很多的光照并且散失了SIM成像速度快的优势。Betzig博士想到了一种可以避免这些缺陷的方法。   饱和耗尽非线性SIM利用光可反复开关的荧光蛋白和其在开关过程中的饱和耗尽效应来提高分辨率。它产生图像的过程是,首先把所有的荧光蛋白分子激活到 可发光的状态(亮态),然后用一束结构光把大部份的亮态分子反激活到暗态。通过结构光反激活之后,仅有少数处于结构光最弱区域的分子仍然保持在亮态。这些 光调控过程提供了物体的高空间频率信息,从而让图像更加清晰。这一过程需要重复25或更多次才能产生最终的高分辨率图像。Betzig博士说道,这一原理 非常类似于STED或另一种与其相关的叫做RESOLFT的超分辨率技术的原理。   这一技术并不适合于活体成像,因为激活和反激活荧光蛋白需要很长的时间。另外,反复的光照明会对细胞和荧光蛋白本身造成损伤。Betzig博士说道, “这一技术的问题在于你首先用光激活了所有的荧光蛋白分子,然后你马上又用另一束光反激活了大部份分子。这些被反激活的分子对最终的图像没有任何贡献,但 却被你用光“油炸”了两次。你让分子承受了很大“压力”,并且花了很多你并没有的时间,因为这段时间内细胞在运动。”   解决方法其实很简单,Betzig博士说道:“没有必要激活所有的分子。”在Betzig研究小组新发展的结构光激活非线性SIM的技术中,一开始用 结构光只激活样品里的一部分荧光蛋白分子。“这一结构光激活过程已经给你一些高分辨率的信息了。”Betzig博士解释道。另外一束结构光用于反激活分 子,额外的信息可以在反激活的过程中同时被读出。两个结构光叠加的效应给与最终图像62纳米的分辨率,这一结果好于原始的SIM,并且把由光波长决定的传 统分辨率极限改进了三倍。   “我们能够做到快速地超高分辨率成像。”Betzig博士说道。这很重要,他补充道,因为对于动态过程,单纯提高空间分辨率而没有相应地提高成像速度 是没有意义的。“如果细胞内部有的结构以1微米每秒的速度运动,并且我有1微米的分辨率,那么我需要在一秒内采集图像。但如果我有1/10微米的分辨率, 那么我就必需在1/10秒内采集图像,不然图像将变得模糊。”Betzig博士解释道。   结构光激活非线性SIM可在1/3秒内采集25幅原始图像,并从中重建出一幅高分辨率图像。它的图像采集很高效,只需用较低的照明光强,并且收集每一 个亮态荧光蛋白分子所携带的信息。从而有效地保护了荧光分子,使得显微镜能够进行更长时间的成像,让科学家们可以观测到更多的动态活动。   Betzig博士的团队利用结构光激活非线性SIM获得了在细胞运动和改变形状的过程中骨架蛋白的解体和自身再组装过程,以及在细胞膜表面的叫做caveolae的微小内吞体动态过程的影像。   在Science论文里,Betzig博士的团队也利用了已经商业化的高数值孔径物镜将传统SIM的空间分辨率提高到84纳米。高数值孔径限制了被光 照明的样品范围,从而降低了光对细胞以及荧光蛋白分子的损伤。这一方法可以同时对多个颜色通道进行成像,使得科学家们可以同时跟踪几种不同蛋白质的活动。   通过高数值孔径的方法,Betzig博士的团队观测了多个骨架蛋白质在形成粘着斑(链接细胞内外的物理链)过程中的运动和相互作用。他们也追踪了 clathrin修饰的内吞体的成长和内吞过程(内吞体将细胞外的分子转移到细胞内)。他们的定量分析回答了几个不能被以往的成像技术所解决的问题,例 如,内吞体的分布,以及内吞体尺寸和寿命之间的关系。最后,通过结合高数值孔径方法和结构光激活非线性SIM,Betzig博士和他的同事可以在超高分辨 率条件同时追踪两种蛋白质的活动。   Betzig博士的团队在进一步提高他们的SIM技术。他们也急切地盼望和生物学家一起探索潜在的应用并进一步改进这一技术的可用性。   现在,科学家们可以通过现在,科学家们可以通过JaneliaJanelia的高级成像中心利用这些新的的高级成像中心利用这些新的SIMSIM技 术,这个中心提供免费使用前沿的显微镜技术的机会。最后,技术,这个中心提供免费使用前沿的显微镜技术的机会。最后,BetzigBetzig博士说道, 使得博士说道,使得SIMSIM成为能够被其他实验室获得并能够承担的技术应该是比较直接的事。“大部份的‘魔术’在于软件而不是硬件。”成为能够被其他 实验室获得并能够承担的技术应该是比较直接的事。“大部份的‘魔术’在于软件而不是硬件。”
  • 安恒水联网特邀Hydreka厂商技术指导 帮助用户提高供水保障
    为了保障在夏季供水高峰期间设备的安全运行,近日,安恒集团水联网技术服务中心邀请Hydreka技术工程师Maxime Vandenbroucke先生针对北京地区的18台设备进行为期5天的现场设备安全检查及技术指导工作,及时排查设备运行隐患,规范用户设备安装的标准动作。 Maxime Vandenbroucke先生拥有丰富的现场培训和安装调试经验,为北京的用户提供现场安装指导,对安装过程中应注意的关键点,以实操的形式对客户展开培训。对现场已安装设备的数据进行下载,查看数据是否正常,如不正常排查原因。通过巡检,发现一些用户安装过程中存在一些小问题,虽然这些问题不会出现重要失误,但对设备正常工作运行会产生一些影响,长期运行后会日益凸现出来。此次巡检的意义就是避免安装操作失误给设备运行带来隐患,确保设备高效运行。同时,还在组织用户开展设备和软件应用的培训,主要介绍四种安装方法和注意事项、两种软件的配置方法及管道内速度流场的校准操作。 安恒水联网公司的技术工程师表示:定期邀请厂商来为用户培训及设备巡检,不仅深入了解设备后期运行维护技术,为用户提供设备运行保障,更是我们了解客户需要的机会,为用户带来更完善的售后服务和主动运维服务。 安恒水联网公司多年来在区域漏损控制过程中,已经成熟掌握一系列的现场运行维护与管理经验,利用丰富的现场调试与施工经验定期现场巡检和调试,始终坚持以高效益持续提升用户价值,提高供水可靠度,保障城市供水安全。
  • 能谱科技助力青岛路桥建设集团“一路真诚”,沥青分析利器展锋芒!
