导读:本文揭示了菱形多层石墨烯中的谷间相干性和超导性之间复杂而深刻的关系。研究表明,即使在缺乏声子介导的情况下,谷间相干性的涨落也可能引发电子间的吸引相互作用,从而促进超导性的出现。
【科学背景】
随着低维材料研究的深入,石墨烯,尤其是多层石墨烯结构,因其独特的电子特性和潜在应用,引起了广泛关注。石墨烯作为一种二维材料,展现出许多新奇的物理现象,包括超导性、磁性和独特的电学性质。然而,这些特性背后的物理机制尚未完全理解,特别是在强关联电子系统中,多种基态之间的竞争和相互作用仍然是一个挑战。
在石墨烯的相关低能电子物理学中,自旋和谷同位旋空间的近似SU(4)对称性允许存在大量几乎简并能量的破缺对称相,从而导致了多种紧密竞争的基态。在实际实验中,这种简并性可以通过自发破缺或哈密顿量中的弱对称破缺项来解除。这些项可能包括原子尺度的自旋–轨道耦合以及由粒子间相互作用引起的对称性破缺,例如谷间和谷内散射的差异。然而,目前对于这些破缺项的微观参数的强度,无法从第一原理精确确定,因此实验确定基态成为了约束微观哈密顿量的主要方法。
为了应对这些挑战,科学家们转向了结构更稳定且可重复性更高的菱形多层石墨烯。与莫尔系统相比,菱形多层石墨烯因其结构稳定性,可以实现精确测量与多体理论之间的具体联系。在这种材料中,实验已经揭示了包括向列相、自旋和轨道磁体以及超导体在内的多种对称破缺态。然而,自旋在这些相中的具体作用,特别是在超导相中的作用,仍未得到充分解释。例如,在六方氮化硼包覆的伯纳尔双层石墨烯中,自旋极化超导态的出现需要一定阈值的平面内磁场,而在零磁场下通过WSe2基底支持的双层石墨烯中,自旋–谷锁定超导性也可被诱导。
为了解决这些问题,美国加利福尼亚大学圣芭芭拉分校Andrea F. Young教授团队结合了全局电荷感测和局部磁力测量,重点研究了菱形三层石墨烯中的同位旋铁磁相。通过精确控制总电荷载流子密度和施加的位移场,利用低温晶体管放大器和扫描超导量子干涉设备(SQUID),作者能够分别测量逆压缩率和局部磁场的变化。这些实验手段使我们能够深入探讨在材料掺杂通过零带隙奇异点时,同位旋铁磁相的性质及其背后的物理机制。本研究通过精确的实验测量,揭示了菱形多层石墨烯中同位旋铁磁相和超导相的微观机制,特别是自旋–轨道耦合在这些相中的作用。
【科学图文】
图1 | 在空穴掺杂的四分之一金属体系中,三层菱方石墨烯的热力学。
图2 | 谷间相干性IVC四分之一金属。
图3 | 自旋-轨道耦合效应。
图4 | 电子掺杂的谷间相干性。
【科学启迪】
本文揭示了菱形多层石墨烯中的谷间相干性和超导性之间复杂而深刻的关系。研究表明,即使在缺乏声子介导的情况下,谷间相干性的涨落也可能引发电子间的吸引相互作用,从而促进超导性的出现。这一发现不仅拓展了我们对超导性形成机制的理解,还提示了探索新型超导体的潜力,这些超导体不受传统限制,可能在更广泛的温度和掺杂范围内实现。此外,研究中还观察到自旋–轨道耦合在控制石墨烯多层中自旋三重态超导性方面的关键作用,尤其是通过选择Cooper对的自旋方向和禁止特定相的形成。这些发现不仅有助于理解石墨烯及其异质结构中的复杂电子行为,还为设计和制造新型量子材料提供了重要的指导思路。
原文详情:Arp, T., Sheekey, O., Zhou, H. et al. Intervalley coherence and intrinsic spin–orbit coupling in rhombohedral trilayer graphene. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02560-7
来源于:仪器信息网
热门评论
最新资讯
新闻专题
更多推荐