中压固结仪

仪器信息网中压固结仪专题为您提供2024年最新中压固结仪价格报价、厂家品牌的相关信息, 包括中压固结仪参数、型号等,不管是国产,还是进口品牌的中压固结仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中压固结仪相关的耗材配件、试剂标物,还有中压固结仪相关的最新资讯、资料,以及中压固结仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

中压固结仪相关的厂商

  • 目前是我国最大的土工实验室仪器制造企业,同时兼做公路仪器。公司主要产品有三轴仪系列、土工试验室微机数据采集处理系统、固结仪系列、剪力仪系列、击实仪系列、光电仪系列、沥青公路试验仪系列。
    留言咨询
  • 湖南聚昊科技有限公司是一家专业从事工程地基基础处理监测仪器仪表及灌浆设备的研究、开发、生产、销售和技术服务为一体的新型高科技企业。公司拥有一支专业涵盖广、研发能力强、职业素养高的科研开发队伍,结合国内施工条件和工程施工现状,经十多年研究探索,聚同类产品之精华而推出的品质卓越,性能优良的灌浆监测仪器仪表,服务于铁路、公路、水电站、水库、矿山、隧道等工程基础处理、排险领域。可满足帷幕、固结、回填、接缝、锚索、灌注桩、高喷灌浆、化学灌浆、桥梁预应力管道注浆、地质勘察、第三方压水试验检测等施工技术监测的国家技术规范标准。2017年公司荣获四川省“匠心企业”称号,并作为匠心企业代表接受四川电视台专访。 公司研制的产品包括灌浆自动记录仪、压水试验记录仪、抬动观测记录仪、土坝灌浆记录仪、化灌记录仪、高喷灌浆记录仪等各种地基基础处理仪器仪表,在国内外施工工程中发挥了重要作用,深受用户的信赖和赞扬。同时还专业销售测斜仪、灌浆泵、高速制浆机、双层搅拌桶、水压塞、高压胶管、高压阀等材料。
    留言咨询
  • 济南辰宇环保中国总服务商提供方案例分析,消毒灭菌方案制定,为国内上千家制药企业解决杀菌难题,同时服务国内上万家食品保健品生产加工企业,选择辰宇环保与国际接轨,创企业品牌,助中国制造走向世界! 奥克泰士食品消毒剂目前在国内主要用于制药、食品、饮用水生产企业生产环境杀菌消毒和设备管道的清洗。同时还涉及饮用水及饮料包装生产加工、农业种植、学校等公共场所、果蔬加工与运输、畜牧养殖与加工、水产养殖与生产等行业的杀菌应用。 奥克泰士/oxytech主要成分过氧化氢 银离子,德国进口,无色无味无残留型,是目前国际上先进的一款实验仪器设备杀菌消毒剂,由于其独特的作用原理,能够杀灭包括芽孢、细菌孢子、真菌孢子、放射菌、分支杆菌、酵母菌、霉菌、在内的所有类型的微生物。产品经过IFS国际食品标准认证,欧盟EMAS检测认证,ISO9001、ISO14001环境管理体系认证等。是一款高效广谱的杀菌消毒剂。具有杀菌彻底,不产生微生物耐药性,不造成重复污染等特点。银离子的杀菌作用是基于单价银离子通过共价键和配位键来与细菌蛋白质牢固结合,从而使细菌钝化或沉淀。能在实验室仪器设备消毒中迅速杀灭各种微生物(包括芽孢)或者抑制微生物繁殖的高效广谱的食品级进口高效杀菌剂。现已十分广泛的应用于各种实验室仪器设备消毒中。
    留言咨询