    能谱科技与山东青岛路桥建设集团有限公司携手合作,成功完成了一项关键的仪器安装项目。本次合作中,能谱科技为青岛路桥提供了先进的沥青红外光谱仪,为其沥青材料分析提供了强大的技术支持。 山东青岛路桥建设集团有限公司作为业内的路桥建设企业,一直致力于提升工程质量和技术水平。为了更精准地分析沥青材料的性能与质量,公司选择了能谱科技的沥青红外光谱仪作为关键测试设备。该仪器采用先进的红外光谱技术,能够快速、准确地分析沥青中的化学成分,为公司的材料选择和质量控制提供了有力支持。 在安装过程中,能谱科技的工程师团队展现了高超的技术水平和专业素养。他们严格按照安装规范进行操作,确保仪器能够稳定、高效地运行。同时,他们还根据用户的实际需求,对仪器进行了个性化的配置和优化,使其能够更好地满足公司的测试需求。 青岛路桥建设集团对能谱科技的现场仪器安装工作给予了高度评价。他们表示,能谱科技的技术人员专业熟练、细致周到,不仅迅速解决了安装过程中出现的问题,还提供了全面的操作培训和技术支持。这使得他们能够顺利开展沥青材料的分析测试工作,并获得了准确可靠的结果。 能谱科技拥有一支经验丰富、技术的团队,他们致力于为客户提供的服务和支持。此次合作再次证明了能谱科技在红外光谱应用领域的地位和专业水准。能谱科技将继续致力于为客户提供的仪器和优质的服务,为各行业的科研与生产工作提供有力支持。 如果您对能谱科技的沥青红外光谱仪或其他产品感兴趣,欢迎随时联系我们,了解更多详细信息。
  • 微重力大科学装置海淀竣工验收
    近日,中建二局安装公司一项被喻为航天领域“跳楼机”的高科技实验装置项目竣工验收,正式进入核心试验装置安装阶段。“跳楼机”名为4秒电磁弹射微重力实验装置项目,坐落在海淀区中国科学院北京新技术基地内,是国家大科学装置,为亚洲首例、世界第二例工程。该装置采用一种类似于炮弹造型的直线电机驱动实验舱体,通过电机全程控制加速度过程,以“2秒弹射到40米高空再2秒回落”的方式来产生微重力和超重环境,最终实现模拟微重力、月球重力、火星重力等运动模式,为航天大规模空间科学项目提供地基短时微重力实验服务。如此神奇的装置,藏身在一座40米高、占地136平方米的“高塔”里,总用钢量不足千吨。“136平方米约等于一个三室两厅,干了十几年工程,没见过这么小的。”项目经理李长龙介绍,平地竖起一座高塔,看似容易,实际上“麻雀虽小,五脏俱全”。为实现微重力环境,发射装置被包裹在两层六边形钢结构中,内塔钢结构用于连接电机设备,外塔钢结构则是用来控制整体轨道装置的稳定性。与高精尖的国家大科学装置相对应的是2毫米的精度要求,施工难度集中在了钢结构安装环节。一开始,拥有丰富的钢结构项目施工经验的李长龙面对如此之“小”的项目也犯了难。“施工技术与质量标准要求极高,‘零焊接’‘全螺栓’方式,让常规施工方法和工艺难以保证。为了保证整个钢结构体系的分毫不差,所有的现场安装全部采用螺栓与法兰盘栓接形式,仅拇指粗细的高强螺栓就用了1.6万余个。”李长龙介绍,4秒落塔项目钢结构安装过程中,一千多根构件组合成的空间几何体及近千块连接板的平面度、平行度、垂直度、正对距离误差不能超过2毫米,2毫米相当于一枚一元硬币的厚度。为将安装误差控制在2毫米内,项目团队构建了4秒落塔可视化三维模型,对钢结构安装全过程模拟,实现可视化施工,避免与其他专业的冲突与碰撞,有效解决了钢结构安装精度及变形控制这一难点问题。“栓接相比焊接有可调整的空间,人工作业很难保证一次成型,过程中需要不断地调整钢结构位置,才能确保万无一失。”李长龙说,考虑到安装时的紧密性,他们特别制作了0.5毫米和1毫米两种垫片,并在钢结构两端各留出2毫米的空间,确保钢结构之间能够以最小的空隙塞到一起,再用螺栓和垫片对缝隙进行填充。记者了解到,如此高精尖的装置,在安装过程中还采用了最传统的“线坠儿”技术纠偏。整个钢结构安装完成后,在顶部拉出8根0.5毫米的钢丝绳,尾部绑上铅坠,确保自上而下自然垂落,根据结构与钢丝绳的位置进行最后的修正,最终成功地把安装精度控制在2毫米以内。这是继“中国天眼”之后,中建二局安装公司再次助力国家大科学装置成功实现预期目标,该项目的建设经验也将为后续国内千米落井装置的关键技术验证项目提供重要技术支持和施工保障。下一阶段,项目团队将继续与各方密切配合,努力把4秒落塔项目打造成为“中国第一、世界领先”的微重力实验设施,助力国家探索浩瀚宇宙实现新突破。(记者 孙颖 通讯员 王东坡)
  • 大族激光 — 世界知名激光设备制造商选用雷尼绍RGH24光栅反馈系统
    多年来,大族激光研发并生产了一系列激光设备,不断满足世界工业对激光应用的各种需求。为迎合中国国内市场的急速发展,大族激光一直在积极地寻求高质量零件供应商,确保随时为客户提供高精度、便利、耐用的激光设备方案。在本案例分析中,大族激光选择雷尼绍RGH24光栅作为其音圈电机的位置反馈系统。 作为在中国深圳上市的公司,大族激光是一家集技术研究、开发、生产及销售为一体的高科技企业。它在世界激光行业中处于领先地位,年出货量高达10 000台!其旗下拥有众多子公司,包括大族电机科技有限公司,大族数控科技有限公司等,为不同领域的客户(如诺基亚、大众汽车等国际企业)提供专业的激光设备和应用方案。公司产品齐全,如激光打标机、切割机、焊接机、电机配件等。