仪器信息网APP
选仪器、听讲座、看资讯

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

导读:研究表明,果蝇的大脑通过多巴胺信号调节蘑菇体(MB)中的短期和长期记忆单元,从而实现对固有和学习效价的综合处理。

科学背景】

多巴胺(Dopamine)是神经系统中一种关键的神经递质,其在调节行为和记忆方面发挥着重要作用。由于多巴胺在学习和记忆过程中的核心作用,研究其在不同记忆单元之间的调节机制成为了研究热点。然而,现有研究主要集中于固有和学习效价的分离处理,忽视了固有效价如何影响学习到的效价信息及其对记忆动态的影响。这一问题在动物对变化环境的适应中显得尤为关键,因为它涉及到如何有效地整合内在和外部信息来优化记忆的可靠性和灵活性。

有鉴于此,斯坦福大学、华盛顿大学医学院Cheng Huang(清华大学校友)、斯坦福大学Mark J. Schnitzer教授团队、耶鲁大学Madhuvanthi Kannan,以及Ganesh Vasan教授合作携手采用了果蝇作为模型生物,通过对500多只果蝇进行长期电压成像,探讨了多巴胺如何整合固有和学习效价来调节记忆动态。结果表明,多巴胺基于效价的整合机制在调节蘑菇体(MB)记忆动态方面具有重要作用,并适合于储存持久记忆,这种记忆对于频繁出现的关联尤其重要。

研究还表明,通过电压成像能够提供比钙离子成像更为细致的神经脉冲数据,从而揭示了短期和长期记忆的复杂交互。模型的定量预测验证了结合脉冲率和连接组数据作为建模约束的有效性,为深入理解多巴胺调节记忆动态提供了新的视角。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

科学亮点

(1)实验首次发现了固有效价和学习效价在果蝇蘑菇体记忆动态中的整合作用。作者首次通过对500多只果蝇进行长期光学电压成像研究,揭示了PPL1-DANs和MBONs在记忆形成中的关键角色。这些发现展示了固有效价和学习效价的整合如何调节记忆的存储和消退,揭示了短期和长期记忆的复杂交互。


(2)实验通过电压成像技术详细研究了PPL1-DANs如何编码和整合固有及学习效价信号。结果显示,PPL1-DANs在学习过程中通过调节短期记忆形成来影响长期记忆的形成。特别是在初期条件反射中,PPL1-γ1pedc和PPL1-γ2α’1神经元控制短期记忆的形成,随后这种控制通过减少MBON对DANs的抑制反馈来影响长期记忆。


(3)条件反射过程中,PPL1-DANs编码条件气味线索的固有和学习效价,从而调节长期记忆的形成。作者的计算模型结合了脉冲率和连接组数据,提供了对这些交互的定量和可验证预测,展示了这种混合生理-解剖机制在其他物种和脑结构中的潜在普遍性。

科学图文

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图1 | PPL1-DANs 和 MBONs 的电压成像。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图2 | PPL1-DANs 异质性和双向地编码惩罚、奖励和气味效价。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图3 |  学习引起 PPL1-DANs 和 MBONs 中分布性、双向的可塑性。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图4 | 固有和学习效价都影响持久的可塑性和行为。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图5 | 计算模型捕捉了蘑菇体学习单元之间的相互作用,并产生了可测试的预测

科学启迪

本文揭示了多巴胺在感官效价整合中的核心作用,进一步加深了作者对果蝇记忆动态调节机制的理解。研究表明,果蝇的大脑通过多巴胺信号调节蘑菇体(MB)中的短期和长期记忆单元,从而实现对固有和学习效价的综合处理。这种机制允许动物在不断变化的环境中有效地调节和更新其记忆,使其能够在经历不同的刺激时做出适应性的行为决策。

通过对超过500只果蝇进行电压成像研究,本文揭示了PPL1-DANs神经元如何通过编码固有和学习效价,影响记忆的存储和消退。特别是,短期记忆的形成和长期记忆的构建是通过复杂的反馈机制进行调控的,这种机制涉及短期记忆和长期记忆之间的动态交互。这种整合机制表明,多巴胺不仅在学习过程中发挥作用,还在记忆的持久性和可靠性中起到重要作用,尤其是在处理频繁遇到的关联时。

此外,本研究通过与电压成像相结合的计算模型展示了脉冲率和连接组数据的有效整合,提供了一种新的建模约束手段。这种方法展示了在多巴胺调控下的记忆动态如何通过结合生理数据和结构数据来进行更为精准的模拟。这为理解复杂的神经计算机制提供了新的视角,也为未来在其他物种和脑结构中探究类似机制奠定了基础。