中压固结仪相关的仪器

  • 粉体和颗粒介质几乎可以在任何行业都在使用,它们作为原材料、中间产品或最终产品进行使用和加工。粉体在使用过程中可能会造成一些困难,因此,有效的质量控制和顺利的粉体加工非常重要。粉体行为特性在制造过程中可以改变,特别是当条件或环境改变时,例如粉体在气动输送过程中流态化,在储存过程中固结。当粉体特性已知时,最好对工艺条件进行修改适应,以便在加工过程中不会出现问题(例如分层)。 Anton Paar公司的两个粉体测量池(粉体流动池和粉体剪切池)为此提供了一套完整的工具,可以确定各种粉体特性和加工参数。这套工具有助于描述粉体的特性,以及预测粉体在加工、处理和储存过程中的行为。软件中提供了多种专用的粉体测量方法,大多数只需几分钟即可完成。 虽然这两个测量单元在应用和技术上有一定程度的重叠,但它们的专业领域可以根据所涉及的粉体的粘性来划分:粘性粉体在粉体剪切池中工作得更好,而自由流动状态的样品在粉体流动池中工作得更好。下图显示了不同状态粉体适用的测试方法和测量池。在本应用报告中,展示和讨论了表征粉体和颗粒介质的各种方法和相应的参数。可在Anton Paar粉体流动池进行的测试方法概述见表1,表2显示了粉体剪切池方法的概述。Anton Paar联合一些大学和研究实验室正在不断开发出更多的实验方法,最新进展可在我们网站上的科学出版物和其他应用报告中找到。表流动池的测量功能 1、动态流动测量Anton Paar模块化紧凑型流变仪系列(MCR)可配备粉体流动池和螺旋双叶测量系统,该测量系统可用于扩展粉体的动态测量和测定其运动特性。通过测量系统在粉体样品中的向上和向下运动计算动态流动特性。如基本流动能(BFE)、稳定性指数(SI)、流速指数(FRI)和比流动能(SE)。该测量方法分析了整个粉体床上粉体的动态特性。测量转子动态上下运动,从而根据粉体的阻力建立特定的流动模式。样品的流动模式取决于主要的内部和外部参数。因此,动态流动特性的测定是一种快速简便的粉体质量控制工具。动态流动测量示意图,左:测量系统在样品池中一边旋转一边上下移动,右:同时记录扭矩和法向力的数值变化总流动能通过测量扭矩的积分加上法向力(下式)计算得出,考虑了测量系统轴向和径向运动的总和,其中r为转子半径,α为螺旋桨角度,h为行程。2. 压降测量了解用于输送的起始流化和全流化的气体流速对于气动输送水泥、食品粉、粉煤灰、洗衣粉、油漆粉、塑料和金属粉很有意义。样品制备所用的气体流动速率在内聚强度测量、透气性测量和流动曲线测量中非常有用。测量一般包括两个步骤。首先,空气流量从最大值持续减小到最小值,这个过程中可以研究全流化率。在第二步中,空气流量不断增加,这个过程可以测量粉体的初始流化和全流化时的空气流动速率,以及粉体的滞后行为。为了简单起见,下图中只显示了空气流量增加的部分(红色)。通过在控制单元上执行相同的测量,考虑系统(多孔烧结玻璃、过滤器等)的影响是至关重要的。该基线(上图中的灰色线)必须从样品的测量值中减去,结果图如下图所示。测量池内的压力随着体积流量的增加而增加,因为颗粒对流态化空气产生的反压力增加。一旦达到一定的体积流量(取决于颗粒特性),就可以检测到粉体流化和曲线峰值。在这种情况下,可以在0.75l/min的流速下看到初始流化的过冲峰值,在完全流化时,观察到恒定压力信号,这意味着粉体在1l/min下完全流化。此时,颗粒之间的残余张力被消除。3. 内聚强度测量内聚强度描述了粉体流动的内部阻力,从而衡量粉体的流动性。它被定义为测量粉体颗粒之间结合力的强度。粘结强度测量速度快,重复性高,有助于预测粉体行为的质量控制工具。这种测量方法可以作为一种快速简单的质量控制工具,因为它通常具有很高的重复性,有助于区分甚至非常相似的粉体。测量由两步组成:样品制备:样品完全流态化,以重置粉体并消除残余张力和结块。必要的体积流量应事先用压降法确定。样品测量:关闭气流,测量双叶搅拌器的旋转扭矩,如下图所示。默认情况下,测量在100秒后结束。内聚强度S是用测量的扭矩值和转子的特性系数(CSS系数)计算的,因此,计算的结果是相对值。计算结果显示在公式1中扭矩值是通过对过去20个数据点的线性回归得到的(见图5)。对于CSS因子,用碳酸钙(CRM116,标准物质局)进行了校准测量。4. Warren-Spring内聚强度此方法用于测量粉体的内聚强度,特别是强粘结性的粉体(如面粉或水泥)它是基于Geldart的工作,通过使用一种叫做the Warren- Spring-Bradford测试仪的扭转装置进行研究,粉体在固结状态下测量,固结也使粉体均匀化。所得结果可用于分析粘结粉体的流动性和流动函数,该方法也可用于粉体结块的研究。此方法可用于质量控制、粉体特性表征(固结状态下的弹性、内聚强度)、流动性分析(ffc)和结块行为研究。最适用于粘性粉体,如面粉、二氧化钛或碳酸钙,但通常适用于除最自由流动的粉体外的所有粉体。测试包括两步:粉体在粉体流动池中用透气活塞固结,通过消除残余张力和颗粒之间的聚集形成均匀的粉体层。Warren-Spring转子完全插入粉体样品中,然后将粉体以0.1转/分的速度剪切,同时记录扭矩,从而产生Warren-Spring内聚强度。如果Warren-Spring转子不能完全插入样品,建议降低样品固结程度,或者只将转子插入到正常深度的一半。这也是拱起行为的一个方便指示,因为粉体内部很容易形成力链,可能导致粉体堵塞漏斗或管道。粘结性粉体比不粘结性粉体表现出更高的Warren-Spring内聚强度,如果观察到尖锐的峰值,则样品破裂迅速而强烈。另一方面,较宽的峰值表明样品的断裂缓慢。峰值位置靠后表明样品具有弹性特性或可能没有充分的固结。5. 壁摩擦测量壁摩擦力是指颗粒介质与固体之间的摩擦力,它是通过在规定的法向应力下压缩样品,并在记录扭矩和剪切应力的同时旋转圆盘来测量的。所得到的壁摩擦角是漏斗设计中的一个重要参数,目的是防止堆芯流动和实现质量流动,用于测量的圆盘可以很容易地更换,从而可以分析任何壁面材料和粉体之间的摩擦。由壁面材质制成的圆盘安装在测量杆上(如上图),用于测量每种壁面材料和粉体之间的摩擦。用预定法向载荷和0.05rpm的转速压实样品,同时记录扭矩。此测量步骤在不同的法向应力(通常为3、6和9kpa)下进行,扭矩被转换成剪切应力,将剪切应力/法向应力结果值绘制成图表(下图)。图中的红色曲线显示了标准壁面摩擦角测量值,在这种情况下,数据点(壁屈服轨迹)的回归是线性的,并通过原点。壁摩擦角是该趋势线的角度,此值在所有法向力下都是相同的(与法向力无关)。上图中的灰色曲线显示了高黏性粉体的壁摩擦角测量值,趋势线不再是线性的,也不会经过原点。在这种情况下,每个法向力对应于不同的壁摩擦角。因此,有必要估算实际应用和工艺条件下的法向力,在这些值下进行测量,以便得到正确的壁摩擦角趋势线与Y轴的截距给出粘附值,这与粉体具有足够高的粘附力以粘附在垂直壁面上具有相关性。计算出的壁摩擦角可与上图中的图表一起使用,从而得到允许质量流的漏斗角,这有助于避免出现芯流、桥接、拱起、鼠洞等筒仓排放中的问题。6. 压缩性测量压缩性是测量当施加压力或改变压力时样品所产生的相对体积变化,它描述了体积密度与外加压力的关系。压缩性受许多颗粒参数的影响,如粒径和形状、弹性、含水量和温度。尽管是一个简单的测试,它可以用来识别粉体流动的性质,例如,使用堆积密度来避免筒仓和料斗中的鼠洞和拱起。结合壁摩擦角,可以对筒仓进行优化。它也被用来研究侧壁和给料器上的负荷。其他可以分析的参数是Carr压缩指数和Hausner比。使用透气圆盘进行测量下降粉体样品制备盘,直到与样品接触。记录该位置并用于计算未固结体积密度。然后进一步降低,直到达到一定的法向应力(通常为3kPa)。法向应力进一步增加到两个更高的法向应力值(如6和9 kPa)这允许计算固结后体积密度,以及Hausner比和Carr指数。卡尔指数曲线7. 流化态黏度和剪切速率曲线使用粉体流动池,可以测量粉体非流化态、亚流化态和完全流化态下的黏度,以及与剪切速率相关的黏度曲线。这可用于阐明粉体在输送过程中可能遇到的困难,具有高剪切黏度的粉体很难通过窄间隙或弯头,因为那里的剪切速率急剧增加。对于经历不同剪切速率加工步骤的粉体(例如,通过喷嘴喷射后的气动输送),表观黏度也是有意义的。流化态粉体表观黏度的计算方法与复杂流体的完全相似,这种流变特性的估计对于流化床的流体动力学建模、粉末涂料施工性能、反应器设计、气动输送、成型填充过程都很有意义,由于自由落体中的任何粉体都是流态化的,因此它也有助于描述各种排放过程。