量子波检测

仪器信息网量子波检测专题为您提供2024年最新量子波检测价格报价、厂家品牌的相关信息, 包括量子波检测参数、型号等,不管是国产,还是进口品牌的量子波检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合量子波检测相关的耗材配件、试剂标物,还有量子波检测相关的最新资讯、资料,以及量子波检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

量子波检测相关的厂商

  • 合肥光博量子科技有限公司公司致力于环境气象综合立体观测及相关技术咨询与服务,公司专注于用最先进的激光雷达立体探测技术、卫星遥感技术获取多维度监测数据,以预报预警为核心技术手段,构建大气污染三维实况分布及未来预测分布,为环境气象管理工作提供科学的整体解决方案。公司主营业务包括:大气气溶胶激光雷达(户外高重频型)、大气水汽-气溶胶激光雷达、环境多参数激光雷达、风雷达、温湿度廓线激光雷达等;大气环境立体走航观测车、大气立体组网观测系统;大气污染精细化监控及管理决策服务平台;卫星遥感数据产品;环境气象和污染管控综合应用分析平台;大气污染监测、治理等可定制化配套应用服务解决方案。公司坐落于美丽的合肥市高新技术开发区,依托中科院合肥技术创新工程院,坚持以技术创新成果转移转化为核心,开展工程化研发、技术转移、技术服务等工作,真正践行“用科技融入理想,让创新点缀世界”。
    留言咨询
  • 多博材料检测有限公司(Multi-Bo)是由中科院大连化物所分析仪器专家和大连理工大学材料专家组建的一家研究制造金属材料中气体检测设备的公司,办公地址坐落在辽宁省大连市,Multi-Bo(多博)创始人田先生专注于元素分析四十多年,是中国第一套氧氮氢分析仪的研发带头人。多博材料检测有限公司氧氮氢分析仪能对固体样品中的元素含量进行快速、准确的分析。根据不同的样品和不同的含量,我们可根据用户的需求提供定制化的元素分析仪。多博公司专注于无机样品中气体元素设备的研究制造,产品广泛应用在黑色金属、有色金属、磁性材料、硬质合金、电子材料、陶瓷材料行业以及高校研究机构。2016年公司应国内钛合金纯净熔炼技术规划发展需要,和俄罗斯叶卡捷琳堡金属物理所设立的合金顾问合作,为中国境内的钛合金生产企业提供瑕疵源识别服务,促进高端钛合金生产。
    留言咨询
  • 博纳检测认证有限公司隶属于博纳集团(以下简称“博纳”),始建于2003年,公司总部位于长沙高新开发区。经过16年的务实求进,砥砺前行,从最初的长沙跃泰科技有限公司发展成为一家全国化、综合性的第三方计量检测认证机构。博纳专注质量基础设施服务事业,致力于打造“服务网点覆盖全国,集计量、检验、认证、技术服务于一体”的质量管理综合解决方案及服务提供商。
    留言咨询

