当前位置: 其他 > 方案详情

真空绝热板,真空玻璃中导热系数检测方案(导热仪)

检测样品 其他

检测项目 导热系数

关联设备 共2种 下载方案

方案详情

本文详细分析了目前稳态法(防护热板法和热流计法)测量真空绝热材料(真空绝热板和真空玻璃)导热系数中存在的技术难度,介绍了国外在提高测量精度方面所做的有意尝试和研究,结合热流计高精度校准技术的突破,展示了高精度准确测量真空绝热材料的实施途径,简单介绍了真正能在绝热材料产品生产和品控中灵活应用的导热系数测量装置。

智能文字提取功能测试中

真空隔热材料热性能测试技术及其应用:Application Note 02 上海依阳实业有限公司-1——www.eyoungindustry.com 真空隔热材料:真空绝热板和真空玻璃稳态法导热系数准确测量的难度和解决方案 Vacuum Insulation Materials——Difficulty Analysis and Solution of AccurateMeasurement of Thermal Conductivity of Vacuum Insulation Panels (VIP)) andVacuum Glass by Steady-State Method Comparison in thickness between materials 上海依阳实业有限公司www.eyoungindustry.com 摘要:本文详细分析了目前稳态法(防护热板法和热流计法)测量真空绝热材料(真空绝热板和真空玻璃)导热系数中存在的技术难度,介绍了国外在提高测量精度方面所做的有意尝试和研究,结合热流计高精度校准技术的突破,展示了高精度准确测量真空绝热材料的实施途径,简单介绍了真正能在绝热材料产品生产和品控中灵活应用的导热系数测量装置。 关键词:真空绝热板、真空玻璃、导热系数、热流计法、防护热板法、热流计校准 1.稳态法导热系数准确测量难度分析 真空玻璃和真空绝热板是目前市场上普遍使用的隔热性能最佳的两类材料,它们的隔热性能表征一般采用导热系数这一物理性能参数,而导热系数的准确测量则普遍采用精度最高的绝对测量方法——稳态保护热板法。下面将针对真空玻璃和真空绝热板这些超低导热系数材料来分析稳态保护热板法的测量难度,也就是说,通过分析来说明准确测量超低导热系数对稳态测试方法中存在那些具体难度。 根据傅里叶传热定律,在稳态且一维热流条件下,被测板材样品厚度方向上的导热系数入定义为: 式中:表示流经样品厚度方向上的热量,单位 W;d表示被测板材样品的厚度,单位m;A表示热流流经被测样品的横截面积,单位m²;AT 表示被测板材品两个表面之间的温度差,单位℃或K。 对于常用的真空绝热板,其厚度一般都在 10~20mm。在稳态法测试过程中,样品两面的温差一般控制在15℃~25℃范围内,而真空绝热板的导热系数一般为3~4mW/mK。 为了便于分析,假设稳态护热板测试过程中,样品厚度为10mm,温差控制在20℃,样品横截面积为300mm×300mm,导热系数为4mW/mK。那么在测试过程中,流经样品厚度方向上的热量按照傅里叶定律计算为: 由此可见,在稳态法测试真空绝热板样品过程中,流经样品的热流量非常小。这意味着如果采用传统的保护热板法测试仪器测量超低导热系数的真空绝热板会带来极大的误差,例如,采用目前国际上计量级别的稳态法测试仪器测量导热系数为 0.04W/mK 的隔热材料,测量精度最高可达到±1%,而如果用来测量导热系数为 0.004W/mK 的真空绝热板,则误差则会扩大到±10%,而普通的稳态法测量仪器此时的测量误差很容易扩大到±50%以上。由此,显而易见,经典的保护热板法导热仪基本上无法准确测量真空绝热板和真空玻璃的导热系数, Wessling 等人[1]的研究也同样得出此结论。 