下图显示了未改性和改性(添加气相二氧化硅)涂料粉末在不同空气流量下的黏度曲线,在未流态(上方的曲线)下,通过添加气相二氧化硅来辅助流动,如改性粉体的表观黏度降低所示。然而,在全流化态粉末的情况下(下图最下方的曲线),添加气相二氧化硅的粉末显示出略高于未改性样品的表观黏度。剪切速率扫描相关测量结果如上图所示。在非流体状态下,可以观察到规则的剪切稀化行为。在亚流化状态下,在低剪切速率下也观察到剪切稀化行为,但随后被剪切速率超过50 1/s时的剪切稠化行为所取代。在全流化状态下,在低剪切速率下可以观察到类似牛顿流体的行为,在较高的剪切速率下,会发生剪切增稠效应。提高流态化和转速会导致颗粒之间的碰撞增加,同时,颗粒之间的摩擦也会减小,这种效应被称为“干扰过渡”。剪切池的测量模式1、剪切屈服测量屈服轨迹分析是剪切测量池中最基本的分析方法。一个屈服轨迹关注样品的“固体”行为与“液体”行为的分界线。它基于Mohr-Coulomb原理,测量样品的失效平面(类似于固体样品的胡克定律)。在开始测量之前,样品被填入测量池。使用专用的填样工具可以避免操作者对测量结果的影响。第一步需要对样品施加预设的预压实,这样可以提高实验的重现性,因为预压实可以消除粉体的残余张力(粉体记忆),这一步与流化测量池中的流化步骤有类似之处。预压实的应力大小可以从样品的实际工艺中计算获得。这样可以保证实验室的测量结果与实际工艺更加接近。这也是在测试中保持湿度和温度控制的重要性。然后,在不同的载荷下进行剪切屈服测试。如下图,是在9kPa压实载荷(灰色曲线),剪切屈服载荷从小到大依次用2.7kPa、4.95kPa、7.2kPa,测量屈服应力曲线(红色曲线),得到屈服应力。通过屈服应力、稳态应力,以及对应载荷,获得下图流动函数和莫尔圆,从而计算得到内聚强度τc、张应力σt、无约束屈服应力σc、主应力σ1、内摩擦角φe、体积密度ρb。进一步通过无约束屈服应力和主应力计算得到流动函数ffc,其中ffc=σ1/σc。通过ffc的数值范围可以判断样品在此载荷下的流动特性,例如ffc大于10时,样品可自由流动,在4到10之间时,样品非常容易流动;在2-4之间时,样品具有粘性;在1到2之间时,样品具有很大的粘性;ffc小于1时,样品不能流动。2. 壁摩擦测量粉体剪切池也可以进行壁摩擦测量,配备了不锈钢、铝、PTFE材质的测量板,也可以订制配备其他用户需要的任何材质测量板。用于策略壁摩擦角和摩擦系数,用于筒仓、管道设计方面的参考。3. 压缩性测量粉体剪切池也可以进行压缩性测量,得到体积密度、卡尔指数、Hausner比等数据,及其与载荷的相关曲线。4. 时间固结测量粉体剪切池配备了时间固结台,可以选择不同载荷对样品进行长时间的固结处理,如几小时、几天,甚至几个月,此固结台单独使用,不影响流变仪正在进行的测试。5. 温度和湿度控制下的剪切测量如粉体剪切池配备了控温系统(如CTD180、CTD450、CTD600、CTD1000),就可以在控制样品温度的条件下,对样品进行剪切屈服和压缩等特性的测量,或进行程序升温或降温测试,最大温度范围可达-160℃至1000℃。如配备CTD180控温系统,则还可以选配湿度控制模块,实现5% - 95%范围内的相对湿度控制。为模拟更加真实的粉体生产、加工、使用环境提供可能。
    留言咨询
  • 中压反应釜 NR-500 | NR-1000 | NR-2000( 设计压力 Up to 25bar)该型号中压反应釜特别适用于小量及贵重物料的测试及化学反应,和物料接触部分的材质 可以选择不锈钢,哈氏合金或 PTFE,不锈钢材质还可选择带底阀的机型。根据釜体和 PTFE 内衬规格不同,容积范围为 500~2000ml。NR-500 / NR-1000 / NR-2000 高压反应釜的特点是使用便捷。釜盖和釜体采用快开夹具 紧固和密封,手动安装和拆卸,无需任何工具,密封 O 型圈可以选择 PTFE, FKM, 或 FFKM 材质等。其它选配附件材质为不锈钢或哈氏合金釜盖开口 中央开口用于安装磁耦密封轴承 温度计套管用于安装温度传感器 金属爆破片,安全限制极限压力 排气阀 两个 6mm 开口可用于安装加热制冷盘管(选配) 两个 8mm 预留口,用于连接其他应用附件 此外,釜盖上安装两个把手,方便移动釜盖 * 如果釜盖预留接口不够,可以使用 T 型转接头扩展 ** 当选用 PTFE 内衬时,极限温度为 230℃ 技术参数产品特点 功能强大的小型中压反应釜,特别适用于小量及贵重样品 反应釜材质包括不锈钢和哈氏合金,可选配 PTFE 内衬,不锈钢材质还可选择带底阀的 机型 极限耐压 25 bar,不锈钢和哈氏合金耐温 300℃ ( 带 PTFE 内衬耐温 230℃ ) 釜体釜盖采用链式快开夹具,方便拆卸 密封 O 型圈可选材质包括:Viton® , PTFE 和 Kalrez® 等 可选择电加热套,JULABO 油浴恒温夹套,或者加热制冷盘管的方式进行温度控制。 磁耦密封轴承 RV-100,保证系统的高密封性中压反应釜技术参数NR-500NR-1000NR-2000釜体 材料不锈钢或哈氏合金极限温度300℃ ( 不带 PTFE 衬套 ) / 230℃(带 PTFE 衬套)极限设计压力25 bar25 bar25 bar容积约 500 ml 约 1,000 ml 约 2,000 ml内部直径83 mm 123 mm 123 mm内部高度80 mm 156 mm 200 mm重量约 3.7 kg 约 5.7 kg 约 8.1 kg底部放料阀√√√PTFE 内衬 ** 选配选配选配选配釜盖 标准配置爆破片,温度计套管,阀门压力测量压力表(可选配压力传感器)釜盖接口(总数)777釜盖接口(预留)3* 3* 3* 接头规格8 mm 8 mm 8 mm 加热单元 油浴夹套带夹套带夹套带夹套加热制冷盘管选配选配选配搅拌单元WB20C和RV 100-SS 支架桌上式气动支架 (M1 和 M2) 电动升降支架 (M3)* 如果釜盖预留接口不够,可以使用 T 型转接头扩展** 当选用 PTFE 内衬时,极限温度为 230℃
    留言咨询
  • 中压反应釜NR-20L | NR-30L | NR-50L ( 设计压力 up to20bar )该型号中压反应釜适用于大容量测试及化学反应,和物料接触部分的材质可以选择不锈钢,哈氏合金,不锈钢材质还可选择带底阀的机型。根据釜体规格不同,容积 范围为 20L, 30L 和 50L NR-20L, NR-30L 和 NR-50L 高压反应釜特点是使用便捷。釜盖和釜体采用特殊夹具紧固和密封,手动安装和拆卸,操作简单,密封 O 型圈可以选择 PTFE, FKM, 或 FFKM 材质。其它选配附件材质为不锈钢或哈氏合金釜盖开口 中央开口用于安装磁耦密封轴承 温度计套管用于安装温度传感器 金属爆破片,安全限制极限压力 排气阀 两个 6mm 开口可用于安装加热制冷盘管(选配) 三个 8mm 预留口,用于连接其他应用附件 此外,釜盖上安装两个把手,方便移动釜盖产品特点 20L,30L or 50L / 20 bar / 200 或 250℃ 可安装底部放料阀 釜体釜盖采用特殊固定夹具,方便拆卸 密封 O 型圈可选材质包括:Viton® , PTFE 和 Kalrez® 等 可选择电加热套,JULABO 油浴恒温夹套,或者加热制冷盘管的 方式进行温度控制 磁耦密封轴承可选择 RV-400,保证系统的高密封性中压反应釜NR-20L | NR-30L | NR-50L 技术参数NR-20LNR-30LNR-50L材料不锈钢极限温度200℃ 或 250℃(根据密封材质不同)釜体极限设计压力20bar20bar20 bar容积20L 30L 50L内部直径309mm 340 mm 410 mm内部高度425 mm 470 mm 555 mm带夹套√√√底部放料阀√√√夹套极限压力3bar3bar3bar夹套容积≈5.3L≈15.8L≈20.0LO 型圈Viton√√√附件 标准配置爆破片,温度计套管,阀门压力测量压力表(可选配压力传感器)釜盖接口(总数)777釜盖接口(预留)3* 3* 3* 接头规格8 mm 8 mm 8 mm 加热单元油浴夹套带夹套带夹套带夹套磁耦轴承RV-400√√√* 根据不同密封材质,整套系统工作温度范围会有所不同
    留言咨询