量子波检测相关的仪器

  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光… … SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 国仪量子X波段连续波EPR200-PlusX波段连续波电子顺磁共振波谱仪,用于检测含有未成对电子的顺磁性物质,是进行物质组成和结构分析的强有力工具,在化学、材料、物理、环境、医学等领域具有重要应用价值。 产品优势实验场景多样化可搭配原位光照系统、液氮液氦低温系统、高温系统、自动转角系统、电化学系统等,满足多场景实验需求。 灵活的的内置标样仪器内置Mn标,可精确进行定量EPR计算、g值校正计算,可拆卸的装配方式便于常规无标样测试与标样使用的任意切换。 绝对定量EPR技术未成对电子自旋绝对定量功能可用于方便、快速、直接地获取测试样品中未成对电子的自旋数目,无需使用参考样品或标准样品。 简洁易用的软件自动化软件操作,包括自动调谐、自动转角等功能。软件支持一维、二维扫描模式,满足用户各种测试应用需求。集成仪器控制软件、数据处理软件、自由基捕获数据库,测试与数据处理可同时进行。 优质的技术及售后服务专业的应用团队,随时提供专业的技术服务,定期组织高级EPR研讨班。优质的售后服务团队,24小时全天候响应,48小时内解决基础问题,无法迅速解决的问题一周内解决或提出明确解决方案。 核心优势高灵敏度高信噪比 先进的微波技术超低噪声微波产生技术结合弱信号探测技术,为谱仪高灵敏度提供保障。 自主探头设计技术谱仪探头可选配连续波高Q探头、高温探头、双模腔等。同时,基于高品质的探头设计技术,可根据使用场景,定制符合需求的探头。 优异的磁场系统超高稳定电磁体,具备精准的磁场扫描控制和过零场扫描技术,为高品质谱图提供保障。 专业的解谱服务资深技术顾问和应用工程师团队为用户提供EPR咨询服务,帮助EPR入门级客户掌握EPR谱图解析与归属。 应用领域化学领域配位化合物结构研究、催化反应、自由基检测、活性氧物种检测、化学反应动力学、小分子化学药物 环境领域环境监测如大气污染(PM2.5)、高级氧化法污水处理、过渡金属重金属、环境持久性自由基等 材料物理单晶体缺陷、磁性材料性质、半导体传导电子、太阳能电池材料、高分子性能、光纤缺陷、催化材料检测等 生物医疗抗氧化剂表征、金属酶自旋标记、活性氧(ROS)及酶活表征、职业病防护研究、核辐射应急医疗救援诊断分类、癌症放疗辐照相关研究等 食品行业农产品辐照剂量、啤酒风味保鲜期、食用油酸败检测、丙氨酸剂量计、食品饮料抗氧化性等 工业领域涂料老化研究、化妆品自由基防护系数、钻石陷阱鉴定、烟草滤嘴过滤功效、石油化工自由基质控等 可拓展的功能TR-EPR(时间分辨/瞬态)功能:将时间分辨技术与顺磁共振波谱技术相结合,可用于研究快速反应过程中的自由基或激发三重态等瞬态物质。 高温和低温变温满足石油化工领域的高温反应需求,实现原位高温EPR检测。低温至液氮温度甚至液氦温度,实现低温下弱信号原位探测,助力化学、材料领域科研探索。快速升降温满足变温测试需求。 丰富的测样结果验证某金刚石平行磁场信号 除氧后TEMPOL信号 多种自由基信号 Cu价态
    留言咨询

量子波检测相关的资讯

  • 量子扭转显微镜可视材料内电子波
    据最新一期《自然》杂志发表的研究,以色列魏茨曼科学研究所的研究人员开发了一种新型扫描探针显微镜,即量子扭转显微镜(QTM),它可以创造出新的量子材料,同时观察其电子最基本的量子性质。这项研究为量子材料的新型实验开辟了道路。  大约40年前,扫描探针显微镜的发明彻底改变了电子现象的可视化方式。尽管当今的探针可在空间的单个位置获取各种电子特性,但迄今为止扫描显微镜无法实现的是,在多个位置直接探测电子的量子力学存在,并提供对电子系统的关键量子特性的直接存取。  QTM原理涉及两层原子般薄的材料相互“扭曲”或旋转。事实证明,扭转角度是控制电子行为的最关键参数:仅将其改变十分之一度,就可将材料从奇异的超导体转变为非常规的绝缘体,但这个参数在实验中也是最难控制的。  基于独特的范德华尖端,QTM可创建原始的二维异质结,这为电子隧穿进入样品提供了大量相干干涉路径。由于在针尖和样品之间增加了一个连续扫描的扭转角,这种显微镜可沿着动量空间的一条线探测电子,类似于扫描隧道显微镜沿着真实空间的一条线探测电子。  实验演示证明了针尖的室温量子相干性,研究人员还施加了较大的局域压力,观察扭曲的双层石墨烯的低能带逐渐平坦化。  研究人员称,新工具可直接将量子电子波可视化,可观察它们在材料内部表演的量子“舞蹈”,其还为科学家提供一种新“透镜”来观察和测量量子材料的性质。  如此深入地窥探量子世界,可帮助揭示关于自然的基本真相。未来,QTM将为研究人员提供前所未有的新量子界面光谱,以及发现其中量子现象的新“眼睛”。
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 新皮米光子波能在硅半导体内传播
    美国研究人员发现了新的皮米尺度波,这种波可以在硅等半导体中传播。研究人员指出,在半导体材料中使用皮米光子波有望催生新的功能性光学器件,应用于量子技术领域,相关研究发表于最新一期《物理评论应用》杂志。最新研究由普渡大学电气和计算机工程副教授祖宾雅各布博士领导,他说:“微观这个词源于微米,1微米仅为一米的百万分之一。我们的最新研究是在比微米小得多的皮米范围内,1皮米相当于1米的一万亿分之一,在这样的尺度内,原子晶格的离散排列以惊人的方式改变了光的性质。”从激光器到探测器,材料中的光—物质相互作用是许多光子器件的核心。在过去十年中,研究在光子晶体和超材料等工程结构内光如何在纳米尺度上流动的纳米光子学,已经取得重要进展,而最新发现利用了物质内原子反应量子理论的重大进展,有望催生皮米光子学。但该领域长期存在的难题是原子晶格、其对称性及其在皮米尺度光场中所起作用之间缺少联系。为解决这个难题,理论团队开发了一个物质的麦克斯韦哈密顿框架,并与物质内光致响应的量子理论相结合。他们发现,原子晶格内出现了新的异常波,隐藏于传统的电磁波内,而且,这些光波即使在硅晶体的基本结构块(亚纳米长度尺度)内都是高度振荡的。雅各布说:“最新研究与应用于纳米光子学的经典光流处理法迥然不同,光在材料中行为的量子性质是皮米光子学现象出现的关键。”