从上述傅里叶传热定律可以看出,真空绝热板导热系数的测量准确性,完全取决于热量、样品冷热面温差和样品厚度测量的准确性。 有关样品冷热面温差和样品厚度测量准确性的影响因素以及保证措施,在等人[2]的研究中进行了描述。针对具体导热系数测试仪器,温差测量和厚度测量都可以通过一系列具体措施来保证测量精度,如采用测温精度更高的热电阻温度传感器等。 真空绝热板和真空玻璃导热系数准确测量的最大难度集中在测量流经样品的微小热量,与之相关的测试难点主要体现在以下几个方面: ( 1)稳态法测试中的保护热板法,要求主加热器的热量以尽可能小的热损失传递给被测样品,但在实际测试仪器中还是会存在一定程度的热损失,也就是测量得到的热量Q一般会比实际热量偏低,按照傅里叶传热定律,由此得到的被测样品导热系数一般会比实际导热系数数值要低。如果采用保护热板法测量真空绝热板和真空玻璃的超低导热系数,则主加热器上的热量则会更低,如果还要求热损失在总热量中所占比重保持不变,则对热防护措施提出更高的要求,要实现热损失小一个数量级的热防护,这对于稳态护热板法测试仪器几乎是无法实现的技术难度。 (2)稳态法测试中的热流计法,要求样品两面温度均匀,采用热流计来测量流经经品厚度方向上的热流密度。热流计法的优点是测量样品中心区域的热流密度而不用太考虑侧向热损失,但带来的问题是这里的热流计要采用稳态防护热板法仪器进行校准,如果要测量流经真空绝热板和真空玻璃的微小热量,同样需要稳态防护热板法仪器能准确提供如此小热量的准确热流来进行热流计校准。由此可见,热流计法测量真空绝热材料的测试难题同样归结到了上述稳态护热热法无法实现的技术难题上。 (3)为了实现稳态法微小热量下导热系数的准确测量 ,Wessling 等人[1]采用了 ASTMC 1114“薄加热装置稳态热传导特性的试验方法"对真空绝热板进行了测试研究,如图 1-1 一一 所示。ASTM C 1114 方法实际上一种防护热板法的变化形式,是将双样品防护热板法装置中的主加热器和护热加热器用一个薄加热器代替,两个尺寸和性能完全相同的被测样品板把此薄加热器加持在中间,这样可以有效的降低侧向热损,并认为施加在薄加热器中的电能完成转换为热量传递给样品。Wessling 等人的工作证明了薄加热器装置测量真空绝热板导热系数的有效性,但这种测试方法和装置只能适用于双样品测试,而且样品尺寸会因为真空腔体和薄加热器等因素的限制而有固定限制,不太适合作为适合各种不同规格尺寸真空绝热板和真空玻璃导热系数测试的通用型仪器设备。 (4)尽管上述薄加热器改善了稳态法测试中的热损,但热损失还是实际真空绝热板和真空玻璃导热系数测量中的主要误差源,这是因为大多数真空绝热板外表面耐磨损的金属或塑料薄膜,而这些薄膜是侧向热损的主要热通道,而真空玻璃的外部玻璃也是热损的主要通道。这些热通道对于普通隔热材料而言所造成的热损可以忽略不计,但对于真空绝热板和真空玻璃测试中的微小热流,则这些热通道所带来的热损失则显着十分突出。 (5)目前稳态法测试中的一个突出难题是测试仪器很难覆盖各种规格尺寸真空绝热板和真空玻璃的导热系数测试评价,一般是采用庞大的测试设备来进行覆盖,使得测试仪器的造价十分昂贵。 图 1-1 ASTM C 1114 薄加热器真空绝热板导热系数测试系统 2.解决方案 为了解决上述真空绝热材料导热系数测试中存在的难度,上海依阳实业有限公司采用最新独创性技术,提出了以下具体解决方案以及具体分析。 (1)测试方法还是基于稳态法,但采用的稳态热流计法,这样就无需考虑热损给准确测量带来的影响,同时还可以实现测试仪器的较低造价和灵巧尺寸。 (2)为了保证测量的准确性和快捷性,方案中所用的稳态热流计法是一种改进型方法,即护热式稳态热流计法,即在被测样品的两个表面都进行了高精度的护热,以在被测样品两个表面上形成一定面积的高精度均温区,避免被测样品表面导热对测量结果带来的影响。 (3)热流计法高精度测量绝热材料超低导热系数的核心技术是对热流计进行高精度的校准。上海依阳实业有限公司在热流计校准技术方面最近取得了突破,采用高精度量热技术,可以在测量仪器上通过量热模块以自校准方式快速和高精度的校准测量用热流计,校准精度远大于经典防护热板法测量仪器的校准精度。再结合使用高灵敏度热流计,可以实现对流经真空绝热板和真空玻璃微小热流的高精度测量。 (4)按照傅里叶稳态传热公式(0.0.1),在被测样品性能(导热系数和厚度)固定的条件下,如果要准确测量超低导热系数,可以设法增大热量和增大温差,即在测试过程中适当的增大被测样品冷热面的温差,从而在仪器的固定测量精度下能明显提高导热系数测量精度。 (5)由于真空绝热板和真空玻璃的厚度普遍较小,测试面积(如正方形边长100mm)完成能够满足稳态法测量实现一维热流过程中对测试面积的要求。因此,测量装置将采用正方形结构(边长100mm)或圆形结构(直径100mm), 可以大幅度降低测试仪器尺寸和相应造价。 (6)真空绝热板和真空玻璃导热系数测量装置将采用便携式分体结构,如图2-1所示。整个测量装置主要包含加热装置和热流测量装置两部分,它们的尺寸边长在 200mm左右。在测试过程中,分别将它们紧贴在被测绝热材料板两侧。由此可以看出,这种结构和尺寸的导热系数测量装置,基本可以覆盖所有真空绝热板和真空玻璃产品的导热系数测量,并十分具有灵活性,通过放置在产品的不同部位可测量产品的导热系数分布。 图 2-1真空绝热材料导热系数稳态热流计法测量装置测量布局图 (7)由于具有超高的测量精度以及样品尺寸的兼顾性,此方案的导热系数测量装置自然可以测量常温常压下普通隔热材料的导热系数。 3.参考文献 (1) Wessling, Francis C., et al. “Subtle Issues in the Measurement of the ThermalConductivity of Vacuum Insulation Panels.”Journal of Heat Transfer-Transactions of The Asme,vol. 126, no. 2,2004, pp. 155-160.. (2)Cucchi, Chiara, et al.“Standard-Based Analysis of Measurement Uncertainty for theDetermination of Thermal Conductivity of Super Insulating Materials”. 2020,pp.171-184. ---第页页页--------- 1.稳态法导热系数准确测量难度分析真空玻璃和真空绝热板是目前市场上普遍使用的隔热性能最佳的两类材料,它们的隔热性能表征一般采用导热系数这一物理性能参数,而导热系数的准确测量则普遍采用精度最高的绝对测量方法——稳态保护热板法。下面将针对真空玻璃和真空绝热板这些超低导热系数材料来分析稳态保护热板法的测量难度,也就是说,通过分析来说明准确测量超低导热系数对稳态测试方法中存在那些具体难度。根据傅里叶传热定律,在稳态且一维热流条件下,被测板材样品厚度方向上的导热系数 定义为:式中:Q表示流经样品厚度方向上的热量,单位W;d表示被测板材样品的厚度,单位m;A表示热流流经被测样品的横截面积,单位㎡;ΔT表示被测板材样品两个表面之间的温度差,单位℃或K。对于常用的真空绝热板,其厚度一般都在10~20mm。在稳态法测试过程中,样品两面的温差一般控制在15℃~25℃范围内,而真空绝热板的导热系数一般为3~4mW/mK 。为了便于分析,假设稳态护热板测试过程中,样品厚度为10mm,温差控制在20℃,样品横截面积为300mm×300mm,导热系数为4mW/mK。