中压固结仪相关的资讯

  • 使用粉体流变技术研究粉末固结的情况
    粉层发生固结的原因很多,例如运输或加工过程中的固结多数由于振动造成,此时粉体受到法向和侧向的应力。一般使用自动振实仪进行模拟,振动敲击量筒中的粉体,致使颗粒的堆积状态重排。存储过程中也会发生固结,粉体主要受到与自身重量相关的正应力。可以使用透气压头对粉体材料直接施压,模拟正应力作用引发固结来实现测试。通常使用豪斯纳比率比较堆密度和振实密度,评价粉体的流动性,计算方法如下:豪斯纳比率=振实密度/堆密度粉体流动性的等级分类如下:流动性豪斯纳比率极好1.10-1.11好1.12-1.18一般1.19-1.25尚可1.26-1.34差1.35-1.45非常差1.46-1.59不流动1.6FT4粉体流变仪™ 粉体流动性测试仪FT4粉体流变仪™ 作为通用粉体测试仪,提供自动、可靠、全面的粉体性质表征。该信息可与加工经验进行关联,提高生产效率并有助于质量控制。FT4专注于测量粉体的动态流动特性,还可提供剪切盒测试,具有密度、可压性和透气性等整体特性的测试能力,全面表征与工艺相关的粉体性能。动态测试采用独特的测量技术来确定粉体的流动阻力。特殊形状的桨叶沿着既定的路径穿越精确体积的粉体。当桨叶轴向移动和旋转时,作用于其的阻力和扭矩,组合产生总流动能值[1]。实验方法评估多个行业中使用的十种粉体,采用两种方法评估不同固结方法的影响。方法1基于粉体振实,模拟运输过程。方法2直接压缩粉体,模拟长期储存。每次测试前进行预处理,确保样品处于均质、松散的堆积状态。值得注意的是,标准的豪斯纳比率测试中,测量堆密度时不需要预处理,因此重复性容易受到操作人员的影响。方法1:进行两项测试,第一步使用螺旋桨叶测量基本流动能(BFE),如上所述。测试同时提供了粉体松散状态的密度,即预处理松装密度(CBD)。第二步使用Copley振实仪振动粉体50次,采用与BFE相同的方法测量固结能。测试还提供固结粉体的密度(BDTap50)。方法2:使用透气压头施加15kPa的正应力,并且测量体积变化百分比。所有测试均重复3次,固结指数的计算公式如下:固结指数=固结能/基本流动分别选择CBD和BDTap50作为堆密度和振实密度来计算豪斯纳比率。使用四分位距(IQR)量化数据的离散情况。IQR表示数据的中位(50%)离散。较低的IQR值说明轻微离散,样本之间的差异有限。为了确保具有一定的代表性,计算IQR前需要将数据标准化。方法1:固结指数和豪斯纳比率比较10个不同的样品,固结指数(IQR=1.0)相比豪斯纳比率(IQR=0.1)的变化更大。这说明使用豪斯纳比率来比较不同类型的材料,缺乏敏感性。根据豪斯纳比率,滑石、乳糖和面粉三种样品的流动性“一般”,玉米淀粉、微晶纤维素和氧化铝三种样品的流动性“好”,余下四种样品(水泥、马铃薯淀粉、洗衣粉1和2)的流动性“极好”。比较固结指数,乳糖、面粉、玉米淀粉和微晶纤维素四种样品对于振动或敲击都非常敏感,固结指数2。通常,比较相同固结方法的不同指标,都能达到预期的趋势,比如乳糖的豪斯纳比最高,固结指数也最大。然而也有例外,滑石的豪斯纳比相对较高,固结指数却较低。所研究的材料中,密度增量无一超过25%,然而某些样品的流动能增量却大于200%。对于乳糖等材料,堆积状态的变化使得颗粒间相互作用增加,因此颗粒形貌将主导流动行为。仅仅密度的变化不足以反应特定过程中固结材料的流动性能。方法2:固结方法的差异比较不同的固结方法,固结指数(振实)和压缩百分比(直压)的排序不同。例如滑石对直压更敏感,代表长期储存时可能发生问题,然而乳糖对振实最敏感,模拟了运输或加工过程中的振动。这些不同的响应可能是由于颗粒性能和堆积结构的变化:微细、粘性的粉体可能团聚,夹带更多的空气,因此对压缩更敏感。粗糙、不规则的颗粒能够有效堆积,因此不会受到明显的压缩,但当颗粒重排时,其形貌则抑制了流动性。也突出了使用与加工过程和暴露条件相关的方法来表征样品的必要性。结论粉体流动性不是材料的固有属性,而是粉体在特定设备中以其所需要的方式流动的能力。成功的加工需要粉体与过程的完美匹配,相同的粉体在一个加工过程中表现良好,而在另一个过程中却不佳的情况并不罕见。多元特性表征为理解粉体的行为变化提供了必要的基础,能够识别并量化任何单位操作中与加工性能最相关的粉体特性。更多信息欢迎联系应用团队。[1] Freeman R., Measuring the flow properties of consolidated, conditioned and aerated powders – A comparative study using a powder rheometer and a rotational shear cell. Powder Technology, 25-33, 174, 1-2, 2007
  • 干货 | 粉体流变仪简介
    粉体和颗粒介质几乎可以在任何行业都在使用,它们作为原材料、中间产品或最终产品进行使用和加工。粉体在使用过程中可能会造成一些困难,因此,有效的质量控制和顺利的粉体加工非常重要。粉体行为特性在制造过程中可以改变,特别是当条件或环境改变时,例如粉体在气动输送过程中流态化,在储存过程中固结。当粉体特性已知时,最好对工艺条件进行修改适应,以便在加工过程中不会出现问题(例如分层)。 Anton Paar公司的两个粉体测量池(粉体流动池和粉体剪切池)为此提供了一套完整的工具,可以确定各种粉体特性和加工参数。这套工具有助于描述粉体的特性,以及预测粉体在加工、处理和储存过程中的行为。软件中提供了多种专用的粉体测量方法,大多数只需几分钟即可完成。虽然这两个测量单元在应用和技术上有一定程度的重叠,但它们的专业领域可以根据所涉及的粉体的粘性来划分:粘性粉体在粉体剪切池中工作得更好,而自由流动状态的样品在粉体流动池中工作得更好。下图显示了不同状态粉体适用的测试方法和测量池。在本应用报告中,展示和讨论了表征粉体和颗粒介质的各种方法和相应的参数。可在Anton Paar粉体流动池进行的测试方法概述见表1,表2显示了粉体剪切池方法的概述。Anton Paar联合一些大学和研究实验室正在不断开发出更多的实验方法,最新进展可在我们网站上的科学出版物和其他应用报告中找到。流动池的测量功能1、动态流动测量Anton Paar模块化紧凑型流变仪系列(MCR)可配备粉体流动池和螺旋双叶测量系统,该测量系统可用于扩展粉体的动态测量和测定其运动特性。通过测量系统在粉体样品中的向上和向下运动计算动态流动特性。如基本流动能(BFE)、稳定性指数(SI)、流速指数(FRI)和比流动能(SE)。该测量方法分析了整个粉体床上粉体的动态特性。测量转子动态上下运动,从而根据粉体的阻力建立特定的流动模式。样品的流动模式取决于主要的内部和外部参数。因此,动态流动特性的测定是一种快速简便的粉体质量控制工具。动态流动测量示意图,左:测量系统在样品池中一边旋转一边上下移动,右:同时记录扭矩和法向力的数值变化总流动能通过测量扭矩的积分加上法向力(下式)计算得出,考虑了测量系统轴向和径向运动的总和,其中r为转子半径,α为螺旋桨角度,h为行程。2、压降测量了解用于输送的起始流化和全流化的气体流速对于气动输送水泥、食品粉、粉煤灰、洗衣粉、油漆粉、塑料和金属粉很有意义。样品制备所用的气体流动速率在内聚强度测量、透气性测量和流动曲线测量中非常有用。测量一般包括两个步骤。首先,空气流量从最大值持续减小到最小值,这个过程中可以研究全流化率。在第二步中,空气流量不断增加,这个过程可以测量粉体的初始流化和全流化时的空气流动速率,以及粉体的滞后行为。为了简单起见,下图中只显示了空气流量增加的部分(红色)。通过在控制单元上执行相同的测量,考虑系统(多孔烧结玻璃、过滤器等)的影响是至关重要的。该基线(上图中的灰色线)必须从样品的测量值中减去,结果图如下图所示。测量池内的压力随着体积流量的增加而增加,因为颗粒对流态化空气产生的反压力增加。一旦达到一定的体积流量(取决于颗粒特性),就可以检测到粉体流化和曲线峰值。在这种情况下,可以在0.75l/min的流速下看到初始流化的过冲峰值,在完全流化时,观察到恒定压力信号,这意味着粉体在1l/min下完全流化。此时,颗粒之间的残余张力被消除。3. 内聚强度测量内聚强度描述了粉体流动的内部阻力,从而衡量粉体的流动性。它被定义为测量粉体颗粒之间结合力的强度。粘结强度测量速度快,重复性高,有助于预测粉体行为的质量控制工具。这种测量方法可以作为一种快速简单的质量控制工具,因为它通常具有很高的重复性,有助于区分甚至非常相似的粉体。测量由两步组成:样品制备:样品完全流态化,以重置粉体并消除残余张力和结块。必要的体积流量应事先用压降法确定。样品测量:关闭气流,测量双叶搅拌器的旋转扭矩,如下图所示。默认情况下,测量在100秒后结束。内聚强度S是用测量的扭矩值和转子的特性系数(CSS系数)计算的,因此,计算的结果是相对值。计算结果显示在公式1中扭矩值是通过对过去20个数据点的线性回归得到的(见图5)。对于CSS因子,用碳酸钙(CRM116,标准物质局)进行了校准测量。4. Warren-Spring内聚强度此方法用于测量粉体的内聚强度,特别是强粘结性的粉体(如面粉或水泥)它是基于Geldart的工作,通过使用一种叫做the Warren- Spring-Bradford测试仪的扭转装置进行研究,粉体在固结状态下测量,固结也使粉体均匀化。所得结果可用于分析粘结粉体的流动性和流动函数,该方法也可用于粉体结块的研究。此方法可用于质量控制、粉体特性表征(固结状态下的弹性、内聚强度)、流动性分析(ffc)和结块行为研究。最适用于粘性粉体,如面粉、二氧化钛或碳酸钙,但通常适用于除最自由流动的粉体外的所有粉体。测试包括两步:粉体在粉体流动池中用透气活塞固结,通过消除残余张力和颗粒之间的聚集形成均匀的粉体层。Warren-Spring转子完全插入粉体样品中,然后将粉体以0.1转/分的速度剪切,同时记录扭矩,从而产生Warren-Spring内聚强度。如果Warren-Spring转子不能完全插入样品,建议降低样品固结程度,或者只将转子插入到正常深度的一半。这也是拱起行为的一个方便指示,因为粉体内部很容易形成力链,可能导致粉体堵塞漏斗或管道。粘结性粉体比不粘结性粉体表现出更高的Warren-Spring内聚强度,如果观察到尖锐的峰值,则样品破裂迅速而强烈。另一方面,较宽的峰值表明样品的断裂缓慢。峰值位置靠后表明样品具有弹性特性或可能没有充分的固结。5. 壁摩擦测量壁摩擦力是指颗粒介质与固体之间的摩擦力,它是通过在规定的法向应力下压缩样品,并在记录扭矩和剪切应力的同时旋转圆盘来测量的。