仪器信息网APP
选仪器、听讲座、看资讯

中科院生物物理所利用冷冻电镜技术解析30nm染色质高级结构取得重要突破

导读:4月25日,Science杂志以长幅研究论文形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。

  4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。

  61年前的同一天(1953年4月25日),沃森和克里克发表的DNA双螺旋结构模型使生命科学研究深入到分子层次,开启了分子生物学时代。但任何有关DNA的生命活动都是在DNA及其所缠绕的组蛋白组装形成的染色质这个结构平台上进行的。由于缺乏一个系统性的、合适的研究手段和体系,目前对于30nm染色质纤维这一超大分子复合体的精细结构组成还具有很大争议,染色质的高级结构研究一直是现代分子生物学领域面临的最大挑战之一。

  近年来,冷冻电镜(cryo-EM)技术在结构生物学领域发展迅速,为研究30nm染色质的高级结构及其调控机制提供了一个最为合适的研究工具。依靠多年来在冷冻电镜高分辨率三维重构、30nm染色质及表观遗传调控等领域的长期工作积累,朱平研究组和李国红研究组成功建立了一套30nm染色质体外重建和结构分析平台,利用冷冻电镜单颗粒三维重构方法率先解析了30nm染色质纤维的高分辨率三维结构,这是目前为止最为清晰的染色质高级结构图。该结构揭示了30nm染色质纤维以4个核小体为结构单元;各单元之间通过相互扭曲折叠形成一个和DNA右手双螺旋类似的左手双螺旋高级结构(图1);结构单元之间的空隙可能是组蛋白修饰、染色质重塑等表观遗传现象发生的重要调控区域。同时,该研究首次明确了连接组蛋白H1在30nm染色质纤维形成过程中的重要作用。这些研究结果为预测染色质结构建立的分子基础以及各种表观遗传因素包括组蛋白变体、组蛋白化学修饰等对染色质结构调控的可能机理提供了可靠的结构基础。本论文评审人评论说“30nm染色质结构是最基本的分子生物学问题之一,困扰了研究人员30余年”,该结果是“目前为止解析的最有挑战性的结构之一”,“在理解染色质如何装配这个问题上迈出了重要的一步”。

中科院生物物理所利用冷冻电镜技术解析30nm染色质高级结构取得重要突破

  图1. 30nm染色质左手双螺旋结构模型 ((Song et al, Science,25 April 2014: Vol. 344 no. 6182 pp. 376-380,research article)

  本研究工作是中科院生物物理所朱平研究组、李国红研究组、许瑞明研究组长期合作获得的重要成果,得到了基金委重点项目(31230018)、基金委细胞编程与重编程重大研究计划项目(91219202,91019007),中丹国际合作项目(21261130090)以及青年基金项目(31000566)等的资助。

  科技创新需要合作,30nm染色质纤维的高分辨率三维结构的解析正是我国科研人员在合作创新方面的成功范例。在这项研究当中,朱平研究员长期从事冷冻电镜三维结构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。

  另外,再先进的仪器,只有会用、用好了才能真正发挥出它的作用。在这项研究中采用了世界先进的300千伏Titan Krios冷冻低温透射电镜,但如果没有科研人员对于冷冻电镜的深入理解,若对仪器的理解停留在按说明书来操作,恐怕永远也不会有新的发现。  

中科院生物物理所利用冷冻电镜技术解析30nm染色质高级结构取得重要突破

李国红研究员(左)和朱平研究员(右)

来源于:国家自然科学基金委

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

写评论…
0

  4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。

  61年前的同一天(1953年4月25日),沃森和克里克发表的DNA双螺旋结构模型使生命科学研究深入到分子层次,开启了分子生物学时代。但任何有关DNA的生命活动都是在DNA及其所缠绕的组蛋白组装形成的染色质这个结构平台上进行的。由于缺乏一个系统性的、合适的研究手段和体系,目前对于30nm染色质纤维这一超大分子复合体的精细结构组成还具有很大争议,染色质的高级结构研究一直是现代分子生物学领域面临的最大挑战之一。

  近年来,冷冻电镜(cryo-EM)技术在结构生物学领域发展迅速,为研究30nm染色质的高级结构及其调控机制提供了一个最为合适的研究工具。依靠多年来在冷冻电镜高分辨率三维重构、30nm染色质及表观遗传调控等领域的长期工作积累,朱平研究组和李国红研究组成功建立了一套30nm染色质体外重建和结构分析平台,利用冷冻电镜单颗粒三维重构方法率先解析了30nm染色质纤维的高分辨率三维结构,这是目前为止最为清晰的染色质高级结构图。该结构揭示了30nm染色质纤维以4个核小体为结构单元;各单元之间通过相互扭曲折叠形成一个和DNA右手双螺旋类似的左手双螺旋高级结构(图1);结构单元之间的空隙可能是组蛋白修饰、染色质重塑等表观遗传现象发生的重要调控区域。同时,该研究首次明确了连接组蛋白H1在30nm染色质纤维形成过程中的重要作用。这些研究结果为预测染色质结构建立的分子基础以及各种表观遗传因素包括组蛋白变体、组蛋白化学修饰等对染色质结构调控的可能机理提供了可靠的结构基础。本论文评审人评论说“30nm染色质结构是最基本的分子生物学问题之一,困扰了研究人员30余年”,该结果是“目前为止解析的最有挑战性的结构之一”,“在理解染色质如何装配这个问题上迈出了重要的一步”。

中科院生物物理所利用冷冻电镜技术解析30nm染色质高级结构取得重要突破

  图1. 30nm染色质左手双螺旋结构模型 ((Song et al, Science,25 April 2014: Vol. 344 no. 6182 pp. 376-380,research article)

  本研究工作是中科院生物物理所朱平研究组、李国红研究组、许瑞明研究组长期合作获得的重要成果,得到了基金委重点项目(31230018)、基金委细胞编程与重编程重大研究计划项目(91219202,91019007),中丹国际合作项目(21261130090)以及青年基金项目(31000566)等的资助。

  科技创新需要合作,30nm染色质纤维的高分辨率三维结构的解析正是我国科研人员在合作创新方面的成功范例。在这项研究当中,朱平研究员长期从事冷冻电镜三维结构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。

  另外,再先进的仪器,只有会用、用好了才能真正发挥出它的作用。在这项研究中采用了世界先进的300千伏Titan Krios冷冻低温透射电镜,但如果没有科研人员对于冷冻电镜的深入理解,若对仪器的理解停留在按说明书来操作,恐怕永远也不会有新的发现。  

中科院生物物理所利用冷冻电镜技术解析30nm染色质高级结构取得重要突破

李国红研究员(左)和朱平研究员(右)