大族激光通过自主研发把&ldquo 实验室装置&rdquo 变成可以连续24小时稳定工作的激光技术装备,是世界上仅有的几家拥有&ldquo 紫外激光专利&rdquo 的公司之一。 2004年至今,大族激光从雷尼绍购买了10 000多套光栅系统,广泛应用于各类产品上。 大族激光集团总部 激光打标机内的音圈电机 音圈电机的工作原理是将电信号转换成机械力,当永磁磁铁之间的线圈通电时,磁场改变,从而产生力,产生的力会驱动永磁磁铁之间的线圈组运动;通过控制电流大小,可使线圈在永磁磁铁之间来回移动,从而产生线性运动。与其他电机不同,音圈电机具有一流的线性特性,例如直接驱动、零齿槽刀、轻动子高响应和带宽、动子及定子无磨损等。&ldquo 直接&rdquo 驱动的特性使音圈电机广泛应用在一些距离短但需要较高加速度的直线运动的场合。大族激光旗下的大族电机不但把音圈电机在市场上作为零件出售,还将其广泛应用在集团生产的激光打标机上。 研发部总裁王光能先生说:&ldquo 打标机需要在材料上打出立体效果的标签,我们必须通过运动反馈系统来控制镜子,在极短的时间内引导激光定位到相应位置上,雷尼绍正好能提供这方面的产品。&rdquo RGH24读数头通过光学原理在光栅尺上读取数据,与接触式系统相比,这种非接触式设计能够使音圈电机在位置控制上高速运转,并保证了高重复定位精度。除了应用在激光上之外,音圈电机还可以用于医疗检测仪器、精细位置控制和电脑硬盘生产等等。 音圈电机工作原理 音圈电机 体积轻巧 音圈电机是一个理想的线性促动器,在短距离(微米到厘米)位置控制上具有极佳的效果。雷尼绍光栅尺安装在音圈电机活动部位上,读数头则被固定。由于音圈电机需要保持其高输出/重量比例数值,因此光栅尺必须轻巧,以维持最高加速度。王总说:&ldquo 我们在选择光栅尺的时候,尺子的重量是我们考虑的首要问题。通过比较几家供应商的产品,我们发现雷尼绍RGS20光栅尺十分轻巧,满足需要的同时,又不影响电机的效率。&rdquo 雷尼绍RGS20光栅尺使用轻巧材料制成,厚度仅0.2 mm,在音圈电机上几乎是不载重量,完全不影响电机的快速运转。由于使用音圈电机的机器空间一般都比较有限,因此包括电机位置控制的部分要尽量设计得轻巧。设计师在市场上选择读数头时需要考虑体积问题,读数头必须能够固定在狭小的空间内,配合光栅尺运动,从而控制电机位置。 王总说:&ldquo 在市场上同类产品中,雷尼绍读数头设计轻巧,质量和体积都能令人满意,并且其他性能不受影响。&rdquo 王光能 大族激光打印机 安装简单 一般光栅系统的安装过程主要包括三个步骤:安装和固定光栅尺、安装读数头以及校准。王总说:&ldquo 雷尼绍光栅系统的整个安装过程十分简单,看过雷尼绍工程师安装一次后,我们的第二台机器就能自己安装了,而且过程快捷便利,看了指示灯就能知道安装过程是否正确。&rdquo 雷尼绍RGS20光栅尺成卷存放,用户在使用时可根据用途自行裁剪所需要的长度。在大族激光的音圈电机设计上,行程距离只有10到20 mm,王总说在市场上找到相同尺寸的光栅尺比较困难,而按需裁剪的设计解决了这一难题,为他们带来了便利。 王总继续说:&ldquo 我们不需要打孔或其他工具辅助,只要把光栅尺背面的双面胶撕掉,贴在预先定好的位置上就可以了。这种设计使我们能够根据需要灵活应用,我们可以自己裁剪光栅尺的长度来决定电机的行程距离,完全不受供应商的限制。&rdquo 此外,雷尼绍读数头上装有专利LED指示灯,使安装和校准过程变得简单快捷。用户通过观察LED指示灯的颜色,便可知道安装是否成功。 RGH24 展望 自2004年至今,大族激光与雷尼绍合作已有8年时间,展望未来,王总说:&ldquo 我们大族会在激光行业中继续开发新产品和技术,为客户提供高质量的激光设备;同时我们也会在其他领域,如LED、太阳能等新能源课题上投入资金进行研发。希望在不久的将来,大族能成功开发出与激光设备一样出色的产品,为全球用户提供可信赖、高品质的工业设备。&rdquo -完- 如需了解雷尼绍更多产品,请访问www.renishaw.com.cn 关于雷尼绍 英国雷尼绍公司于1994年在北京开设了第一个办事处,并于2000年在上海设立了办事处。目前,在中国共设有三个分公司和八个办事处,员工近百人。公司产品广泛应用于机床自动化、坐标测量、快速成型制造、比对测量、拉曼光谱分析、机器校准、位置反馈、形状记忆合金、大尺寸范围测绘、立体定向神经外科和医学诊断等领域。雷尼绍集团目前在32个国家或地区设有分支机构,员工逾3000人。 -完- 详情请联系: 张晶 (Grace Zhang) 市场助理 Marketing Administrator 雷尼绍(上海)贸易有限公司北京分公司 电话: +86 10 510882882 *1001 电邮:Grace.zhang@renishaw.com
  • 灌装系统中蠕动泵对灌装精度的影响因素分析
