1/2

电气强度测定仪

报价 ¥2万 - 15万

品牌

中航时代

型号

ZJC-100KV电气强度测定仪

产地

中国大陆北京

应用领域

暂无

ZJC-100KV电气强度测定仪器参数:

1、设备输入电压:220V  50-60HZ (普通试验室电源均可兼容)

2、试验电压方式:交流 0--100 KV ;直流 0--100 KV;型号:ZJC-100kV

3、电器容量:10KVA;

4、试验方法:0-100KV全量程可调;

5、击穿及耐压试验升压速率:200V/S-5KV/S

6、试验方式: 交/直流试验:1、匀速升压  2、阶梯升压  3、耐压试验

7、过电流保护装置应有足够灵敏度以保证试样击穿时在0.1S内切断电源。

8、漏电电流选择:1—100 mA可由计算机软件自由进行设定。

9、本仪器采用先进的无触点原件匀速调压方式,淘汰同类产品中机械传动升压方式。

10、支持短时间内短路试验要求。

11、一次试验可以同时做5个试样。

12、电压测量误差:≤ 2%

13、试验电压连续可调:0-100 KV

14、耐压时间设定: 0-6小时(可通过软件连续设定)

15、九级安全防护措施: 

(1) 超压保护

(2)试验过流保护 

(3)试验短路保护

(4)安全门开启保护

(5)软件误操作保护

(6)零电压复位保护

(7)试验结束放电保护

(8)独立保护接地

(9)试验完成后电磁放电

ZJC-100KV (4).png

提高击穿电压的措施


在高压电气设备中经常遇到气体绝缘间隙,为了减小设备尺寸,一般希望间隙的绝缘距离尽可能缩短。为此需要采取措施,以提高气体间隙的击穿电压。根据前述分析可以知道,提高气体击穿电压可能有两个途径:一是改善电场分布,使其尽量均匀;二是利用其他方法来削弱气体中的游离过程。改善电场分布又有两种途径;一种是改进电极形状;另一种是利用气体放电本身的空间电荷畸变电场的作用,以下介绍一些提高气体间隙击穿电压的方法。

一、改进电极形状

一般来说,电场分布越均匀,平均击穿场强也越高,因此,改进电极形状、增大电极曲率半径,可改善电场分布,提高间隙的击穿电压。同时,电极表面应尽量避免毛刺、棱角等,以消除电场局部增强的现象。高压静电电压表的电极就是电场比较均匀的电极结构的典型例子。

如不可避免出现极不均匀电场时,则应尽可能采用棒一棒类型的对称电场。

即使是极不均匀电场,不少情况下,为了避免在工作电压下出现强烈电晕放电,也必须增大电极曲率半径(改变电极形状)。高压套管的端部加设屏蔽罩(如图1-16所示)即是一例。

二、采用极不均匀电场中屏障

在电场极不均匀的空气间隙中,放入薄片绝缘材料(例如纸或纸板),在一定条件下,可以显著提高间隙的击穿电压。所采用的薄片绝缘材料称为屏障。当屏障很薄,其本身的击穿电压很低时,同样存在屏障效应。屏障的作用和电压种类有关,以下分别讨论。

(一)直流电压下屏障的作用

图1-17给出了直流电压下尖一板空气间隙中击穿电压和屏障位置的关系曲线。由图可知,间隙中加入屏障后,随着屏障位置不同,击穿电压发生了很大变化。由于尖电极的极性不同,屏障的影响也不同。

1.尖电极为正极性

设置屏障可显著提高间隙的击穿电压,这是由于屏障积聚空间电荷,改善了电场的分布。无屏障时,尖电极附近,正离子形成了集中的正空间电荷,它加强了前方电场,促进游离区向前发展,所以击穿电压较低。在间隙中放入屏障后,正离子将在屏障上积聚起来,并由于同号电有的推斥作用,将沿着屏障表面比较均句地分布开来,且在屏障前方形成了比较均匀的电场,从而改善了整个间隙中电场的分布,所以正尖一负板间隙中设置屏障可以提高间隙的击穿电压,而且屏障效应显然还和屏障位置有关。当屏障移近尖电极时,屏障和极电极间比较为均匀的电场区扩大,故间隙的击穿电压也随之上升。但屏幕离尖电极距离过近(d1过小)时,屏障上正电荷的分布将变得很不均匀,屏障前方又将出现极不均匀电场,造成了游离发展的有利条件,因而这时屏障效应又将随之减弱了。