那么在测试过程中,流经样品厚度方向上的热量按照傅里叶定律计算为:由此可见,在稳态法测试真空绝热板样品过程中,流经样品的热流量非常小。这意味着如果采用传统的保护热板法测试仪器测量超低导热系数的真空绝热板会带来极大的误差,例如,采用目前国际上计量级别的稳态法测试仪器测量导热系数为0.04W/mK的隔热材料,测量精度最高可达到±1%,而如果用来测量导热系数为0.004W/mK的真空绝热板,则误差则会扩大到±10%,而普通的稳态法测量仪器此时的测量误差很容易扩大到±50%以上。由此,显而易见,经典的保护热板法导热仪基本上无法准确测量真空绝热板和真空玻璃的导热系数,Wessling等人[1]的研究也同样得出此结论。从上述傅里叶传热定律可以看出,真空绝热板导热系数的测量准确性,完全取决于热量、样品冷热面温差和样品厚度测量的准确性。有关样品冷热面温差和样品厚度测量准确性的影响因素以及保证措施,在等人[2]的研究中进行了描述。针对具体导热系数测试仪器,温差测量和厚度测量都可以通过一系列具体措施来保证测量精度,如采用测温精度更高的热电阻温度传感器等。真空绝热板和真空玻璃导热系数准确测量的最大难度集中在测量流经样品的微小热量,与之相关的测试难点主要体现在以下几个方面:(1)稳态法测试中的保护热板法,要求主加热器的热量以尽可能小的热损失传递给被测样品,但在实际测试仪器中还是会存在一定程度的热损失,也就是测量得到的热量Q一般会比实际热量偏低,按照傅里叶传热定律,由此得到的被测样品导热系数一般会比实际导热系数数值要低。如果采用保护热板法测量真空绝热板和真空玻璃的超低导热系数,则主加热器上的热量则会更低,如果还要求热损失在总热量中所占比重保持不变,则对热防护措施提出更高的要求,要实现热损失小一个数量级的热防护,这对于稳态护热板法测试仪器几乎是无法实现的技术难度。(2)稳态法测试中的热流计法,要求样品两面温度均匀,采用热流计来测量流经样品厚度方向上的热流密度。热流计法的优点是测量样品中心区域的热流密度而不用太考虑侧向热损失,但带来的问题是这里的热流计要采用稳态防护热板法仪器进行校准,如果要测量流经真空绝热板和真空玻璃的微小热量,同样需要稳态防护热板法仪器能准确提供如此小热量的准确热流来进行热流计校准。由此可见,热流计法测量真空绝热材料的测试难题同样归结到了上述稳态护热板法无法实现的技术难题上。(3)为了实现稳态法微小热量下导热系数的准确测量,Wessling等人[1]采用了ASTM C 1114“薄加热装置稳态热传导特性的试验方法”对真空绝热板进行了测试研究,如图1所示。ASTM C 1114方法实际上一种防护热板法的变化形式,是将双样品防护热板法装置中的主加热器和护热加热器用一个薄加热器代替,两个尺寸和性能完全相同的被测样品板把此薄加热器加持在中间,这样可以有效的降低侧向热损,并认为施加在薄加热器中的电能完成转换为热量传递给样品。Wessling等人的工作证明了薄加热器装置测量真空绝热板导热系数的有效性,但这种测试方法和装置只能适用于双样品测试,而且样品尺寸会因为真空腔体和薄加热器等因素的限制而有固定限制,不太适合作为适合各种不同规格尺寸真空绝热板和真空玻璃导热系数测试的通用型仪器设备。图1 ASTM C 1114薄加热器真空绝热板导热系数测试系统(4)尽管上述薄加热器改善了稳态法测试中的热损,但热损失还是实际真空绝热板和真空玻璃导热系数测量中的主要误差源,这是因为大多数真空绝热板外表面耐磨损的金属或塑料薄膜,而这些薄膜是侧向热损的主要热通道,而真空玻璃的外部玻璃也是热损的主要通道。这些热通道对于普通隔热材料而言所造成的热损可以忽略不计,但对于真空绝热板和真空玻璃测试中的微小热流,则这些热通道所带来的热损失则显着十分突出。