    灌装系统中蠕动泵对灌装精度的影响因素分析装量的精度控制是灌装机的重要指标之一,在进行灌装机PQ(性能验证)时应确认灌装机的精度,以确认该分装线的运行状态符合《药品生产质量管理规范(2010年修订)》(简称GMP)要求及生产需要,保证装量符合要求。无菌灌装不仅仅要满足严格的卫生要求,而且也要以很高的定量控制精度完成液体灌装,达到规定的灌装准确度。灌装机的精度除了与灌装机自身的规格型号、质量、性能以外,还与外界干扰因素有关。✦ 文章以西林瓶灌装系统为例对灌装精度的影响因素进行分析探讨,灌装过程是伺服电机驱动蠕动泵转子转动,泵出的药液通过软管连接固定针架上的灌装针再经针管流至药瓶中。一般情况下蠕动泵的灌装精度相对稳定,但药液袋中的气泡增多及液位变化、蠕动泵工作管路长时间工作疲劳、药液灌装机的运行速度,机械臂的摆动带来出液管的摆动等不确定因素会导致蠕动泵在运行一段时间后出现灌装量下降的情况。01系统误差(1) 灌装系统设置。由灌装系统控制整个灌装流程,在灌装前要进行配方修正和下载,可以设定目标装量、警戒值和纠正值,同时在配方里还包括泵速度、回吸、灌装针距西林瓶底距离以及脱离距离等参数,这些参数对产品的灌装过程、产品的质量有很重要的意义。在生产过程中要使药液准确灌注到到小瓶中,因此涉及到泵的加速度与减速度,灌装针的运动轨迹。灌装针与小瓶虽然都在运动,但是在水平方向上两者保持相对静止状态,在竖直方向上存在相对运动。泵运动的过程包括加速度阶段—匀速阶段—减速度阶段,在加速度阶段液体的速度也从0开始加速喷出,如果此阶段灌装针针头与瓶底距离比较远,液体收到向下泵给的力加上自身的重力,当药液与瓶底接触时,产生反作用力,会导致药液飞溅,甚至药液可能飞出小瓶、粘在灌装针上。当开始灌装的时候针头开始向上移动,边移动的过程边灌装。如果针头相对瓶底不向上运动,药液会淹没针头,药液粘到针头上导致灌装量不合格。即将灌装结束时泵进行减速度,达到灌装量后,泵停止。速度和精度在很大程度上取决于灌装系统的分析和操作。灌装速度过快情况下软管管路压力过大,导致滴液。(2)在线称重系统设置。在线称重是无菌灌装设备在位过程控制IPC的重要手段之一,有了在线称重的灌装设备,就可实现实时反馈控制,即将称量结果与产品灌装控制联系,即时纠正灌装偏差在线称重控制系统的硬件主要包括IPC称重、无线通讯模块、服务器、高精度秤、电平转换模块等,称重模块应定期确认和校准,其本身性能的好坏将对称量结果起着至关重要的影响[1]。通常蠕动泵的灌装精度较稳定,当超出允许精度范围时,控制器及时对灌装泵的位移曲线进行在线修正,实现对灌装量的在线调整,保证灌装量的精确,减小误差。此时在线称重系统的修正程序设置就是重要因素,如果程序修正参数执行效果良好,经过调整可使蠕动泵的运行行程和转动角度稳定在合理范围内,即可以实现泵的精准灌装。这样才能保证每一批次药品的精准灌装[2]。(3)软管配置。通常蠕动泵的灌装灌装管路选用2.4mm壁厚,因为要尽量保证药液生产速度快,批量的稳定性,减小软管磨损导致的装量衰减。2.4mm壁厚的软管回弹性更好更稳定,但也只能维持尽量长时间灌精度在要求范围之内,并不能避免长时间灌装导致软管磨损,回弹性变差造成的精度飘移,仍然需求定期校验。软管内径合理的选型可减少对蠕动泵的转动角度,转动圈数及回吸等影响。(4)灌装针大小及形状。灌装针内径选择。针的内径与剂量管路的内径匹配,避免针内径过小导致阻力增大,流量较小,在软管末端和针管相接的部位出现膨胀,灌装间歇过程中,由于膨胀部分自然复位灰把药液挤出针头造成液体滴漏;同时也要避免过大的针头内径,导致末端药液自然滴落。灌装针形状选择。在实际生产中,经常选择常用的平口针和梅花针,平口针的优势在于其制造简单,并且回吸效果不错,不足之处就是平口针冲击力大,会导致在灌装过程中发生溅液梅花针的优势在于灌装压力小,能够有效防止液体的飞溅,而不足之处在于针口的加工比较困难,如果开口不均匀又会造成液体的滴液挂液现象,导致末端药液自然滴落影响灌装精度。(5)蠕动泵选型。蠕动泵是整个联动线灌装的核心部件,一款合适的蠕动泵对灌装精度有着很大的影响。考虑到生产的产能,隔离器的空间大小,灌装线的二次改造,体积小,速度快,灌装范围广,精度高是蠕动泵的核心竞争力。同时满足这些条件比较困难,目前市面上的直线泵,无泵灌装系统等虽然在精度上可以满足要求,但是也有一些弊端,1、体积比较大,改造困难,在隔离器内不能完美配合联动线;2、速度比较慢,达不到产能要求;3、价格昂贵。根据这些影响因素,叠泵(双泵双电机,可实现同步异步等)和同相位泵完美解决这些难点,成为了目前灌装行业的首选,在生物药、化药、疫苗、诊断试剂等领域应用广泛。叠泵在原来的基础上空间体积减少一半,同相位泵更是在微装量的灌装速度可以达到惊人的70+瓶/min。02随机误差(1)管路长短和软管形变。在西林瓶灌装线中一个完整的灌装管路包括:灌装袋(缓冲罐)、灌装管路、灌装针、蠕动泵等结构组成液体灌装是将液体经过管道,按一定的流速或流量流入西林瓶内的过程。在安装管路系统时针架以及硅胶管长度过长的时候摆臂会带动软管来回摆动导致晃动过大从而影响灌装针的轻微晃动导致滴液。其次和灌装针连接的软管形状变化,随着软管使用次数和时间增加,软管受挤压后周长增加、壁厚变薄、内径变大导致流量增加,从而导致灌装精度偏高[3]。(2)液位及压力变化。储液罐、分液器、灌装泵及针架的安装位置,缓冲瓶的安装位置相对于灌装泵的安装位置高度差过大,灌装泵受到药液的压力太大容易导致灌针滴液。入口压力的变化。如随着灌装入口液面的降低则入口压力降低,流量会下降。由伯肖(Poiseulle)公式可得出:Q=ΔPπd4 /(128μL) (1)式中:Q—容积流量,m3/s;ΔP—压力差,Pa;d—管道内径,m;L—管道长度,m;μ—动力粘性系数,Pas。