仪器信息网APP
选仪器、听讲座、看资讯

研究|具有各向异性和高垂直热导率的高效热界面材料

导读:聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。

01背景介绍


随着集成电路和电子器件技术的快速发展,高功率密度电子设备的有效散热已成为确保其可靠性和使用寿命的主要因素之一。热界面材料通常被用来填补散热器和发热元件之间的间隙,以消除由非流动空气产生的高界面热阻。

聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。一种可行的策略是将高导热填料与柔性和绝缘聚合物相结合,从而制备综合性能优良的复合材料。研究人员已经创造性地将各向异性的导热填料有序排列以获得具有优良各向异性导热性的TIM。由于导热路径最短,各向异性填料在基体厚度方向上的有效垂直排列以构建连续的传热路径,并进一步提高垂直透面导热系数,引起了研究人员的高度重视。

人们已提出了电场或磁场、流动剪切力、定向冻结法和化学气相沉积等几种有效的策略来构建垂直取向结构以提高TIM的透面导热性。然而,垂直结构排列的二维填料并没有显示出明显的各向异性热导率增强。一维材料在其一个自由度的定向方向上可以达到最大的性能。近年来,碳纤维、碳纳米管、石墨烯等碳材料因其高导热性和优异的力学性能被广泛应用于TIMs的导热填料,其中一维中间相沥青基碳纤维的各向异性导热系数较高,轴向导热系数和径向导热系数分别约600 W/m K和小于10 W/m K,一维材料可以在特定方向上发挥最大的性能。


研究|具有各向异性和高垂直热导率的高效热界面材料


02成果掠影


研究|具有各向异性和高垂直热导率的高效热界面材料


四川大学陈枫教授团队采用中间相沥青基碳纤维,通过熔融挤压法制备了高取向度的短碳纤维(CF)/烯烃嵌段共聚物(OBC)复合材料,可提供高导热性、适度的电绝缘和良好的柔韧性。由于CF/OBC复合材料中CF的高取向度(f>0.9,f是CF/OBC复合材料中CF的取向度),在 30 vol%的CF负载下表现出 15.06 W/m K的贯通面热导率,同时实现了良好的电绝缘(~10-9 S/m)和低压缩强度(2.62 MPa)。TIM测量的结果表明,垂直排列的CF/OBC显示出高效的散热能力,相比于随机结构温差可达 35.2°C,可用于冷却高功率LED器件。研究成果以“An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity”为题发表于《Composites Science and Technology》期刊。



03图文导读


研究|具有各向异性和高垂直热导率的高效热界面材料

(a)具有垂直排列结构的CF/OBC复合材料的制备流程图;(b)CF的SEM图;(c)CF的拉曼光谱图;(d)挤出的长丝;(e)垂直排列的CF/OBC复合材料。


研究|具有各向异性和高垂直热导率的高效热界面材料

(a)丝状物的横截面和(b)垂直排列的CF/OBC复合材料的SEM图;(c)垂直排列和(d)平行排列的2D-WAXS图案,CF含量分别是1,5,10,15,20,30 vol%时,平行排列样品的2D-WAXS图,虚线标记了CF的(002)平面的环;(e)相应的方位角整合的强度曲线。(f)不同CF含量样品中(002)平面的取向度;(g)纯OBC、CF和10 vol% CF/OBC的一维XRD图;(h)从表面和横截面的X射线方向的说明;(i)表面和(j)横断面的三维XRD图。

研究|具有各向异性和高垂直热导率的高效热界面材料

CF/OBC复合材料的导热性能。

(a)垂直、平行和随机样品的热导率;(b)随机、平行和垂直排列时30 vol% CF/OBC的比较;(c)各向异性随着CF含量的增加而增加;(d)反复加热和冷却循环后30 vol% 垂直的CF/OBC的典型热导率值;(e)各向异性热导率 30 vol% CF/OBC在不同温度下的各向异性热导率;(f)CF/OBC的电绝缘性能;100℃的条件下(g)示意图、(h)红外图和(i)样品顶部的温度。


研究|具有各向异性和高垂直热导率的高效热界面材料

CF/OBC的机械性能。

(a)打结的长丝;(b)弯曲和(c)扭曲的柔韧性;(d)平行排列和(e)垂直排列的CF/OBC块体的抗压应力-应变曲线;(f)比较平行结构和垂直结构之间的抗压强度随CF含量增加的变化。


