导读:这项研究通过整合介质纳米结构和光子晶体的独特设计,突破了传统光学衍射限制,实现了光场在原子尺度上的极端局部化。传统上,光场的空间局部化受到材料介电常数的限制,难以将光场压缩至亚波长尺度。
【科学背景】
光场的衍射限制基于光子动量的不确定性关系,制约了光场局部化的极限,尤其是在使用介质结构时更为显著。传统的等离子体技术虽然能够实现较小的模体积,但却不可避免地伴随着能量损耗和相干时间的限制,这限制了其在高效能计算和通信中的应用。
为解决这一问题,近年来,北京大学的马仁敏团队提出将介质结构与纳米技术相结合的新思路。通过将介质蝴蝶形纳米天线集成到扭曲格子纳米腔中,实现了光场的超越衍射限制的极端局部化。这一研究不仅发现了介质蝴蝶形纳米天线中的电场奇异性,源自动量的发散,还成功制备了具有单纳米间隙的高精度纳米结构。
【科学亮点】
1. 本研究首次在介质纳米激光器领域实现了对光场的亚波长限制局域化。通过将介质蝴蝶形纳米天线集成到扭曲格子纳米腔的中心,作者创造性地实现了超小尺度的模体积,迈向了极端光场局域化的新境界。
2. 作者采用了刻蚀和原子层沉积的两步法制备所需的介质蝴蝶形纳米天线,精确控制了其顶端的纳米级间隙。
3. 在实验中,作者发现介质蝴蝶形纳米天线顶端的电场奇异性源于动量的发散,导致高度集中的场。该结构在1纳米尺度上实现了异常小的特征尺寸,并实现了约0.0005 λ3的超小模体积。
【科学图文】
图1:奇异介质纳米激光器中的电场无限奇点。
图2:具有原子尺度间隙尺寸纳米天线的奇异介质纳米激光器的制备。
图3:单介质纳米激光器的激光特性。
图4:奇异介质纳米激光器的模式特性。
图5:非积分拓扑电荷与原子尺度定域光场。
【科学结论】
这项研究通过整合介质纳米结构和光子晶体的独特设计,突破了传统光学衍射限制,实现了光场在原子尺度上的极端局部化。传统上,光场的空间局部化受到材料介电常数的限制,难以将光场压缩至亚波长尺度。
然而,本研究通过设计介质蝴蝶形纳米天线和扭曲格子纳米腔的协同结构,有效地利用了动量的发散机制,产生了在纳米尺度上高度集中的电场。这一发现不仅展示了介质纳米器件在光场控制方面的潜力,还为超精密测量、超分辨率成像和高效计算通信等应用提供了新的技术路径。
本研究不仅拓展了光场压缩的实现途径,还挑战了人们对介质材料局部化能力的传统认知。通过实验验证介质蝴蝶形纳米天线的电场奇异性是由动量发散引发的,为进一步理解和优化介质纳米结构的设计提供了理论基础。
原文详情:Ouyang, YH., Luan, HY., Zhao, ZW. et al. Singular dielectric nanolaser with atomic-scale field localization. Nature (2024). https://doi.org/10.1038/s41586-024-07674-9
来源于:仪器信息网
热门评论
最新资讯
新闻专题
更多推荐