在生产开始到生产结束的过程中,液体的种类、管路的直径和管路长度无法改变,在灌装过程中储液罐的液位会随之降低,从而入口压力也会降低,流量也会随之下降。平均流速同样下降,从而导致灌装量偏小影响灌装精确度。(3)液体特性。液体的黏度在液体特性中是影响灌装精确度的主要因素。由公式流体黏度v=μρ (2)式中:μ—动力粘性系数,Pas;ρ—液体的密度,kg/m3。公式①+②结合可得Q=ΔPπd4ρ/(128μL)即在生产开始到生产结束的过程中,液体的密度和管路的直径以及管路长度无法改变,液体的黏度会影响动力黏度系数,从而影响管路系统的流量导致流速发生改变导致灌装量的差异进而影响灌装精确度。并且液体黏度也会影响液体的流动性。(4)干预因素1 连接管路。在日常生产中,缓冲瓶、分液器、蠕动泵及针架的安装位置会产生一定影响。储液罐的位置相对于蠕动泵的安装位置高度差过大,蠕动泵受到药液的压力太大容易导致灌针滴液。操作人员在灌装开始前对灌装泵、灌装针以及软管接口进行组装连接时产生松动也会产生气泡或滴漏,并且在对灌装管路排空气的时候,操作人员未能排净管路中的全部空气,管路中出现少量气泡,在灌装过程中也会导致灌装量的差异进而影响灌装精确度。2 运行故障。以西林瓶灌装系统为例:在线称重系统采用机械手将灌装前后两种状态下的药瓶加载到高精度IPC称重各称一次,控制器通过比较判断每支药瓶灌装净重是否超限,灌装重量不符合标准的药瓶,随传输轨道到下一工位时控制器触发剔废口予以剔除[4]。在日常生产的过程中,如果灌装机在进瓶工位、称重工位会出现运转故障,比如进瓶工位和称重皮重工位发生炸瓶故障,西林瓶玻璃碎渣会飞溅到IPC称重工位,操作人员清理不干净不彻底会影响后续称重进而影响灌装精确度。如果在液体灌注后进行毛重称重的时候出现炸瓶故障,液体和玻璃渣都会可能飞溅到IPC称重工位,操作人员清理不彻底会影响后续称重,直接影响灌装精确度。3 压差波动。层流隔离器内部的风压过大或过小也会影响在线称重的称量值[5]。随着中国GMP、中国药典等相关行业法规的升版,对于无菌生产要求的提高,隔离技术在灌装线上变得必不可少。风速设计应该能保证形成稳定连续的单向流,使得敞口的无菌产品得到首过空气(first air)的保护,在生产过程中产生的颗粒能足够被经过高效过滤器过滤的A级条件的单向流带走。在无菌灌装工艺中,通常在线称重系统安装在A级别环境中,在层流风机保护罩内。当风机开启后,风压平衡环境会发生变化,开启风机频率偏大对风压环境破坏冲击,隔离器层流压差波动变得越大,对秤在线称重的数值影响越大,使在线称重重量值偏高,导致在灌装曲线分析时控制器对灌装泵的位移曲线进行在线修正出现误差,对灌装量的在线调整造成影响从而导致灌装精确度受影响。4 静电产生的吸力。静电的大小也会影响在线称重系统的称量值。西林瓶刚经过清洗和高温除热原灭菌工艺,干燥瓶玻璃身如果经过“摩擦”,以及保护罩层流风垂直向下吹扫,容易在表面产生电荷,产生的电荷可为正极或负极,从而带来吸引或排斥的作用,从而可能导致称重显示值大于或小于实际重量。灌装间的湿度和灌装机运行包括在线称重的元器件和模具的旋转都会产生静电现象。当发生静电现象的时候,静电会对经过在线称重模块称量工位时的小瓶产生一个吸力,当产生的静电越大时吸力就会越大,使在线称重模块称量的重量偏离实际重量越多,导致在灌装曲线分析时控制器对灌装泵的位移曲线进行在线修正出现误差,对灌装量的在线调整造成影响从而导致灌装精确度。5 振动的影响。振动对高精度称重的影响是不言而喻的,带有机械运动的设备更难避免自身的震动。尤其是在西林瓶灌装线胶塞锅和压塞工位在在线称重的周围。同时考虑灌装伺服电机本身的刚性不足,导致灌装后期柱塞泵有轻微的晃动会对称重结果产生不利影响,从而对质量控制产生不利影响。为了保证灌装设备称重准确,应当尽可能隔绝或改善可预判的振动源。(5)回吸设置在配方中回吸设置也是影响灌装精度的重要原因,以西林瓶灌装线蠕动泵为例,在正转时会将液体吸入软管,挤压真空,再将其排出,而反转时则是相反的。使得灌装液体时及时回吸,可以实现对锁液回吸效果的调整,避免分装结束时挂滴。根据不同的药品工艺,增加不同的回吸量配方,在不同的情况下调用不同的回吸量和不同的回吸时间配方。回吸量和灌装泵的减速度有着密切关系,回吸量和灌装泵的减速度成正比关系,泵的减速度越小回吸量越小,但是对回吸量设置不能过大或者过小,过大的话会产生少量气泡并且影响下一次灌装,过小的话起不到较好的回吸效果。发生故障后停机的时候对产品的影响,停机的时间如果过于长久,会导致液体干燥,在针头附近形成干燥层,从而影响灌装精度,设置回吸的优点就是避免这种情况发生。03结 论现如今灌装机系统中控制软管长度、层流隔离器风速在0.36~0.54m/s、添加除静电装置等影响灌装精度的可控因素均较有完善控制措施,但是仍需要考虑许多因素,良好的设备应从设计和制造角度尽可能地降低自身和外来因素影响的风险,同时不应忽视正确地操作和稳定的环境条件,也将大大有助于确保系统实现其预期的准确性。现如今液体灌装机行业将持续推进精细化发展,提高灌装机的精度,提高灌装机的稳定性,提高灌装机的可靠性。
  • 锂电池组装必须带电防爆炸?FLIR A系列热像仪从源头解决危险