量子波检测相关的方案

  • 微波辅助合成Ti3C2 MXene量子点用于次氯酸盐的比率荧光检测
    MXene量子点(MXene quantum dots, mqd)由于其优异的光学性能、良好的生物相容性、天然的亲水性和现成的功能化等特点,在荧光材料领域引起了广泛的关注[1-3]。mqd在许多领域都有潜在的应用,特别是在生物医学[2,4,5]、传感[6-11]、光电器件[12,13]和催化[14,15]。近年来,自荧光量子阱的首次报道以来,改进量子阱合成策略的研究越来越多。mqd的合成主要有两种方法:从本体前体的自上而下切割法和从分子前体的自下而上方法。迄今为止,获得mqd的典型方法为自上而下的方法(以Ti3C2量子点为主),包括水热/溶剂热法、超声法、球磨法、插层法和组合法[2,4,14,16 - 19]。在自顶向下合成mqd时,最常用的方法是在高浓度酸性溶液中蚀刻MAX相(“M”表示过渡金属,“A”表示- IIIA/IVA族元素,X表示C和/或N元素)后的水热法。而水热法需要6-12 h才能完成反应[2,8]。因此,开发快速、直接、方便的荧光量子点合成工艺将是该领域的一个重大突破。微波辅助合成可缩短反应时间的量子点的研究较少。次氯酸/次氯酸盐(HOCl/ClO− ),进口活性活性氧(reactive oxygen species, ROS)在生物体内起着重要的保护作用[20,21]。体内ClO− 水平异常与创伤愈合受损、癌症、关节炎、神经元变性和心血管疾病等慢性和退行性疾病的发展高度相关[22-24]。因此,快速、灵敏地检测ClO− 在环境和生活领域都具有重要意义。到目前为止,许多荧光探针都被用来检测ClO− ,因为它们具有高稳定性、高灵敏度和高选择性等优点[25-28]。与普通荧光法相比,比值荧光法可以最大限度地减少来自背景的假信号,对ClO− 的检测具有更好的灵敏度[29,30]。在用于检测ClO− 的比率荧光探针领域,仍然需要精心的设计和合成。因此,构建和制备一种简单、高效的ClO− 检测比荧光探针仍然面临着巨大的挑战。本文采用姜黄素荧光共振能量转移(FRET)技术设计了基于Ti3C2 MQDs的比例荧光探针(方案1)。首先在微波辅助照射下刻蚀MAX相5 min后合成Ti3C2 MQDs。与其他自底向上合成Ti3C2 mqd的方法相比,微波辅助合成大大缩短了反应时间。此外,微波加热更均匀,允许更快的反应和更少的副产物形成。在姜黄素存在的情况下,Ti3C2 MQDs在430 nm处的荧光发射被FRET猝灭,而姜黄素在540 nm处的荧光发射被增强。加入ClO− 后,姜黄素的酚和甲氧基被氧化成醌,在540 nm处荧光发射逐渐猝灭,在430 nm处荧光发射逐渐恢复。在365 nm紫外灯下,加入ClO− 后,溶液颜色由黄绿色变为蓝色,肉眼可见。在此基础上,设计了比例荧光和“裸眼”探针检测姜黄素和ClO− 。本工作不仅为Ti3C2 mqd的合成提供了一种新的方法,而且拓展了Ti3C2 mqd在生物和化学领域的应用环境检测。
  • 微波合成氮化碳量子点及其在测汞中的应用
    量子点(quantum dot)是准零维的纳米材料,由少量的原子所构成。量子点三维度的尺寸都在 100nm 以下,其内部电子在各方向上的运动都受到局限。由于具有显著的量子效应,它们已在众多领域中引起广泛的关注。例如生物成像、生物传感器、金属离子检测光催化等。这里我们何成了氮化碳量子点并讨论了它在汞离子检测中的应用。