所得到的壁摩擦角是漏斗设计中的一个重要参数,目的是防止堆芯流动和实现质量流动,用于测量的圆盘可以很容易地更换,从而可以分析任何壁面材料和粉体之间的摩擦。由壁面材质制成的圆盘安装在测量杆上(如上图),用于测量每种壁面材料和粉体之间的摩擦。用预定法向载荷和0.05rpm的转速压实样品,同时记录扭矩。此测量步骤在不同的法向应力(通常为3、6和9kpa)下进行,扭矩被转换成剪切应力,将剪切应力/法向应力结果值绘制成图表(下图)。图中的红色曲线显示了标准壁面摩擦角测量值,在这种情况下,数据点(壁屈服轨迹)的回归是线性的,并通过原点。壁摩擦角是该趋势线的角度,此值在所有法向力下都是相同的(与法向力无关)。上图中的灰色曲线显示了高黏性粉体的壁摩擦角测量值,趋势线不再是线性的,也不会经过原点。在这种情况下,每个法向力对应于不同的壁摩擦角。因此,有必要估算实际应用和工艺条件下的法向力,在这些值下进行测量,以便得到正确的壁摩擦角趋势线与Y轴的截距给出粘附值,这与粉体具有足够高的粘附力以粘附在垂直壁面上具有相关性。计算出的壁摩擦角可与上图中的图表一起使用,从而得到允许质量流的漏斗角,这有助于避免出现芯流、桥接、拱起、鼠洞等筒仓排放中的问题。6. 压缩性测量压缩性是测量当施加压力或改变压力时样品所产生的相对体积变化,它描述了体积密度与外加压力的关系。压缩性受许多颗粒参数的影响,如粒径和形状、弹性、含水量和温度。尽管是一个简单的测试,它可以用来识别粉体流动的性质,例如,使用堆积密度来避免筒仓和料斗中的鼠洞和拱起。结合壁摩擦角,可以对筒仓进行优化。它也被用来研究侧壁和给料器上的负荷。其他可以分析的参数是Carr压缩指数和Hausner比。使用透气圆盘进行测量下降粉体样品制备盘,直到与样品接触。记录该位置并用于计算未固结体积密度。然后进一步降低,直到达到一定的法向应力(通常为3kPa)。法向应力进一步增加到两个更高的法向应力值(如6和9 kPa)这允许计算固结后体积密度,以及Hausner比和Carr指数。卡尔指数曲线7. 流化态黏度和剪切速率曲线使用粉体流动池,可以测量粉体非流化态、亚流化态和完全流化态下的黏度,以及与剪切速率相关的黏度曲线。这可用于阐明粉体在输送过程中可能遇到的困难,具有高剪切黏度的粉体很难通过窄间隙或弯头,因为那里的剪切速率急剧增加。对于经历不同剪切速率加工步骤的粉体(例如,通过喷嘴喷射后的气动输送),表观黏度也是有意义的。流化态粉体表观黏度的计算方法与复杂流体的完全相似,这种流变特性的估计对于流化床的流体动力学建模、粉末涂料施工性能、反应器设计、气动输送、成型填充过程都很有意义,由于自由落体中的任何粉体都是流态化的,因此它也有助于描述各种排放过程。下图显示了未改性和改性(添加气相二氧化硅)涂料粉末在不同空气流量下的黏度曲线,在未流态(上方的曲线)下,通过添加气相二氧化硅来辅助流动,如改性粉体的表观黏度降低所示。然而,在全流化态粉末的情况下(下图最下方的曲线),添加气相二氧化硅的粉末显示出略高于未改性样品的表观黏度。剪切速率扫描相关测量结果如上图所示。在非流体状态下,可以观察到规则的剪切稀化行为。在亚流化状态下,在低剪切速率下也观察到剪切稀化行为,但随后被剪切速率超过50 1/s时的剪切稠化行为所取代。在全流化状态下,在低剪切速率下可以观察到类似牛顿流体的行为,在较高的剪切速率下,会发生剪切增稠效应。提高流态化和转速会导致颗粒之间的碰撞增加,同时,颗粒之间的摩擦也会减小,这种效应被称为“干扰过渡”。剪切池的测量模式1、剪切屈服测量屈服轨迹分析是剪切测量池中最基本的分析方法。一个屈服轨迹关注样品的“固体”行为与“液体”行为的分界线。它基于Mohr-Coulomb原理,测量样品的失效平面(类似于固体样品的胡克定律)。在开始测量之前,样品被填入测量池。使用专用的填样工具可以避免操作者对测量结果的影响。第一步需要对样品施加预设的预压实,这样可以提高实验的重现性,因为预压实可以消除粉体的残余张力(粉体记忆),这一步与流化测量池中的流化步骤有类似之处。预压实的应力大小可以从样品的实际工艺中计算获得。这样可以保证实验室的测量结果与实际工艺更加接近。这也是在测试中保持湿度和温度控制的重要性。然后,在不同的载荷下进行剪切屈服测试。如下图,是在9kPa压实载荷(灰色曲线),剪切屈服载荷从小到大依次用2.7kPa、4.95kPa、7.2kPa,测量屈服应力曲线(红色曲线),得到屈服应力。通过屈服应力、稳态应力,以及对应载荷,获得下图流动函数和莫尔圆,从而计算得到内聚强度τc、张应力σt、无约束屈服应力σc、主应力σ1、内摩擦角φe、体积密度ρb。进一步通过无约束屈服应力和主应力计算得到流动函数ffc,其中ffc=σ1/σc。通过ffc的数值范围可以判断样品在此载荷下的流动特性,例如ffc大于10时,样品可自由流动,在4到10之间时,样品非常容易流动;在2-4之间时,样品具有粘性;在1到2之间时,样品具有很大的粘性;ffc小于1时,样品不能流动。2、壁摩擦测量粉体剪切池也可以进行壁摩擦测量,配备了不锈钢、铝、PTFE材质的测量板,也可以订制配备其他用户需要的任何材质测量板。用于策略壁摩擦角和摩擦系数,用于筒仓、管道设计方面的参考。3. 压缩性测量粉体剪切池也可以进行压缩性测量,得到体积密度、卡尔指数、Hausner比等数据,及其与载荷的相关曲线。4. 时间固结测量粉体剪切池配备了时间固结台,可以选择不同载荷对样品进行长时间的固结处理,如几小时、几天,甚至几个月,此固结台单独使用,不影响流变仪正在进行的测试。5. 温度和湿度控制下的剪切测量如粉体剪切池配备了控温系统(如CTD180、CTD450、CTD600、CTD1000),就可以在控制样品温度的条件下,对样品进行剪切屈服和压缩等特性的测量,或进行程序升温或降温测试,最大温度范围可达-160℃至1000℃。如配备CTD180控温系统,则还可以选配湿度控制模块,实现5% - 95%范围内的相对湿度控制。为模拟更加真实的粉体生产、加工、使用环境提供可能。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 生物活性分子在种植体骨结合中的研究进展!
    生物活性分子在种植体骨结合中的研究进展!百欧博伟生物 良好的骨结合是人工种植体成功的关键,钛或钛合金人工种植体由于其较为理想的生物相容性和机械性能植入体内后与骨组织形成良好的骨结合而成为目前临床上应用最广的人工种植体。但钛类材料表面生物惰性的缺点不利于种植体骨结合的进一步提高,尤其对一些伴有系统性疾病如骨质疏松、糖尿病的缺牙患者,这些全身代谢性疾病使种植体周骨愈合能力下降,使种植体骨结合产生时间上的延迟或质量上的下降,导致种植体骨结合率下降。 因此,提高种植体骨结合率和初期稳定性进而提高种植体长期成功率仍是需要进一步研究的课题。其中种植体表面生物化学改性提高种植体骨结合率成为该领域近年来的研究的重要方向,方法是将生物活性分子如具有生物活性的蛋白、小分子多肽等采用一定的方式固定于种植体表面,通过其成骨诱导作用促进种植体周骨形成,提高种植体骨结合。本文就近年来应用于钛类人工种植体表面的生物化学改性方法以及几类主要生物活性分子对种植体骨结合作用及其机理的研究进展进行综述。 一、生物化学改性方法 1、物理吸附 物理吸附是在对种植体表面进行一定的粗糙处理后,将种植体浸入生物活性物质与磷酸缓冲盐溶液混合后的溶液中一段时间,使生物活性物质吸附在种植体表面。此法操作简单,对设备要求较低,但是吸附形成的作用力为静电力、范德华力或氢键,较难牢固结合在种植体表面,并且较难控制生物活性物质在种植体表面的均匀分布。 2、共价结合 生物活性物质可通过接枝分子共价结合在种植材料表面,接枝分子在种植材料表面形成自组装单分子层再与生物活性物质的某些基团共价连接,使生物活性物质稳定连接在种植材料表面。常见的接枝分子包括聚乙二醇、硅烷偶联剂、聚多巴胺、磷酸自组装单分子层等。此外,近些年人们通过噬菌体展示技术发现一些可以直接与金属钛共价结合的短肽(ATWVSPY、RKLPDAPGMHTW等)可以将某些生物活性物质(如层粘连蛋白衍生肽)连接在金属钛表面,从而对钛种植体进行表面改性。共价结合可以将生物活性分子稳定的结合在种植体表面,避免了初始爆发释放,但生物活性分子可能在共价结合的过程中发生构象的改变。 3、聚电解质多层 聚电解质多层由层层自组装技术将带相反电荷的聚电解质顺序吸附到带电表面制备而成。这种方法的特点是改变电解质沉积数量可以调控聚电解质多层的厚度,逐层组件可以将生长因子、蛋白质、遗传物质、抗体等直接集成到层中,或者可以用聚电解质预先络合各组分,然后组装成复合物。分子量大于10kDa的生物活性物质可以永久固定在聚电解质层中,随着聚电解质逐层的降解实现药物的逐渐释放。 二、钛种植体表面生物化学改性主要生物活性蛋白 1、胶原蛋白 胶原蛋白是骨组织细胞外基质中的主要成分,也是骨组织的钙化中心,可促进间充质干细胞中成骨相关基因的表达,进而诱导间充质干细胞向成骨方向分化,同时可以提高成骨细胞对骨基质的黏附。在钛片表面沉积磷酸钙和Ⅰ型胶原制备的矿化胶原涂层利于细胞伸展以及伪足的生长,可以有效促进成骨细胞的黏附及增殖。 此外,吸附有Ⅰ型胶原的钛片也更有利于促进小鼠前成骨细胞株MC3T3-E1黏附斑蛋白与护骨素基因的表达。将Ⅰ型胶原修饰的钛种植体植入SD大鼠胫骨内,HE染色发现4周后种植体周围形成的新生骨的密度要优于对照组。Ⅰ型胶原还可以参与携带药物,从而调控种植体骨结合过程。Li等通过层层自主装技术将Ⅰ型胶原和透明质酸修饰在钛纳米管表面,使管内的依诺沙星缓慢释放,抑制破骨细胞活性的同时还促进了种植体表面新生骨的形成。 2、非胶原蛋白 结合在胶原表面特定位点的非胶原蛋白,包括纤连蛋白(fibronectin)和层粘连蛋白(laminin)等在启动羟基磷灰石晶体成核、生长及调控无机相相变的过程以及促进细胞黏附、迁移和分化等过程中都发挥了至关重要的作用。越来越多的研究显示,将非胶原蛋白结合在种植体表面能够有效提高骨结合的效果。纤连蛋白能够增强对成骨细胞的粘附,进一步提升种植体表面微槽对细胞的粘附作用,加快成骨细胞的成熟,使种植体表面接触的间充质干细胞细胞呈现出成骨细胞自然成熟的多边形态。 Chang等将纤连蛋白吸附在钛种植体表面,发现其在诱导成骨细胞分化、增加骨形成量以及提升种植体初期稳定性方面较无纤连蛋白组有一定的提高。纤连蛋白上存在增强细胞活性的精氨酸-甘氨酸-天冬氨酸(arginine-glycine-asparticacid,RGD)序列和RGD协同序列(PHSRN)以及其中间一段有20个氨基酸的序列F20(PHSRNSITGTNLTPGYTITVYAVTGRGD)。 