    随着电动汽车行业越来越普遍,带动着锂电池行业的蓬勃发展,但随之而来的电动汽车自燃的事故也频频发生,主要原因是锂电池的。那么,在给电动汽车组装电池的过程中,要注意什么以防安全事故的发生呢?01锂电池热失控的危险大多数电动汽车的电池模块和电池组的制造商在组装时会使用具有一定电量的电池,因为人们普遍认为完全放电的锂离子电池比完全充电的锂离子电池更危险。当各个电池模块连接时,电流将开始在组件之间流动。通常,这种电流会导致电池或模块的温度升高。随着温度的升高,系统内的电压会降低随即导致电流增加,从而进一步升高温度。这种温度升高的循环被称为“热失控”,如果不被发现,可能会导致电池损坏,进而导致设施内起火甚至爆炸。电池管理系统(BMS)可用于监测温度,并通过检查连接是否松动和内部短路来确保电池的健康。然而,BMS通常直到组装过程的后期才安装到系统中。因此,在初始组装期间,使用手持式红外测温枪来监测电池和模块的温度,其仅能在小区域内提供温度信息或根本提供不了有效温度信息。那么,该如何从源头避免温度上升而导致的火灾事故呢?02A系列热像仪:源头监控电池组装全程使用可见光相机监控检查电池的组装过程,是无法及时验证电池的健康状况。幸好红外热像仪能为电池系统制造商提供监控整个电池组件的能力,避免出现温度升高和热失控造成的潜在危险情况。由于电池配置在不同的装配线之间会有很大的差异,因此选择一款能够测量数千个不同点温度的热像仪,有助于确保不会错过任何关键热点。FLIR A系列高级智能传感器热像仪易于通过在线界面进行安装和控制比如FLIR A系列高级智能传感器热像仪就非常适合用于监测电池组件的每个排气口。用户可以在线使用热像仪控制界面创建多个目标区域,并为每个ROI设置最大温度报警阈值。使用EtherNet/ IP,当超过临界温度阈值时,立即将报警信号发送到工业PLC,以进行数据记录和控制报警指示灯。这种配置还提供历史温度数据记录,如果出现危险情况,为工人提供了一个可视指示器,并消除了使用手持式温度测量设备时人为错误的可能性。在电池组上进行FLIR A70红外热像仪监控测试FLIR A70等A系列智能传感器固定安装式热像仪的使用,提高了用于检测热失控条件的温度测量的重复性和可靠性,显著改进了使用手持式测温枪的单个操作员。自动化和改进的热监控提供了一定程度的保证,可以快速检测到任何潜在危险,这有助于降低工厂人员和设施的风险。FLIR A系列热像仪非常适合需要机载分析和警报功能用于状态监测和早期火灾探测应用的用户它们机身小巧方便集成是一款灵活可配置的解决方案可以满足众多行业客户的独特自动化需求。
  • 揭秘!德国知名啤酒品牌,经久不衰的诀窍是.....
    夏天这么热,没有冰啤怎么过!随着气温越来越高,喝啤酒的季节又到啦!有人统计过,德国境内有超过1300家啤酒厂,生产的啤酒种类更是高达5000多种。今天,小菲就带大家从红外的角度观察,德国小麦啤酒——Erdinger,是如何被高质量生产出来的!知名品牌,严控质量Erdinger Weissbr?u是德国的私人啤酒厂之一。该啤酒厂总部位于慕尼黑,向世界各地70多个国家出口特色啤酒,而这一数字正不断上升。Erdinger啤酒只能在Erding工厂酿造啤酒,每周六天,全天不歇,一直遵守着高质量的标准。Erdinger啤酒以其严格的质量方针与一致的品牌意识闻名遐迩。其生产过程,从原材料的选择和敲定,到灌装和熟化,都受到严格监控。因此,Erdinger Weissbr?u的酒桶灌装与包装过程秉持一贯的安全控制链原则。模拟与风险分析表明,无论生产过程何等小心谨慎,客户提货时依然可能收到装满碱液而非啤酒的酒桶。为防止此类现象发生,食品行业的质量保证计划HACCP(危害分析的关键控制点)规定了,需要在生产过程中设置关键控制点。理想的高质量控制然而,这种情况在业内并不陌生。Erdinger Weissbr?u拥有卓越质量和品牌知名度,所以必须对其酒桶清洗和灌装过程实现全方位保护。风险分析表明,需要建立一个额外的控制点,以确保装满碱液的酒桶难逃出传统控制点的监测,不会成为漏网之鱼。由于装满碱液的酒桶温度高于装满啤酒的酒桶温度,实践证明持续温度监测是解决方案。通过测量酒桶温度这种方式,可轻易识别灌装有误的酒桶。实践证明,使用传统点温仪测量得出的非接触式温度测量值对这种应用来说不够可靠。相对而言, 红外热像仪是一个不错的选择,只要正确调整红外热像仪并进行正确分析,红外图像的监测几乎没有误差。红外热像仪——不可或缺FLIR Systems的ThermoVision™ A20-M红外热像仪,在酒桶离开灌装设备传送带前,对每个酒桶进行温度测量。倘若红外热像仪识别出具有温差的酒桶,热像仪就会发出报警,而传送带则会自动停止传送,方便人工取走出现异常的酒桶。Erdinger啤酒厂使用配备红外热像仪的监测系统已有半年之久,实践证明,结果非常成功。该系统会定期接受检测,但即使是在误差模拟中,A20-M FireWire红外热像仪也特别可靠,因为一旦识别到任何偏差,它就会立刻触发警报。Erdinger Weissbr?u发言人表示:“从未有一个装满碱液的酒桶离开过灌装棚,红外热像仪解决方案目前是我们工厂不可或缺的一部分”。FLIR在啤酒厂中的应用范围FLIR Systems的ThermoVison A20红外热像仪在该解决方案中发挥着关键作用,其安装在一个保护壳体内。