量子波检测相关的资料

量子波检测相关的试剂

量子波检测相关的论坛

  • 科学家在半导体中生成新量子比特

    科技日报 2012年03月26日 星期一 本报讯 据美国物理学家组织网3月21日报道,一个国际研究团队通过单个电子获取了新类型的量子比特,使未来数据处理可包括比“0”和“1”更多的基础要素。此外,以前量子比特仅能存在于较大的真空腔中,而新量子比特可在半导体中生成出来。这代表了量子计算发展进程中一项重要的进展。相关研究报告发表在近期出版的《自然·纳米技术》杂志上。 科研人员表示,当今数据处理的基础单元是“0”和“1”比特状态。处于双通道中一条通道内的电子将沿指定的并联支路前进,每次只能通过一个电子。借助隧道耦合,电子能够在通道间来回切换,从而呈现出两种不同的状态,事实上电子会在两个轨道内同时飞起,而两种状态也将重叠。 为了编码这些状态,电子的电荷十分关键。虽然电子同样具有其他特性,但电荷才是对于量子比特来说确切需要的。从比特到量子比特的延伸能显著增加计算机的计算能力。 一个量子比特相当于具有特别状态的单个电子。科研人员可利用单个电子通过两个紧密相邻通道的轨迹进行编码。本质上,两种不同的状态是可能的:电子或者在上面的通道移动,或者在下面的通道移动,随后形成一个二进制系统。然而根据量子理论,一个粒子可同时保有多种状态,也就是说,它能够近似于同时飞跃两个通道。这些重叠的状态能形成一个广泛的数据处理字符。 为了生成具有不同状态的量子比特,研究人员允许单个的电子相互干涉,这就是所谓的阿哈罗诺夫—玻姆效应:由外加电压驱动,电子能够飞跃具有半导体性质的固体。在这一固体之中,它们的飞行轨迹先分叉,再重新结合。因此,每个电子可同时飞过两个可能的路径,当两个路径重聚在一起,就会产生干涉,例如,两束电子波会发生重叠,具有不同重叠状态的多个量子比特就会被生产出来。 通常,一束电子波会在穿过固体时同时穿越不同的路径。由于材料中的杂质,它会失去自己的相位信息,并因此失去其编码特别状态的能力。为了保持这些相位信息,研究人员培育出了高纯度的砷化镓晶体,并使用了德国波鸿鲁尔大学物理学教授安德里亚斯·维克在20年前提出的双通道法。 一个电子能通过双通道到达分叉处,而隧道耦合可使电子能同时飞跃两种不同的路径,电子波的相位也将通过耦合保持下来。同样,研究团队在电子波于分叉末端重新聚合时也使用双通道。借助这种方法,他们能够生产出具有明确状态且适合信息编码的量子比特。研究人员表示,并非所有的电子都会参与这一过程,目前参与的电子仍是一小部分,但他们已经开始尝试使用具有更高电子密度的晶体,以提升电子的参与率。(张巍巍)

  • 碳量子点如何做拉曼检测?

    不管是啥量子点,荧光都特别特别强,但是呢碳量子点做拉曼检测的文献报道还挺多的,不知道人家怎么才能测出来拉曼信号的。用显微共聚焦拉曼,532,785都试过了,全都测不出碳量子点的拉曼,求助该肿么办~~

  • 转子波峰焊机功能

    [url=http://www.f-lab.cn/solder-machines/m2m.html][b]转子波峰焊机[/b][/url],Armature Wave Solder能够简单地放置在保持固定装置中,在波峰中以适当的焊接角度旋转单元,适合所有类型的转子。我们的新[b]转子波峰机[/b]将处理高达3英寸的卡车和柴油转子.[b][url=http://www.f-lab.cn/solder-machines/m2m.html]转子波峰焊机[/url]特殊功能[/b]不需要维护,防爆,气动马达驱动焊泵,无焊接轴承(80lb-1 / 2cfm)。单开关操作,转子自动循环,自动焊接程序。转子波峰焊机控制主开关开关旋转驱动电机开关焊接喷泉加热器开关温度指示恒温器60秒可调电动定时器过滤器,调节器和量规焊接旋转速度控制[img=转子波峰焊机]http://www.f-lab.cn/Upload/solder-machines-m2m.jpg[/img]