有学者推测是纤连蛋白中间的这一段活性序列在发挥促进骨结合的作用。将F20和纤连蛋白分别吸附到钛片上,发现二者对基质细胞系ST2粘附、增殖和分化能力的提升效果相似,此外还发现F20对成骨作用的促进可能与Erk信号通路有关。层粘连蛋白作为细胞与基质黏着的介质,参与调节细胞的黏附、生长和分化。 Bougas等将层粘连蛋白浸泡吸附在钛种植体表面后植入兔的股骨中,4周后发现种植体周围的骨结合程度得到明显提高。在一项层粘连蛋白对种植体骨结合作用的回顾性研究中,91%的研究都表明层粘连蛋白可以促进相关成骨相关标记物的表达和(或)种植体周围新骨形成。 3、生长因子 骨形态发生蛋白(Bone morphogenic proteins,BMP)是一组信号分子,是转化生长因子(transforming growth factor,TGF)-β超家族的成员,可以促进间充质干细胞向成骨细胞分化,促进骨缺损区新骨的形成。BMP-2修饰的脱蛋白牛无机骨块在犬牙槽嵴进行垂直覆盖提升术并同期植入种植体的第3个月时比未使用BMP-2的骨块显示出更高的骨矿化水平和更多的新骨形成量。 BMP-2缓慢均匀释放似乎有利于促进骨结合。Seo等发现在水凝胶环境中BMP-2的持续释放显著促进了钛种植体周围垂直骨的再生。Yang等利用肝素连接BMP-2与生长分化因子5(growth and differentiation factor-5,GDF-5)结合在钛片形成Ti-BMP-2-GDF-5涂层,肝素延长了BMP-2和GDF-5的半衰期,并且使其持续均匀释放30天,将MC3T3-E1细胞放置含有该涂层的表面,细胞增殖和碱性磷酸酶(alkaline phosphatase,ALP)活性显著增加,骨钙素(osteocalcin,OCN)、Ⅰ型胶原蛋白的表达也明显升高。兔体内实验显示植入兔股骨内的表面修饰有BMP-2和GDF-5的钛棒也表现出骨与种植体界面处新骨形成明显的增加。 但种植体表面的BMP-2剂量对种植体骨结合有一定的影响,高剂量的BMP-2会导致局部、暂时的骨损伤。在一项高剂量BMP-2(150μg/mL)治疗大鼠的临界大小的股骨缺损实验中,2周后观察到炎症和异常骨形成。Guillot等也发现当大剂量BMP-2(9.3μg)附着于种植体表面时,第4和第8周BMP-2修饰的种植体骨结合率都低于无BMP-2组。 TGF-β2和TGF-β3是TGF-β超家族的两个亚型,调节细胞的增殖和分化以及参与骨改建过程。在新西兰兔拔牙窝内即刻植入种植体,种植体周围增加TGF-β2以及牙髓干细胞,术后第4、8周骨涎蛋白、骨钙蛋白、Ⅰ型胶原表达水平明显提高,种植体骨结合率以及种植体周围骨小梁宽度明显增加。Kim等通过电喷涂技术将聚乳酸丙交酯(PLGA)/重组人类TGFβ2颗粒喷涂在阳极氧化钛种植体表面,种植体植入兔的胫骨第3周骨形态计量学分析发现实验组的种植体骨接触率(Bone-To-Implant Contact,BIC)和骨面积百分比明显高于未喷涂重组人TGFβ2的对照组。 血管内皮生长因子(Vascularendothelial growth factor,VEGF)可诱导成骨细胞和内皮细胞增殖,促进局部血管生成并且增加ALP的活性。Guang等将大鼠重组VEGF吸附于钛片表面,发现其可以明显促进大鼠成骨细胞的增殖,将大鼠重组VEGF修饰的钛种植体植入大鼠膝内,在第2周和第4周免疫组织化学检测发现CD31阳性和骨钙素阳性细胞的比例明显增多。 VEGF对放疗患者种植体骨结合也有一定的促进作用。将钛种植体植入经过15Gy射线辐射的兔胫骨中,在种植体中心的孔隙注射高表达BMP-2/VEGF165的慢病毒载体,第2周和第8周通过PCR分析发现Runt相关转录因子2(Runt-related transcription factor2,Runx2)、骨钙素、ALP和CD31表达水平增加,Micro-CT显示新骨形成量明显增加。 神经生长因子(nerve growth factor,NGF)是神经营养因子家族的成员,对交感和感觉神经元以及神经元嵴细胞有很强的促进作用。近年来研究发现,NGF还参与骨改建过程,对骨再生有一定的促进。将含NGF的明胶海绵应用于犬前磨牙缺损模型可以有效刺激骨的形成。在小鼠腿骨植入钛种植体区局部注射外源性NGF,可以促进小鼠股骨钛种植体植入早期的骨再生,加速早期骨胶原以及骨小梁的成熟,缩短种植体骨结合时间。但由于NGF半衰期较短,NGF多被用于种植体局部注射,用于种植体表面改性的研究还较少。 骨的改建由多种生长因子共同参与,BMP、VEGF、TGF、NGF等在促进骨生成方面有积极作用,控制生长因子在种植体表面的缓慢持续释放,增加其作用时间可以进一步促进成骨,并且多种生长因子的联合使用似乎可以取到更好的促进效果。 三、生物活性肽 生物活性蛋白因其固有的生物活性为种植体表面的生物功能化提供了选择,但是蛋白质分子存在免疫原性且缺乏良好稳定性,动物提取的蛋白也具有病原体传播和变异的风险。相比较而言,仅包含细胞结合序列的短肽可以发挥生物活性作用并能规避这些风险,具有良好应用潜能。它们易合成、纯化和存储消毒,与大分子蛋白相比具有成本效益,并且其活性不依赖于其三级结构。 下面着重于介绍4种具有促进细胞粘附、增殖和分化功能多肽或寡肽,如RGD,P-15,成骨生长肽(osteogenic growth peptide,OGP)以及胰岛素样生长因子(insulin-like growth factors-1,IGF-1)。RGD序列存在于纤连蛋白的细胞结合域,是细胞粘附所需要的最小序列,可以促进细胞的扩散粘附和增殖。 贻贝来源蛋白(mussel derived peptide,MP)是一种包含L-3,4二羟基苯丙氨酸(DOPA)结构的蛋白,可以作为接枝分子把RGD和肝素结合蛋白(heparin binding protein,HBP)固定在钛片上。Pagel等将人类骨肉瘤细胞(sarcomaosteogenic,SaOS-2)置于附着MP-RGD的钛片上培养,发现其可以促进SaOS-2黏附、生存和增殖,MP-RGD-HBP的促进作用则进一步增强。 将抗菌肽和RGD肽共同结合在钛种植体表面,不仅可以促进SaOS-2细胞的附着和扩散,同时阻止了细菌的生长。此外肽的结构也对骨结合过程也有一定影响,研究发现环状RGD相比线性RGD会引起垂直方向骨量的更明显增加,并且发现环状RGD可能是通过激活成骨细胞的黏着斑激酶(FAK),上调MARK信号通路c-fos转录阈值水平,进而促进成骨细胞的增殖。 P-15是模拟Ⅰ型胶原蛋白结合域合成的短肽(GTPGPQGIAGAGQRGVV),具有促进成骨细胞分化、增强细胞黏附、迁移和存活的功能。Fu等通过表面引发的原子转移自由基聚合(surface-initiated atom transfer radical polymerization,SI-ATRP)原位生长含酮聚合物,并通过肟化反应将P-15共价连接在钛表面。结果显示聚合物接枝P-15的实验组相比未含P-15的对照组在第6h展现出更高的细胞存活率,细胞核染色法检测24h细胞数显示共价接枝P-15的钛片吸附有更多细胞,21d茜素红S染色也显示P-15的存在增加了钙沉积。 Lutz等将P-15吸附修饰在钛棒表面并植入猪股骨中,组织形态计量学分析发现30d时相比未修饰的种植体展现出更高的BIC值。同样,将磷酸钙和P-15沉积吸附修饰的钛种植体植入成年比格犬的双侧胫骨中,1周时也呈现出比其它对照组更高的BIC值,提示P-15能够有效诱导种植体周围的骨形成。然而植入部位以及个体异质性对生物活性物质的作用可能会有一定的影响。Schmitt等对植入比格犬颌骨内的种植体中部、顶部以及顶部两侧进行骨形态计量学分析后,发现在第2d和7d,P-15修饰的钛种植体与对照组种植体周围的BIC无统计学差异,因此P-15以及其它生物活性物质在人体内对骨结合的促进作用仍需进一步验证。 成骨生长肽是由14个氨基酸组成的多肽(ALKRQGRTLYGFGG),能增强ALP活性,加速基质矿化、促进骨再生。沉淀吸附有成骨生长肽的钛片可以促进大鼠间充质干细胞的附着、增殖和成骨分化。当纤连蛋白与成骨生长肽共同附着于钛片时,成骨分化作用进一步加强。Lai等通过聚多巴胺将成骨生长肽共价连接在有钛纳米管的钛片上,在其上接种大鼠颅骨成骨细胞,相比未修饰成骨生长肽的钛片,ALP的水平明显提高,成骨相关基因表达增加。 IGF-1是一种与胰岛素结构相似的小分子肽,可作为骨骼生长的调节剂,具有促进细胞粘附的作用。Xing等将大鼠骨髓间充质干细胞接种在加载有IGF-1的明胶/壳聚糖聚电解质多层的钛种植体表面,检测发现ALP、Runx2、Ⅰ型胶原和骨钙素的mRNA的表达水平提高,细胞增殖以及基质矿化水平增加。 将IGF-1修饰的种植体植入骨质疏松模型大鼠股骨中,8周后通过亚甲蓝/品红和micro-CT观察,相比对照组,实验组新骨厚度和连续性明显增加,当IGF-1为100ng/mL时促进作用最强,为骨质疏松症患者的种植修复提供了新的策略。肽类生物活性物质克服了生物活性蛋白的诸多缺陷,降低了在体内被内源性酶降解的风险,在促进细胞的粘附,增殖和分化以及促进新骨形成增加种植体初期稳定性方面具有良好的效果,在种植体表面改性方面具有良好的应用潜力。但这些肽类生物活性物质发挥促进骨结合效果最恰当的浓度还有待进一步确定,如何使肽类活性物质在种植体表面更稳定的释放也有待进一步研究。 四、小结 生物活性分子在种植体表面的应用有助于提高种植体骨结合。这通过其促进成骨相关标记物表达,促进间充质干细胞向成骨细胞分化,增加细胞的粘附和增殖等方式证实,而且动物体内研究也表明种植体表面的生物活性分子增加了种植体周围新骨的形成,促进种植体骨结合,展示了良好的临床应用前景。目前聚电解质多层、水凝胶、纳米粒子以及微球等缓释系统的研究为生物活性物质更加稳定持久释放提供了更广阔的前景,但缓释系统在种植表面对生物活性物质的缓释效果仍需在进一步验证。 目前研究大多数都是体外或动物体内实验,由于体内影响因素较多,缺乏对其确切效果的临床证据,尚未转化为可供临床应用的产品。而且,这些生物活性分子用于种植体表面的制备方法、对种植体储存和消毒带来的难题以及体内吸收、降解等对骨形成的影响体等一系列问题尚需更多、更深入的研究来解决,尤其是大量的、严谨科学设计的体内研究有助于揭示其临床应用价值。欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!