2.尖电极为负极性

当尖电极具有负极性时,电子形成负离子,积聚于屏障上,同样在屏障前方形成了比较均匀的电场。所以在负极性下,设置屏障后,除了屏障过分靠近电极之外,由于情况类似,间隙击穿电压和屏障位置的关系曲线应该和正极性下的相近,如图1-17中实线所示。不同处在于,负极性下设置屏障后,在一定条件下反而可能造成更有利于击穿的条件。因为无屏等时,负离子扩散于空间,有一部分消失于电极,故影响电场分布的主要是正离子,它削弱了前方的电场,而有屏障后,其上集中了大量负离子,此时负离了将对电场分布起重要影响,它将加强前方电场,所以在屏障离开尖极一定距离后,屏障反而使间隙击穿电压降低。当屏障过分靠近尖极时,由于尖极附近电场很强,电子速度很高,可穿透屏障,故障上已不可能积聚大量负电荷。相反,屏障另一面的游离过程所造成的正离了将为屏障所阻挡,使障带正电,从而削弱了屏幕前方的电场。所以此时仍有相当的屏障效应.

由图1-17可见,当屏障位于间隙中间一段范围内时,在不同极性下间隙的击穿电压彼此接近。可认为,这时整个间隙的击穿电压主要决定于电场相当均匀的屏障和板极间一段距离的击穿电压。均匀电场中空气的电气强度约30kV/cm.整个间隙的击穿电压可按UB≈30(d-d1)估计。

由图1-17还可看出,当屏障离尖电极d1约为间隙距离d的15%~20%时,屏障对间隙击穿电压的提高效果最大。

(二)工频电压下屏障的作用

图1-18给出了工顿电压下尖一板空气间隙中设置屏障后的击穿电压曲线。工频电压下极不均匀电场中同样能形成大量空间电荷,故屏障同样具有积聚空间电荷,改善电场分布的作用。此外,如前所述,没有屏障时,尖一板间隙中工频电压下击穿是在尖电极具有正极性的半周内发生的。所以工频电压下,设置屏降可以显著提高间数的击穿电压

此外,雷电冲击电压下,设置屏障后,也有提高间隙击穿电压的作用,尖电极具有正极性时,屏障也可显著提高间隙的击穿电压。负极性时设置屏障后,间蒙的击穿电压和没有屏障时相差不多,由于雷电冲击电压的作用时间极短,故和持续电压下不同,屏障上来不及积聚起显著的空间电荷。所以,冲击电压下的屏障效应应该另有原因:有人认为,屏障妨碍了光子的传播,从而影响了流注的发展,提高了间隙的击穿电压:实验表明,当屏降有小孔时,在冲击电压作用下就不能提高间隙的击穿电压了。而在持续电压作用下,只要屏障不是过分掌近尖电极,屏障具有小孔,对其积聚空间电荷的作用影响很小,从而对屏障效应的影响也是不大的。

综上所述,极不均匀电场中,在一定条件下可以利用屏障提高间隙击穿电压。但应指出,在均匀电场及稍不均匀电场中,因为这时击穿前没有电晕放电阶段,且击穿前间隙中各处场强都已达很高数值,所以屏障不能有积聚空间电荷而起改善电场的作用,也不能妨碍流注的发展,因而屏障起不到提高击穿电压的作用。

三、采用高气压

由巴申定律可知:当提高气体压力时,可以提高间隙的击穿电压值,这是因提高气压可以减小电子的平均自由行程,削弱游离过程,从而提高气体的电气强度。例如,大气压力下空气的电气强度仅约为变压器油的1/5~1/8,而提高压力至10-15atm(1atm=101.3kPa)后,空气的电气强度就和一般的液、固态绝缘材料如变压器油、电瓷、云母等的电气强度相接近了。压缩空气绝缘及其他压缩气体绝缘近来在一些电气设备(如高压空气断路器、高压标准电容器等)中已得到采用。采用压缩气体的缺点是对设备容器的机械强度及密封等方面的要求提高了,从面塔加了制造成本。

在均匀电场中空气间隙击穿电压和压力及距离的乘积pd的关系见图1-19。由图可见,当间隙距离不变时,击穿中压随压力提高而很快增加,但当压力增加到一定值后,击穿电压增加的陡度逐渐减小,说明再继续增加压力效果不大了。均匀电场中提高气压后,击穿场强的提高遵循前述巴申定律,并且击穿场强大致和气压成正比,但是,巴申定律只是在一定的压力范围内才比较符合实际 大约从10atm压开始,实验结果和巴申定律的分歧就逐渐明显了。压力越高分歧越大。