量子波检测相关的耗材

  • 无重金属InP/ZnS量子点(HMF_InP/ZnS QDs)
    由于其激子波尔半径比Ⅱ-Ⅵ族的大,量子限域效应明显,消光系数大,发射光谱频率覆盖整个可见光范围,并延伸至近红外区域,尤其是不含有重金属元素,InP量子点在平板显示背光源、照明、生物医学标记、指纹识别,以及太阳能领域具有广泛的应用。 应用独特专有技术合成的InP/ZnS量子点具有稳定性好,荧光发射峰范围广,发光效率高,波长可调等诸多优异特性。 发射峰:500-800 nm半峰宽:50 nm量子产率:60%表面基团:十八胺(或客户指定配体)溶剂:甲苯(或客户指定溶剂)我们可根据客户需求,提供不同表面基团、溶剂、浓度、500-750nm间任一发射波长的HMF_InP/ZnS量子点。由于此款产品为定制款,标价为参考价,具体价格请联系在线客服发射峰 & 吸收峰TEM测试图
  • 检测器
    创新特点:1、由光波长测量模块、增强等离子体放电发生器模块、数字信号处理器(DSP)组成;2、增强型等离子体放电发生器模块:基于增强型等离子体放电技术专利基础这个技术核心,既维持、稳定和聚焦等离子体放电,也控制不同的检测模式;3、SePdd-DSP平台可同时检测4通道(8通道可选),先进的信号处理,模拟到数字信号的高分辨率;4、具备多种模式检测模式,可替代DID,PDID,ECD,FPD,FID和TCD检测器;5、能够使用氩,氦,氮,氧,氢和CO为载气的情况下运行;6、等离子放电室是由优质石英材料经特殊处理消除荧光后制成的,包含等离子放电体和光学测量窗 7、检测范围 ppb 到百分比.SePdd对于气相色谱应用开发是一个量子式跳跃。【产品特点】1、能够在载气是氩,氦,氮,氧,氢的载气情况下运行2、用于本底校正的差异化检测模式3、等离子体可以随时开/关,允许反应背景气流过而没有任何负面影响4、替代DID,PDID,ECD,FPD,FID和TCD检测器,多种检测模式5、ppb 到百分比检测范围6、简单而且容易和任何过程或实验室色谱集成在一起7、即插即用理念,RS-485 和USB 数字通讯8、以太网通讯端口 9、物联网
  • 合金CdS/ZnS量子点(CdS/ZnS QDs)
    光学性能对粒子尺寸的依赖性是量子点独特的和最具吸引力的功能。例如,通过控制粒子的大小,CdSe量子点的发射光波长在整个可见光范围内连续可调。然而,二元素量子点,如CdSe量子点,有两个缺点。第一,其表面缺陷形成表面陷阱态,使发光效率和稳定性降低。通过在量子点表面包附ZnS,形成Core-shell结构可以降低面缺陷,但CdSe和ZnS晶格失配,在很大程度上影响其发光效率和光学稳定性。第二,量子点的消光系数同粒子的体积成正比例关系。标记6nm(红光)CdSe量子点的物质发射光强度是2nm(绿光)量子点的三十倍,这会引起检测灵敏度的差异。不同于二元素量子点,梯度合金CdS/ZnS量子点, 在发光核和ZnS壳中加入三元合金过渡组分,因而带来了以下几个优点:1、通过调整合金元素组成控制其光学性能,制备体积一致但发光频率不同的量子点,从而降低由于应用不同颜色量子点引起的检测灵敏度上的差异;2、合金量子点晶格力度强,性能稳定;3、实现晶格的逐步过渡,有效降低量子点晶格缺陷造成的内部压力,从而使量子点具有较高的发光效率和稳定性。 发射峰:400-460 nm半峰宽:25 nm量子产率:75%表面基团:十八胺(或客户指定配体)溶剂:甲苯(或客户指定溶剂)我们可根据客户需求,提供不同表面基团、溶剂、浓度、400-460nm间任一发射波长的GA_CdS/ZnS 量子点。由于此款产品为定制款,标价为参考价,具体价格请联系在线客服发射峰 & 吸收峰TEM测试图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制