中压固结仪相关的方案

  • 空间用VPX机箱与板框紧固结构接触热阻标准化测试思路
    针对目前国内外针对空间用VPX机箱与板卡紧固结构接触热阻测试技术和手段,分析了现有测试技术中存在的严重问题,并提出了相应解决方案。
  • 微波消解泥岩
    泥岩是指弱固结的黏土经过中等程度的后生作用(如挤压作用、脱水作用、重结晶作用和胶结作用)形成强固结的岩石。矿物成分复杂,主要由粘土矿物组成,其次为碎屑矿物、后生矿物以及铁锰质和有机质,质地松软,固结程度较页岩弱,重结晶不明显,常见类型有:钙质泥岩、铁质泥岩、硅质泥岩。常与铁质岩、硅质岩、锰质岩相伴生。泥岩具吸水、粘结、耐火等性能,可用于制砖瓦、制陶等工业。为了对其成分进行分析,采用微波消解的方法进行前处理,本方法消解迅速,酸用量少,酸雾污染小,有利于后续对痕量元素的准确快速测定。
  • 微波消解泥岩
    泥岩是指弱固结的黏土经过中等程度的后生作用(如挤压作用、脱水作用、重结晶作用和胶结作用)形成强固结的岩石。矿物成分复杂,主要由粘土矿物组成,其次为碎屑矿物、后生矿物以及铁锰质和有机质,质地松软,固结程度较页岩弱,重结晶不明显,常见类型有:钙质泥岩、铁质泥岩、硅质泥岩。常与铁质岩、硅质岩、锰质岩相伴生。泥岩具吸水、粘结、耐火等性能,可用于制砖瓦、制陶等工业。为了对其成分进行分析,采用微波消解的方法进行前处理,本方法消解迅速,酸用量少,酸雾污染小,有利于后续对痕量元素的准确快速测定。

中压固结仪相关的资料

中压固结仪相关的论坛

  • 【分享】固结仪校准规范征求意见函

    [size=5][font=楷体_GB2312]各相关单位,各位委员:[/font][font=楷体_GB2312] [/font][/size][size=5][font=楷体_GB2312][/font][/size][size=5][font=楷体_GB2312]根据全国力值、硬度计量技术委员会秘书处转发的国家质量监督检验检疫总局国质检量函[2009]393号文件通知,[/font][/size][size=5][font=楷体_GB2312]由陕西省建筑科学研究院[/font][font=楷体_GB2312]主编,西安长庆科技工程有限责任公司,南京土壤仪器厂有限公司参编制定国家制定的《固结仪校准规范》。现将《固结仪校准规范》(征求意见稿)发给贵处,请对此提出宝贵意见。请尽快将意见寄回制定单位。或与[/font][/size][size=5][font=楷体_GB2312]全国力值、硬度计量技术委员会秘书处联系。对于由于时间紧迫带给各位的不便深表歉意。 [/font][/size][align=right][size=5][font=楷体_GB2312]全国力值、硬度计量技术委员会秘书处 [/font][/size][/align][align=right][size=5][font=楷体_GB2312][/font][/size][/align][align=right][size=5][font=楷体_GB2312]2010年8月23日[/font][/size][/align]