原文详情:Devarakonda, A., Chen, A., Fang, S. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature (2024). https://doi.org/10.1038/s41586-024-07589-5



来源于:仪器信息网

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

新闻专题

写评论…
0

科学背景】

多巴胺(Dopamine)是神经系统中一种关键的神经递质,其在调节行为和记忆方面发挥着重要作用。由于多巴胺在学习和记忆过程中的核心作用,研究其在不同记忆单元之间的调节机制成为了研究热点。然而,现有研究主要集中于固有和学习效价的分离处理,忽视了固有效价如何影响学习到的效价信息及其对记忆动态的影响。这一问题在动物对变化环境的适应中显得尤为关键,因为它涉及到如何有效地整合内在和外部信息来优化记忆的可靠性和灵活性。

有鉴于此,斯坦福大学、华盛顿大学医学院Cheng Huang(清华大学校友)、斯坦福大学Mark J. Schnitzer教授团队、耶鲁大学Madhuvanthi Kannan,以及Ganesh Vasan教授合作携手采用了果蝇作为模型生物,通过对500多只果蝇进行长期电压成像,探讨了多巴胺如何整合固有和学习效价来调节记忆动态。结果表明,多巴胺基于效价的整合机制在调节蘑菇体(MB)记忆动态方面具有重要作用,并适合于储存持久记忆,这种记忆对于频繁出现的关联尤其重要。

研究还表明,通过电压成像能够提供比钙离子成像更为细致的神经脉冲数据,从而揭示了短期和长期记忆的复杂交互。模型的定量预测验证了结合脉冲率和连接组数据作为建模约束的有效性,为深入理解多巴胺调节记忆动态提供了新的视角。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

科学亮点

(1)实验首次发现了固有效价和学习效价在果蝇蘑菇体记忆动态中的整合作用。作者首次通过对500多只果蝇进行长期光学电压成像研究,揭示了PPL1-DANs和MBONs在记忆形成中的关键角色。这些发现展示了固有效价和学习效价的整合如何调节记忆的存储和消退,揭示了短期和长期记忆的复杂交互。


(2)实验通过电压成像技术详细研究了PPL1-DANs如何编码和整合固有及学习效价信号。结果显示,PPL1-DANs在学习过程中通过调节短期记忆形成来影响长期记忆的形成。特别是在初期条件反射中,PPL1-γ1pedc和PPL1-γ2α’1神经元控制短期记忆的形成,随后这种控制通过减少MBON对DANs的抑制反馈来影响长期记忆。


(3)条件反射过程中,PPL1-DANs编码条件气味线索的固有和学习效价,从而调节长期记忆的形成。作者的计算模型结合了脉冲率和连接组数据,提供了对这些交互的定量和可验证预测,展示了这种混合生理-解剖机制在其他物种和脑结构中的潜在普遍性。

科学图文

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图1 | PPL1-DANs 和 MBONs 的电压成像。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图2 | PPL1-DANs 异质性和双向地编码惩罚、奖励和气味效价。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图3 |  学习引起 PPL1-DANs 和 MBONs 中分布性、双向的可塑性。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图4 | 固有和学习效价都影响持久的可塑性和行为。

仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!

图5 | 计算模型捕捉了蘑菇体学习单元之间的相互作用,并产生了可测试的预测

科学启迪

本文揭示了多巴胺在感官效价整合中的核心作用,进一步加深了作者对果蝇记忆动态调节机制的理解。研究表明,果蝇的大脑通过多巴胺信号调节蘑菇体(MB)中的短期和长期记忆单元,从而实现对固有和学习效价的综合处理。这种机制允许动物在不断变化的环境中有效地调节和更新其记忆,使其能够在经历不同的刺激时做出适应性的行为决策。

通过对超过500只果蝇进行电压成像研究,本文揭示了PPL1-DANs神经元如何通过编码固有和学习效价,影响记忆的存储和消退。特别是,短期记忆的形成和长期记忆的构建是通过复杂的反馈机制进行调控的,这种机制涉及短期记忆和长期记忆之间的动态交互。这种整合机制表明,多巴胺不仅在学习过程中发挥作用,还在记忆的持久性和可靠性中起到重要作用,尤其是在处理频繁遇到的关联时。

此外,本研究通过与电压成像相结合的计算模型展示了脉冲率和连接组数据的有效整合,提供了一种新的建模约束手段。这种方法展示了在多巴胺调控下的记忆动态如何通过结合生理数据和结构数据来进行更为精准的模拟。这为理解复杂的神经计算机制提供了新的视角,也为未来在其他物种和脑结构中探究类似机制奠定了基础。

原文详情:Devarakonda, A., Chen, A., Fang, S. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature (2024). https://doi.org/10.1038/s41586-024-07589-5