研究|具有各向异性和高垂直热导率的高效热界面材料

30 vol%的CF/OBC切片用于界面热管理。

用于LED芯片散热测试系统的红外图像(a)加热和(b)冷却;(c)原理图和(d)中心区域的平均温度与运行时间的关系。


来源于:热管理材料

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

新闻专题

更多推荐

写评论…
0

01背景介绍


随着集成电路和电子器件技术的快速发展,高功率密度电子设备的有效散热已成为确保其可靠性和使用寿命的主要因素之一。热界面材料通常被用来填补散热器和发热元件之间的间隙,以消除由非流动空气产生的高界面热阻。

聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。一种可行的策略是将高导热填料与柔性和绝缘聚合物相结合,从而制备综合性能优良的复合材料。研究人员已经创造性地将各向异性的导热填料有序排列以获得具有优良各向异性导热性的TIM。由于导热路径最短,各向异性填料在基体厚度方向上的有效垂直排列以构建连续的传热路径,并进一步提高垂直透面导热系数,引起了研究人员的高度重视。

人们已提出了电场或磁场、流动剪切力、定向冻结法和化学气相沉积等几种有效的策略来构建垂直取向结构以提高TIM的透面导热性。然而,垂直结构排列的二维填料并没有显示出明显的各向异性热导率增强。一维材料在其一个自由度的定向方向上可以达到最大的性能。近年来,碳纤维、碳纳米管、石墨烯等碳材料因其高导热性和优异的力学性能被广泛应用于TIMs的导热填料,其中一维中间相沥青基碳纤维的各向异性导热系数较高,轴向导热系数和径向导热系数分别约600 W/m K和小于10 W/m K,一维材料可以在特定方向上发挥最大的性能。


研究|具有各向异性和高垂直热导率的高效热界面材料


02成果掠影


研究|具有各向异性和高垂直热导率的高效热界面材料


四川大学陈枫教授团队采用中间相沥青基碳纤维,通过熔融挤压法制备了高取向度的短碳纤维(CF)/烯烃嵌段共聚物(OBC)复合材料,可提供高导热性、适度的电绝缘和良好的柔韧性。由于CF/OBC复合材料中CF的高取向度(f>0.9,f是CF/OBC复合材料中CF的取向度),在 30 vol%的CF负载下表现出 15.06 W/m K的贯通面热导率,同时实现了良好的电绝缘(~10-9 S/m)和低压缩强度(2.62 MPa)。TIM测量的结果表明,垂直排列的CF/OBC显示出高效的散热能力,相比于随机结构温差可达 35.2°C,可用于冷却高功率LED器件。研究成果以“An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity”为题发表于《Composites Science and Technology》期刊。



03图文导读


研究|具有各向异性和高垂直热导率的高效热界面材料

(a)具有垂直排列结构的CF/OBC复合材料的制备流程图;(b)CF的SEM图;(c)CF的拉曼光谱图;(d)挤出的长丝;(e)垂直排列的CF/OBC复合材料。


研究|具有各向异性和高垂直热导率的高效热界面材料

(a)丝状物的横截面和(b)垂直排列的CF/OBC复合材料的SEM图;(c)垂直排列和(d)平行排列的2D-WAXS图案,CF含量分别是1,5,10,15,20,30 vol%时,平行排列样品的2D-WAXS图,虚线标记了CF的(002)平面的环;(e)相应的方位角整合的强度曲线。(f)不同CF含量样品中(002)平面的取向度;(g)纯OBC、CF和10 vol% CF/OBC的一维XRD图;(h)从表面和横截面的X射线方向的说明;(i)表面和(j)横断面的三维XRD图。

研究|具有各向异性和高垂直热导率的高效热界面材料

CF/OBC复合材料的导热性能。

(a)垂直、平行和随机样品的热导率;(b)随机、平行和垂直排列时30 vol% CF/OBC的比较;(c)各向异性随着CF含量的增加而增加;(d)反复加热和冷却循环后30 vol% 垂直的CF/OBC的典型热导率值;(e)各向异性热导率 30 vol% CF/OBC在不同温度下的各向异性热导率;(f)CF/OBC的电绝缘性能;100℃的条件下(g)示意图、(h)红外图和(i)样品顶部的温度。


研究|具有各向异性和高垂直热导率的高效热界面材料

CF/OBC的机械性能。

(a)打结的长丝;(b)弯曲和(c)扭曲的柔韧性;(d)平行排列和(e)垂直排列的CF/OBC块体的抗压应力-应变曲线;(f)比较平行结构和垂直结构之间的抗压强度随CF含量增加的变化。


研究|具有各向异性和高垂直热导率的高效热界面材料

30 vol%的CF/OBC切片用于界面热管理。

用于LED芯片散热测试系统的红外图像(a)加热和(b)冷却;(c)原理图和(d)中心区域的平均温度与运行时间的关系。