  • 空间用VPX机箱与板框紧固结构接触热阻标准化测试思路

    空间用VPX机箱与板框紧固结构接触热阻标准化测试思路

    [b][color=#ff0000]1. 技术现状[/color][/b] 目前国内外针对空间用VPX机箱与板卡紧固结构接触热阻的测试,大多采用如图 1-1所示的测试模型。[align=center][img=,450,558]http://ng1.17img.cn/bbsfiles/images/2017/06/201706262131_01_3384_3.png[/img][/align][align=center][color=#3333ff]图 1-1 板框紧固结构接触热阻测试模型示意图[/color][/align] 接触热阻测试过程中,一般将整个测试装置放置在真空腔体内。如果需要在振动环境下进行考核,还需将放置了热阻测量装置的真空腔固定在振动台上。 测试过程中,先通过真空腔和振动台模拟出空间使用环境,然后通冷却液,并对电阻加热器通电和对压紧条加载一定的扭矩。当测量装置达到稳定状态后(真空度、振动频率、加热电流电压、温度和扭矩恒定不变),通过测量加载的电流电压以及温度值,可以按照下列公式计算出相应的接触热阻。[align=center]R=ΔT/Q[/align] 式中: R代表接触热阻、ΔT代表相应位置之间的温度差、Q代表加载的电功率。[b][color=#ff0000]2. 问题的提出[/color][/b] 以上测试模型所假设的边界条件是热阻测量装置四周绝热,即假定加热器产生的热量全部流经板框进入冷却的VPX机箱壳体而没有其它热损失。但这种假设会给实际测试带来巨大误差,这主要是因为以下三个原因: (1)加热器的一部分热量会通过加热器表面以对流和辐射形式散失掉。 (2)板框上加热器未覆盖部分表面也会以对流和辐射形式散热。 (3)测试环境的温度、湿度和气压的不同造成对流与辐射散热大小的不同。 由于以上原因,造成流经接触面的热量往往要小于所加载的电功率,如果直接采用加载的电功率进行热阻计算,所得到的热阻测试结果往往会比实际热阻小很多,加热功率越大这种误差就会越大。 尽管国内外对卡框接触热阻测试技术的研究已经开展了二十多年,但至今国内外还未建立相应的标准测试方法,主要难度在于测试过程中如何保证边界条件的一致性和消除上述的热损失。[b][color=#ff0000]3. 标准化测试关键技术[/color][/b] 为了解决卡框接触热阻测试标准化问题,需要解决以下几方面边界条件的一致性: (1)电加热器加载功率的恒定 尽管国外有文献报道采用隔热材料包裹整个测量装置,但这种被动式方法还是会带来较大散热,加热器上很大一部分热量被用来加热了隔热材料。最有效的办法是采用主动式护热技术(等温绝热技术),主动式护热技术在材料热物理性能测试技术中常被用到,如ASTM D5470、ASTM C177和GB/T 10294等,也就是距离加热器外表面一定间距加一个护热套,采用温差探测装置来控制护热套与加热器的温度始终保持一致,从而实现等温绝热,使得加热器热量无热损的只能向板框传递。 (2)真空度的恒定 真空度是接触热阻变化的一个重要变量,标准化的热阻准确测量,必须要对真空度进行精确控制。

中压固结仪相关的耗材

  • 中压玻璃柱(塑料法兰,固定柱长)
    中压玻璃柱是两端塑料法兰,耐压玻璃,外贴防爆膜中压玻璃分离柱在分离制备行业相对于普通预装柱来讲,占据了不容忽视的地位,广泛应用于制备分离的各个领域。种类齐全的填料会为玻璃分离柱提供更良好的性能展示平台,保证最大程度满足客户的需要。在原有玻璃分离柱的特性上还兼具了以下特性:■ 耐高压:允许实验过程中使用较高的流速,加快实验进程。■ 防爆性:外贴防爆膜,防止玻璃管子爆裂,对人员造成伤害以 ■ 可重复:一根柱管可多次使用,大大节约了您的成本。■ 可见性:分离带颜色复杂天然产物,您可以直观的看到分离色带■ 独特的柱头设计,提高柱效,样品分布更均匀■ 方便快捷的固体上样■ 载样量大■ 惰性材料■ 优异的流体结构法兰固定柱长玻璃层析柱无夹套带夹套内径(mm)耐压(bar)柱长(mm)柱体积(ml)货号货号151010017.7FG15100FJ15100151023040.6FG15230FJ15230151031054.8FG15310FJ15310151046081.3FG15460FJ154601510920162.5FG15920FJ15920201010031.4FG20100FJ20100201023072.2FG20230FJ20230201031097.3FG20310FJ203102010460144.4FG20460FJ204602010920288.9FG20920FJ20920251010049.1FG25100FJ251002510230112.8FG25230FJ252302510310152.1FG25310FJ253102510460225.7FG25460FJ254602510920451.4FG25920FJ259204010100125.6FG40100FJ401004010230288.9FG40230FJ402304010310389.4FG40310FJ403104010460577.8FG40460FJ4046040109201155.5FG40920FJ409205010100196.3FG50100FJ501005010230451.4FG50230FJ502305010310608.4FG50310FJ503105010460902.6FG50460FJ5046050109201805.5FG50920FJ50920
  • LPY802系列 高能量高重频脉冲Nd:YAG微加工激光器
    LPY802系列 高能量高重频脉冲Nd:YAG微加工激光器—High-energy heavy high frequency pulse Nd: YAG laser特点: 殷钢稳固结构 TEM00光 超稳定的脉冲能量 500M次灯管寿命应用: PCB电路板切割 医学支架 金刚石晶片 陶瓷切割 精密金属材料加工LPY802系列因其高脉冲能量和高能量适合于工业微加工应用。激光器的重复频率可以1KHz和2KHz,也可配置M2<1.2的TEM00光输出,能够进行接近微米级的切割。基于真正的全天候24小时工业环境中工作,LPY802适合于漏字板或者医用支架的切割、或者其他陶瓷或者金属材料的微细加工,比如不锈钢。激光头基于坚固的自支撑殷钢结构保证工业级的机械和光学的稳定性。参数:
  • 中压特制玻璃层析柱 中压特制玻璃层析柱
    产品描述: Z型系列层析柱,适用于离子交换层析,凝胶渗透层析、亲和层析。该柱设计先进,装柱简便,洗脱&ldquo 死体积&rdquo 小,具有良好的耐化学腐蚀性。是医学制药、生物化学、石油化工,化学分析等实验室必备的最佳层析工具。 产品特点: 该柱设计先进,装柱简便,洗脱&ldquo 死体积&rdquo 小,具有良好的耐化学腐蚀性。是医学制药、生物化学、石油化工,化学分析等实验室必备的最佳层析工具。 技术指标:   一、结构:主要部件&mdash &mdash 玻璃柱、顶部紧固件、下部紧固件。   筛网目数:50目-500目   操作温度:0℃-60℃   普通型最大柱压:0.15× 106帕斯卡(相当于1公斤大气压)。   加压柱柱压:5(0.15× 106)帕斯卡~8(0.15× 106)帕斯卡(相当于5-8公斤大气压)。   柱的清洗:肥皂水和洗涤剂是层析柱适宜的清洗剂。如层析柱被蛋白质沾污可用加酶洗涤剂清洗。   柱的消毒:该柱允许在120℃以下,高压消毒20分钟。 二、注意事项:   1、除氯化的碳氢化合物(二氯乙烷、三氯甲烷)。丙酮、酮类化合物、脂肪族脂和苯酚之外,其他的所有有机溶剂均可适用。   2、禁止使用浓度大于10%的氢氧化钠,10%的盐酸或5%的醋酸溶液,因上述溶液会损坏尼龙网筛。 三、提示:   如果您使用的化合物及溶液属以上注意事项中的1、2请告诉我们,以便根据您的需要,提供相应材料的层析柱。中压特制玻璃层析柱(带转换接头)柱内压力可增加5-7巴 单位:cm 金额:元 内径1.2 内径1.5 内径2.5 内径3.5 内径5.0 内径7.5 内径10 内径17.5 长度 单价 长度 单价 长度 单价 长度 单价 长度 单价 长度 单价 长度 单价 长度 单价 20 460 20 460 20 550 20 580 20 700 20 1148 20 1700 60 3850 40 490 40 500 40 580 40 630 40 740 40 1210 40 1760 100 4600 60 506 60 540 60 610 60 690 60 780 60 1330 60 1830 150 5300 100 560 100 580 100 680 100 730 100 900 100 1440 100 1920 150 580 150 620 150 720 150 810 150 1000 150 1520 150 2100
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制