1/1

人工智能机器视觉识别软件

报价 面议

品牌

昊量

型号

识别软件

产地

其他其他

应用领域

暂无
该产品已下架

产品负责人:

姓名:李工(Mark)

电话:(微信同号)

邮箱:


运用深度学习让机器仿如人脑一样能自我学习,可轻易的辨识传统光学检测(AOI)难以检测的不规律瑕疵及特征,如脏污、刮痕、裂缝、毛边等等。亦可用来实时又正确地将物件分类及分级,及引导机器人自动找寻正确工作路径。无论是「监督式学习」或较先进的「非监督式学习」,使用者仅需提供少量样本自我学习,即能省去耗时并需客制化的软件编写,大幅降低导入机器视觉的门坎。除了辨识外,已与全球知名品牌机器人串联,当软件辨识完毕,其后续所需的取放动作,均能透过机器人轻松自如地完成任务,充份达成产线完全自动化的完美境界。


人工智能机器视觉与传统视觉的比较


高效率:

例如用传统算法去评估一个棋局的优劣,可能需要专业的棋手花大量的时间去研究影响棋局的每一个因素,而且还不一定准确。而利用深度学习技术只要设计好网络框架,就不需要考虑繁琐的特征提取的过程。这也是 DeepMind公司的AlphaGo 能够强大到轻松击败专业的人类棋手的原因,它节省了大量的特征提取的时间,使得本来不可行的事情变为可行。


可塑性:

在利用传统算法去解决一个问题时,调整模型的代价可能是把代码重新写一遍,这使得改进的成本巨大。深度学习只需要调整参数,就能改变模型。这使得它具有很强的灵活性和成长性,一个程序可以持续改进,然后达到接近完美的程度。


普适性:

神经网络是通过学习来解决问题,可以根据问题自动建立模型,所以能够适用于各种问题,而不是局限于某个固定的问题。


应用领域

                                                   字体识别                                                             瑕疵检测


物件对比&升级


                                                快速物件分类                                               特征点辨识和定位


应用案例

多暇疵检测:iphone充电头测试,相机1只,优点:多瑕疵检测


PCB板检测:相机1只,优点:用Golden Sample教导系统,让系统自行找出与Golden Sample不同的PCB板,不需要制造协暇来让系统学习。



数量检测:相机:1只(Fov内都可以算出数量) 优点:使用深度学习的方式来做,可提高辨视率,即使产品靠的很紧都可以正确辨视

隐形眼镜瑕疵检测


售后服务

0年

安装调试现场免费培训

查看全部
发布心得活动

暂无评论,点击发布评论

人工智能机器视觉识别软件信息由上海昊量光电设备有限公司为您提供,如您想了解更多关于人工智能机器视觉识别软件报价、型号、参数等信息,昊量光电客服电话:400-860-5168转2831,欢迎来电或留言咨询。

相关产品