(5)目前稳态法测试中的一个突出难题是测试仪器很难覆盖各种规格尺寸真空绝热板和真空玻璃的导热系数测试评价,一般是采用庞大的测试设备来进行覆盖,使得测试仪器的造价十分昂贵。  2.解决方案为了解决上述真空绝热材料导热系数测试中存在的难度,上海依阳实业有限公司采用最新独创性技术,提出了以下具体解决方案以及具体分析。(1)测试方法还是基于稳态法,但采用的稳态热流计法,这样就无需考虑热损给准确测量带来的影响,同时还可以实现测试仪器的较低造价和灵巧尺寸。(2)为了保证测量的准确性和快捷性,方案中所用的稳态热流计法是一种改进型方法,即护热式稳态热流计法,即在被测样品的两个表面都进行了高精度的护热,以在被测样品两个表面上形成一定面积的高精度均温区,避免被测样品表面导热对测量结果带来的影响。(3)热流计法高精度测量绝热材料超低导热系数的核心技术是对热流计进行高精度的校准。上海依阳实业有限公司在热流计校准技术方面最近取得了突破,采用高精度量热技术,可以在测量仪器上通过量热模块以自校准方式快速和高精度的校准测量用热流计,校准精度远大于经典防护热板法测量仪器的校准精度。再结合使用高灵敏度热流计,可以实现对流经真空绝热板和真空玻璃微小热流的高精度测量。(4)按照傅里叶稳态传热公式(0.0.1),在被测样品性能(导热系数和厚度)固定的条件下,如果要准确测量超低导热系数,可以设法增大热量和增大温差,即在测试过程中适当的增大被测样品冷热面的温差,从而在仪器的固定测量精度下能明显提高导热系数测量精度。(5)由于真空绝热板和真空玻璃的厚度普遍较小,测试面积(如正方形边长100mm)完成能够满足稳态法测量实现一维热流过程中对测试面积的要求。因此,测量装置将采用正方形结构(边长100mm)或圆形结构(直径100mm),可以大幅度降低测试仪器尺寸和相应造价。(6)真空绝热板和真空玻璃导热系数测量装置将采用便携式分体结构,如图2所示。整个测量装置主要包含加热装置和热流测量装置两部分,它们的尺寸边长在200mm左右。在测试过程中,分别将它们紧贴在被测绝热材料板两侧。由此可以看出,这种结构和尺寸的导热系数测量装置,基本可以覆盖所有真空绝热板和真空玻璃产品的导热系数测量,并十分具有灵活性,通过放置在产品的不同部位可测量产品的导热系数分布。图2 真空绝热材料导热系数稳态热流计法测量装置测量布局图(7)由于具有超高的测量精度以及样品尺寸的兼顾性,此方案的导热系数测量装置自然可以测量常温常压下普通隔热材料的导热系数。3.参考文献(1)Wessling, Francis C., et al. “Subtle Issues in the Measurement of the Thermal Conductivity of Vacuum Insulation Panels.” Journal of Heat Transfer-Transactions of The Asme, vol. 126, no. 2, 2004, pp. 155–160..(2)Cucchi, Chiara, et al. “Standard-Based Analysis of Measurement Uncertainty for the Determination of Thermal Conductivity of Super Insulating Materials”. 2020, pp. 171–184.

关闭
  • 1/6
  • 2/6

还剩4页未读,是否继续阅读?

继续免费阅读全文

产品配置单

上海依阳实业有限公司为您提供《真空绝热板,真空玻璃中导热系数检测方案(导热仪)》,该方案主要用于其他中导热系数检测,参考标准《暂无》,《真空绝热板,真空玻璃中导热系数检测方案(导热仪)》用到的仪器有稳态护热板法导热系数测定仪、高温热流计法导热系数测试系统。

我要纠错

推荐专场

相关方案