在大气压力下,击穿电压和电极的表面状态及材料关系不大。而在高气压下,实验表明,击穿电压和电极(主要是阴极)的表面状态有很大关系,电极表面不光洁,击穿电压将下降,分散性也大。在高气压下,电极材料对击穿电压也有影响,如不锈钢电极的击穿电压较铝制电极的要高。

在不均匀电场中,提高气压后,间隙的击穿电压也将高于标准大气压力下的数值,但在

高气压下,电场均匀程度对击穿电压的影响比在标准大气压下要显著得多,击穿电压将随电场均匀程度下降而剧烈降低,极不均匀电场中,当尖电极为正时,击穿电压随压力变化会出现极大值,即在压力较低时击穿电压随压力上升而增加,但压力超过某值后,击穿电压反而会下降,此后再随压力之增加而上升。

在高气压下,湿度对击穿电压也有很大影响。在压缩空气中湿度增加时,击穿电压明显下降,电场不均匀,下降更显著。

所以在高气压下,应尽可能改进电极形状,改善电场分布。气体要过滤,滤去尖埃及水分,如不可避免出现极不均匀电场时,应根据试验结果正确选择压力,以便取得提高气压的较大效益。

四、采用高电气强度气体

提高气压可提高击穿电压,但在气压太高时,密封比较困难,容器本身造价也较高,并且在10atm后,再继续增加气压效果不大。此外,由于压缩空气中含有氧,故在高气压下很易因击穿时的火花,引起绝缘物燃烧,可用氢、氮、二氧化碳等来代替它。近几十年来,发现许多含卤族元素的气体化合物,如六氟化硫(SF6),氟里昂(CCI2F2)等,其电气强度比空气的要高得多,这些气体称为高电气强度气休。采用这些气体以后可以大大提高气休间隙的击穿电压或大大降低工作时气体的压力,表1-2给出了几种气体的相对电气强度

表1-2                      几种气体的相对电气强度

气体名称

化学成分

气体的击穿电压和空气的击穿电压之比

二氧化碳

CO2

0.9

N2

1.0

六氟化硫

SF6

2.3~2.5

氟利昂

CCI2F2

2.4~2.6

四氯化碳蒸汽

CCI4

6.4

卤放元素具有高电气强度的原因是:它们具有很强的负电性,气体分了容易和电子结合成为负离子,从而削弱了电子的碰撞游离能力,同时又加强了复合过程。因为这些气体的分子量都比较大,分子直较大,故使得电子在其中的自由行程缩短,减小了碰撞游离的能力。

对于高电气强度气体,还应满足以下要求:①液化温度要低;②具有良好的化学稳定性;③不易腐蚀设备中的其他材料;④无毒;⑤不会爆炸,不易燃;在放电过程中也不易分解;⑦价格低廉。如四氯化碳蒸汽虽然电气强度很高,但液化温度过高,放电过程中能形成剧毒物质,故不能用作绝缘材料。

目前工程上得到采用的是六氟化硫(SF6)。SF6除了其电气强度很高以外,还具有优良的灭弧性能,故很适合用于高压电器中,而且还发展成了各种组合的电气设备。即将整套送变电设备组成一体,密封后充以SF6气体,如全封闭组合电器、气体绝缘变电所、充气输电管道等,其优点是节省占地面积,简化运行维护等。

图1-20给出SF6气体和空气、变压器油在工频电压下击穿电压的比较。由图可知,在3个大气压下SF6电气强度约和变压器油相当。

五、采用高真空

从巴中实验知:提高真空也可提高击穿电压,因在空气极为稀薄时,电子的自由行程增大,引起游离的机会减少,

在电力工程中,目前很少采用此方法,原因是难以保持真空。故只在特殊场合使用。真空也具有良好的灭弧能力(较SF6还好),所以真空开关具有特别好的性能,但因制造困难。未能广泛使用。


售后服务

2天

3年

安装调试现场免费培训

到货后2天内

2小时内

1天内

2天

20年

先维修后付款

技术参数

不支持

用心服务,尽最大努力做到客户的满意。

查看全部
发布心得活动

暂无评论,点击发布评论

电气强度测定仪信息由北京中航时代仪器设备有限公司为您提供,如您想了解更多关于电气强度测定仪报价、型号、参数等信息,欢迎来电或留言咨询。

相关产品