红外热像仪通过FireWire连接到一个触摸屏显示器上,显示器上面显示目前经过清洗和灌装程序的酒桶大小和酒桶类型,同时,该酒桶的热图像也会实时显示在显示屏上。该系统目前尚未应用于洗涤和灌装机械,这意味着该系统可用于各种新的或现有的灌装设备上。产品推荐目前,FLIR A310更适合这种7X24小时的不间断监控。FLIR A310是一款固定安装式红外热像仪,可安装在几乎任何地方,用于监控您的关键设备和其它贵重资产。它还配备一台320×240像素的氧化钒(VOx)微测辐射热计,能够检测出小至50 mK的温差。A310具有点、区域温度和温差测量功能,并且可根据分析、内部温度或数字输入执行报警,它还兼容以太网/IP和Modbus TCP协议,可将分析和警报结果共享至可编程逻辑控制器。要想工厂出错少实时监控少不了要想工作更便利选的工具要给力想要了解FLIR A310更多信息
  • 检测机构采购格丹纳微波消解仪提升食品检测质量
    食品检测一直是保障公共健康的重要环节,而现代的科学仪器在这一过程中扮演着关键角色。最近,一家第三方检测机构采购了一台格丹纳微波消解仪,用于食品检测前处理。这不仅将提高他们的实验室效率,还将为食品安全提供更加可靠的检测结果。格丹纳的微波消解仪到达检测机构,格丹纳的工程师迅速展开了安装和培训的过程,确保该仪器尽快融入实验室工作流程。在安装过程中,工程师详细解释了仪器的各个部分,以及如何进行正确的操作和维护。这是确保仪器正常运行和延长其使用寿命的重要步骤。格丹纳微波消解仪的一大优点是其快速的样品前处理能力。微波消解仪20分钟内可完成绝大部分样品。此外,微波消解仪的三维输出,有效提升微波功率密度和均匀性,能量利用率更高,确保样品消解的一致性,可确保每个样品在处理过程中受到相同的条件和温度。我们期待看到格丹纳微波消解仪在这家检测机构的工作中发挥作用,提高食品检测的标准和可靠性。
  • 赛恩思仪器助力首信秘鲁矿业实现精准监测
    春节前,赛恩思的售后工程师跨越千里,抵达南美洲的秘鲁,为首信秘鲁矿业股份有限公司进行高频红外碳硫仪的安装和调试工作。秘鲁作为矿业重镇,其对于先进分析检测仪器的需求一直不减。首信秘鲁矿业公司作为该地区的矿业领军企业,选择了赛恩思仪器,旨在提升生产效率和产品质量。这次工程师的远赴,不仅是对赛恩思技术实力的信任,更是对赛恩思在全球范围提供专业服务的肯定。经过多年的发展,四川赛恩思仪器已在全球多个国家及地区销售,并提供售后服务。为确保高频红外碳硫仪在秘鲁的工作环境中表现出色,赛恩思售后工程师在安装过程中充分考虑了秘鲁地区的气候和环境特点,制定了相应的安装方案。通过精心的调试和实地测试,确保仪器在高温、高湿等恶劣条件下依然能够稳定可靠地运行。这一过程不仅展现了赛恩思对于客户需求的深刻理解,同时也为秘鲁矿业公司提供了一套完善的仪器解决方案。在顺利完成安装和调试任务后,赛恩思售后工程师并没有结束他的工作。相反,他为秘鲁矿业公司的操作人员提供了专业的培训,使其能够熟练掌握高频红外碳硫仪的使用和维护方法。通过专业培训,赛恩思旨在赋予客户更多的技术知识,使其能够独立解决问题,确保仪器的长期稳定运行。这一系列的服务举措展示了赛恩思对于客户关系的持续关注,以及公司一贯以来为客户提供全方位支持的承诺。
  • 梅特勒托利多新推出在线原位氧气分析仪GPro500
    梅特勒-托利多推出了可调谐二极管激光(TDL)氧气测量系统Gpro™ 500。Gpro500提供优越的测量性能、简单的安装过程,并且只需很少的维护工作。TDL气体分析仪解决了取样式分析系统的各种弊端:首先,不再需要取样或预处理装置,不会受到背景气体干扰,适用于高水分和粉尘的环境中。其次,该系统测量漂移极低。 独一无二的探头式设计,单片法兰安装梅特勒-托利多融合了TDL技术与自身工业分析仪表设计的专业经验,创新的探头式设计不但提供了在线传感器的便捷性,同时具有顶级分析仪的优越性能。其他的TDL气体分析系统采用双侧安装式设计,意味着接收器必须安装在激光发射器的对面位置。这会导致安装困难,并且需要定期进行繁琐的对光工作。GPro 500 能把激光束反射至传感器头部的接收器中,因此不再需要对光工作。而且激光束在气流中通过两次,光程长度翻倍,更确保了氧气测量精确性。 智能诊断技术梅特勒托利多的智能传感器管理(ISM)技术实现GPro 500预诊断功能,能够连续评估光程质量,并在影响测量效果之前提示您何时需要清洗。除了每年的验证和偶尔清洗光学元件之外,几乎没有其他的维护工作。GPro 500 为您提供实时、连续、精确的氧气测量结果,为过程安全性保驾护航。咨询请致电: 4008-878-788 或浏览www.mt.com/o2-gas赶快登录www.mt.com/TDL-ipad告诉我们您在氧气测量上的困扰,同时您将有机会获得iPad或4G U盘。 关于梅特勒托利多过程分析梅特勒托利多过程分析提供广泛的pH,ORP,溶解氧,气相氧,二氧化碳,电导率,TOC和浊度传感器、变送器和清洗系统,为您的液体过程分析、纯水超纯水监测提供完整、精确、可靠的解决方案。梅特勒托利多也为客户提供全球范围的全方位服务管理,包括校准服务、性能测试、安装及运行认证、技术培训等。 梅特勒托利多过程分析网站:www.mt.com/pro
  • 蔡司发布全新汽车零部件清洁度检测整体解决方案
