Joule 26.17%效率突破_港城大Alex Jen & 南科大许宗祥团队

2024/06/11   下载量: 0

方案摘要

方案下载
应用领域 能源/新能源
检测样本 太阳能
检测项目
参考标准 符合 ATSM E 1021-15/ ASTM E948/ IEC 60904-8/ IEC 60904-7/ IEC 60904-1

钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和低成本制备,在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。近年来,PSCs 的效率不断提升,并不断刷新着世界纪录。 南方科技大学许宗祥教授团队与香港城市大學Alex K.-Y Jen教授团队合作,近期取得重大突破,成功研发出一种新型自组装单分子层 (SAM) 材料,并将其应用于倒置钙钛矿太阳能电池,实现了惊人的 26.17% 的能量转换效率 (PCE),创下了新的世界纪录。 这一研究成果发表在国际顶尖期刊《Joule》上。

方案下载
配置单
方案详情

1.png


钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和低成本制备,在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。近年来,PSCs 的效率不断提升,并不断刷新着世界纪录。

南方科技大学许宗祥教授团队与香港城市大學Alex K.-Y Jen教授团队合作,近期取得重大突破,成功研发出一种新型自组装单分子层 (SAM) 材料,并将其应用于倒置钙钛矿太阳能电池,实现了惊人的 26.17% 的能量转换效率 (PCE),创下了新的世界纪录。 这一研究成果发表在国际顶尖期刊《Joule》上。


突破的关键:自组装单分子层材料

自组装单分子层 (SAM) 材料,在钙钛矿太阳能电池中扮演着重要的角色,可以有效地调节电极的功函数,促进电荷的提取和传输,提升器件的性能和稳定性。其中在界面修饰上,改善钙钛矿层与电极之间的界面接触质量,有效减少界面缺陷和不连续性能级对齐,优化电荷的注入和传输效率;能抑制离子迁移,在界面上形成紧密的分子排列,限制离子的迁移路径减少非辐射复合,在钙钛矿层与电极之间形成均匀的复盖层,减少界面处的非辐射复合损失,有助于提高光电转换效率防止湿气侵入,阻止湿气和氧气侵入钙钛矿层,从而提高电池的耐候性和长期稳定性。增强机械稳定性,通过分子间的相互作用增强钙钛矿层与电极之间的粘附力,提高整个器件的机械稳定性,减少在加工和使用过程中可能出现的分层或裂纹现象。

传统上,商业化的 SAM 材料,如 Me-4PACz,通常采用灵活的烷基链作为连接基团,这会导致分子排列不规则,影响材料的稳定性和电荷传输效率。

Me-4PACz4-苯基胺甲基二磷酸酯)和 Me-PhpPACz(苯基化的4-苯基胺甲基二磷酸酯)两种用于优化钙钛矿太阳能电池界面的自组装单分子层(SAM)材料差異性:

·  分子结构

·  表面修饰效果


许宗祥教授团队与香港城市大學Alex K.-Y Jen教授团队合作,通过将 Me-4PACz 中的柔性烷基链替换为刚性、共轭的亚苯基环,成功合成了一种新型的 SAM 材料:Me-PhpPACz。这种结构上的改进,赋予了 Me-PhpPACz 更加优异的性能:

l   更高的分子密度: 由于亚苯基环的刚性结构,Me-PhpPACz 分子在基底上排列更加紧密,形成更加致密的薄膜,有效地减少了器件的漏电流,提升了其稳定性。

l   更强的电荷传输能力: 共轭亚苯基环的引入,增强了分子间的电荷传输效率,提高了器件的填充因子,进而提升了其能量转换效率。

l   更低的功函数: Me-PhpPACz 的引入,可以有效调节电极的功函数,促进空穴的提取,提高器件的开路电压。


突破性的成果

这项研究最终取得了突破性成果:

l   使用 Me-PhpPACz 材料的倒置钙钛矿太阳能电池,能量转换效率 (PCE) 达到惊人的 26.17%,并获得 NREL 认证的稳态效率。

l   器件表现出非凡的长期稳定性,在 65°C 的环境温度下,连续运行超过 1200 小时,仍保持 95% 的初始效率。


反式钙钛矿太阳能电池的近3年研究突破论文

近年来,倒置钙钛矿太阳能电池的研究取得了突破性进展,以下是一些代表性的论文:

2021年: Nature. 25.2% Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, PI J. Y. Kim (UNIST韩国科学技术院)

2022年: Nature Photonics. 23.91% Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells, PI Edward H. Sargent (多伦多/西北大学)

2023年: Science.24.09% Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells, PI Edward H. Sargent (多伦多/西北大学)

2024:  Science. 26.14% Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands, PI: Edward H. Sargent (多伦多/西北大学)


未来展望

許宗祥教授团队的突破性研究成果,为钙钛矿太阳能电池的实际应用开辟了新的道路。未来,研究人员将继续探索更有效的缺陷管理和離子渗透阻挡策略,并结合先进的表征手段和模拟计算,进一步提高钙鈦礦太陽能電池的效率和稳定性,推动该技术走向商业化应用。


Joule 26.17%效率突破_港城大Alex  Jen & 南科大许宗祥团队
Fig. 4. 反式过氧化物太阳能电池的光伏性能(A) 器件结构以及经过 10 ps AIMD模拟。

(BMe-PhpPACz 器件的横截面 SEM 图像。

(C)基于 Me-4PACz  Me-PhpPACz  PSC  J-V 曲线(数据 S1.C)。基于Me-PhpPACz),(DMe-4PACz 和基于 Me-PhpPACz  PSC 以及集成 JSC  AM 1.5G 标准频谱上的 IPCE 曲线,(E)器件 FF S-Q 限制,包括电荷传输损耗和非辐射损耗;(F)基于 Me-4PACz  MePhpPACz  PSC  0.01-2,000 mA/cm2 范围内的 EQEEL  EL 图像,以及 (G)  N2 和模拟 1 sun AM 1.5G 光照下跟踪未冷却器件的 MPP(工作温度达到 50C G 10C)。温度为 50C G 10C)

Joule 26.17%效率突破_港城大Alex  Jen & 南科大许宗祥团队 Joule 26.17%效率突破_港城大Alex  Jen & 南科大许宗祥团队

Joule 26.17%效率突破_港城大Alex  Jen & 南科大许宗祥团队


原文出处joule _ DOI



上一篇 SWIR OPDs研究:新型非富勒烯受体Y-QC4F设计合成
下一篇 “织”就未来:石墨烯-钙钛矿光纤光电探测器,让可穿戴科技更进一步

文献贡献者

相关仪器 更多
相关方案
更多

相关产品

当前位置: 光焱科技 方案 Joule 26.17%效率突破_港城大Alex Jen & 南科大许宗祥团队

关注

拨打电话

留言咨询