    蔡司全自动清洁度分析仪(Particle Analyzer) 详细介绍: ZEISS一百多年的骄人历史从发明世界上首台显微镜开始。一个世纪后的今天,ZEISS仍致力于为用户研发最具创造力的显微镜产品。通过我们不断改进的显微技术,我们正在为全世界的用户开拓一条探索微观世界的道路。今天的显微镜与以往相比,它们的成像质量更好、效率更高、机械性能更加稳定,并且更加环保。 总体描述: 零部件表面的洁净度对于零部件工作的可靠性和持久性有着非常重要的影响。零部件表面的污染物多为切屑、毛刺、铸沙、焊渣、磨料等固体颗粒。这些污染物会加速零件的磨损,会堵塞元件的节流孔使元件失去调节功能,会进入滑阀间隙使阀芯卡死,会拉伤油缸内表面使泄漏增加或使输出力减小,会损坏泵的配油盘使泵烧伤或研死。这些情况的出现最终将系统功能丧失或彻底瘫痪。因此,必须从每个环节的每一个细节入手来防止和减小污染物的产生,才可能保证安装后的系统能够安全可靠的运行。 蔡司最新推出的Particle Analyzer的出现将工业清洁度控制过程提升到了全新的高度。Particle Analyzer清洁度分析仪采用全自动分析方式将过滤膜上的污染颗粒进行快速成像,无需多重图像分析即可实现将颗粒尺寸大小、形貌分析一步完成,在实现快速对污染物等级的快速评定同时还可以对污染物来源进行分析。Particle Analyzer全自动清洁度分析仪已经成为零部件表面清洁度分析和污染物控制的首选。 产品特点: 1、适合精密清洗定量化的清洁度检测,尤其使用于检测微小颗粒和带色杂质颗粒 2、对整个过滤膜上的颗粒进行分析,因此分析的准确性和可靠性更高。 3、采用全自动分析方式,因此分析效率更高,同时软件符合国家、国际标准等多国标准(ISO4406、ISO4407、IOS16232、NAS1638、ASTMD4378-03、VDA19)。标准可自行添加。 产品应用: 对于许多行业,清洁度控制都非常重要。同汽车行业一样,这些行业也常发生很多使产品寿命和可靠性降低的质量问题,其中主要症结都在于零件加工过程中清洗不净,整机装配时又混入不少杂质和尘埃。因此要确保产品的质量和可靠性,它们也必须要求严格清洁的零件。这些行业包括:汽车零部件、轴承、发动机、汽轮机、航空、半导体、数据存储、医疗设备、通讯、精密仪表,大型工矿设备的磨损监测等。 零部件污染物的来源及其危害 产生污染的途径有三,一是系统制作、安装过程中潜伏在元件和总成内部的污染物;二是在设备运行过程中零件磨损产生的污染物;三是在运输或使用过程中通过空气途径进入到系统内部的污染物。显然,系统制作、安装过程中潜伏的污染物所占的比重最大,而且这些污染物多为切屑、毛刺、铸沙、焊渣、磨料等固体颗粒。这些污染物会加速液压件内零件的磨损会堵塞元件的节流孔使元件失去调节功能,会进入滑阀间隙使阀芯卡死,会拉伤油缸内表面使泄漏增加或使输出力减小,会损坏泵的配油盘使泵烧伤或研死&hellip &hellip 。这些情况的出现最终将导致液压系统功能丧失或彻底瘫痪。 因此,必须从每个环节的每一个细节入手来防止和减小污染物的产生,才可能保证安装后的液压系统能够安全可靠的运行。 清洁度测定方法对过程控制、品质保证和失效分析非常重要,是概括用于获得有关测定主体如各种机械设备、电子零件等清洁度数据的详细过程。 清洁度的测定常用方法: 称重法 称重法是工业生产和试验中最常用的清洁度测定方法。其测定原理是将一定数量的试样在一定的条件下进行清洗,然后将清洗的液体通过滤膜充分过滤,污物被收集在经过干燥的滤膜表面,将滤膜再次充分干燥,根据分析天平称出过滤清洗前后干燥的滤膜质量,计算其增加值即为试样品上的固体颗粒污染物的质量。 显微镜法(颗粒尺寸数量法) 这是一种零件清洁度测定的新方法。其基本原理是根据被检测的表面与污染物颗粒具有不同的光吸收或散射率。其测试方法是,将一定数量的零件在一定的条件下清洗,将清洗液通过的滤膜充分过滤,污物被收集在滤膜表面,然后将滤膜干燥,用显微镜(最佳设备是具有拍摄功能的图像识别和分析设备)在光照射下检测,按颗粒尺寸和数量统计污物颗粒,即可得到所测物体零件的固体颗粒污染物结果。这是一种适合精密清洗定量化的清洁度检测方法,尤其使用于检测微小颗粒和带色杂质颗粒。
  • 济南市首个高精度温室气体监测站投入运行
    8月4日,济南市完成了第一期首个温室气体高精度监测站设备安装调试,现已投入运行。济南市高精度温室气体监测站网第一期建设工作包含四个站点,分布于高、中、低值浓度区域和背景区域。本次设备安装是在前期高精度监测站址严格筛选优化、多类型的高精度设备比对测试、站址建设细化方案制定、建站技术规范不断完善的基础上完成的,安装过程安全迅速,通过了首次接入测试,设备运行状态良好,目前已开始了数据的收录和质控工作。据了解,这项工作的顺利开展创造了多个第一:它是济南市大气环境温室气体监测体系的开山之作,为推动高精度站点组网打下坚实基础 它是济南市碳监测评估体系实体化建设阶段迈出的关键第一步,为全面带动碳监测评估体系其他组成部分如手工监测、立体遥感监测等工作的深入开展提供良好的先行示范 它形成的第一套济南市辖区内的温室气体高精度监测数据,反应该重点监测区域温室气体浓度变化,与已建成的全市温室气体中精度站网监测数据形成互补和比对。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制