脉冲继电器

仪器信息网脉冲继电器专题为您提供2024年最新脉冲继电器价格报价、厂家品牌的相关信息, 包括脉冲继电器参数、型号等,不管是国产,还是进口品牌的脉冲继电器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脉冲继电器相关的耗材配件、试剂标物,还有脉冲继电器相关的最新资讯、资料,以及脉冲继电器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

脉冲继电器相关的厂商

  • 三菱PLC 三菱触摸屏 三菱伺服电机 三菱变频器 日开NKK开关 三菱磁粉离合器 电子手轮北京工控进步科技有限公司坐落在北京昌平区宏创科技园区内,专业于工控产品销售与系统集成优秀供应商,代理三菱、松下、台达、NKK等国际知明品牌。可以为用户提供自动化生产线设计,PLC编程、触摸屏编程等高附加值的优质服务。主营三菱PLC,三菱触摸屏 三菱变频器,日开NKK ,NKK波段开关 NKK旋转开关 NKK电子手轮开关 松下PLC 松下变频器 主营品牌产品: 三菱:三菱PLC、三菱变频器、三菱触摸屏、三菱伺服电机、三菱磁粉离合器、三菱张力控制器、三菱低压电器。 松下:松下PLC、松下变频器、松下伺服电机、松下触摸屏、神视传感器、松下继电器。 日开NKK: 日开NKK开关,NKK按钮开关,NKK旋转开关,NKK发光开关,NKK全系列600多万种类开关。 yizhi品牌电子手轮:智能抗振动脉冲发生器,无线手持式脉冲发生器等多种产品。生产进口、国产优质手摇脉冲发生器(电子手轮)厂家直销,大量现货。代理的品牌yizhi电子手轮。
    留言咨询
  • 上海元格电气科技有限公司致力于二次、多次脉冲、三次脉冲电缆故障测试仪、电缆故障定位仪、带电电缆路径仪、带电电缆识别仪、电缆刺扎器、地下管线探测仪、地下电缆探测仪等电缆故障产品厂家品牌直销。企业从创建开始,就一直坚持服务电力行业、满足客户需求和技术创新的原则,不断致力于电力系统数据采集的开拓及发展。
    留言咨询
  • 脉创(上海)实业有限公司是一家总部设在香港,在上海和江苏南京设有分部的专业进出口公司。公司的宗旨是提供优质的产品,先进的技术和满意的服务,实现达到与客户双赢的目标!为了更好的适应国内外客户的需求,公司在上海保税区内设有仓库,备有充足的货源库存,实现交通运输便捷化,交货周期最短化,满足日益竞争激烈的市脉创公司主要代理品牌  公司主要代理销售国外各类品牌机电产品。固态继电器品牌包括美国快达(Crydom)。真空泵和检漏仪包括Agilent(原美国VARIAN)压力传感器品牌包括德国凯维力科(Kavlico)。减速机品牌包括精锐减速机(APEX)编码器品牌包括SERVO-TEK,Encoder Products等。驱动控制器品牌包括Minarik等欧美品牌产品。
    留言咨询

脉冲继电器相关的仪器

  • 直销继电器测试装置产品概述:该试验台主要为试验磁保持继电器/开关的抗机械磨损能力、触点熔接、抖动;以及磁钢在快速正反换向中的动作稳定性。符合GB14048.1-2012国际要求试验。试验台系统有3大部分组成--操作控制台、负载台、稳压电源以及调压电源。技术指标:操作控制台:试验产品接线、设定控制参数、设定控制参数,由触摸屏显示、设定参数,PLC控制驱动及报警。每工位失效技术累计,并按用户设置的数判断合格予否。1.寿命测试:一次性可3只继电器同时测试。可选择单相并联三工位或三相A/B/C各相独立接入三工位进行测试。2.各工位均可测试电压范围在AC220V-300V,电流范围在5-150A的试验。3.单线圈(极性切换)或双线圈(共正、共负)可设置切换。4.线圈电压:0-60VDC可调,3A电流。3路电源控制(可满足额定电压不同的三只继电器同时测试)。5.脉冲控制:100-999毫秒可调正反脉冲,极性切换与输出均采用MOS管控制。6.时间间隔:1-99秒控制继电器工作周期。7.计数:每工位都具有动作周期、连续失效、累计失效3类计数。动作周期计数是根据试验运行实时计数。触点一旦有不导通或粘连现象系统会进行失效计数。当连续失效与累计失效达到预先设置的次数时,系统会停止试验并提醒报警。8.预警次数:当动作周期次数达到预先设置的预置次数时系统自动停止试验。设备配置:序号设备名称明细备注1测试系统柜1.IPSYS6000系统自动测试软件2.19寸标准系统柜、工业电脑、显示器3.测控系统控制单位 详细方案请联系至茂销售人员2触摸屏台达B系列3PLC台达SA2系列4接触器施耐德
    留言咨询
  • 一、设备概述:镇流器短脉冲电压测试仪是根据直流电子镇流器检测类相关标准的涵盖范围,提供电感镇流器的耐高压脉冲测试,该设备前置端子测试便捷;采用低接触阻抗镀金端子;内置真空器件。时间继电器控制通断时序,精度高。可方便全程观测脉冲持续时间。二、符合标准:镇流器短脉冲电压测试仪满足IEC61347-1、GB19510.1-2009标准附录G及图G.1的要求以及IEC61347-2-4的短脉冲测试要求,为测试镇流器输入端电压出现短周期脉冲,镇流器应能承受这些脉冲而不失效。三、主要技术参数:1、工作电压: AC 220V/50Hz ;2、负载:AC220V 3A;3、控制线圈: DC24V 50mA;4、精度:±1% ;5、真空部件: 最大连续负载电流: 20Amps; 最大工作电压: DC 60V ; 最大工作时间/最大释放时间:20us ; 6、C 容量:0.0017-0.7UF,耐压:120-2500V ; 3-67UF, 耐压:120-2500V;7、稳压: 12V-200V;8、工作温/湿度:温度20±5℃;湿度60% ;9、最大耐压: 2500Vrms;10、绝缘电阻:500MΩ;11、含DC2000V可调电源1台,200欧可调电阻1台。
    留言咨询
  • 一、设备概述:镇流器长脉冲电压测试仪是根据直流电子镇流器检测类相关标准的涵盖范围,提供电感镇流器的耐高压脉冲测试,该设备前置端子测试便捷;采用低接触阻抗镀金端子;内置真空器件。时间继电器控制通断时序,精度高。可方便全程观测脉冲持续时间。二、符合标准:满足IEC61347-1、GB19510.1-2009标准附录G及图G2的要求以及IEC61347-2-4的14章长脉冲测试要求,为测试镇流器输入端电压出现长周期脉冲,镇流器应能承受这些脉冲而不失效。三、主要技术参数:1、工作电压: AC 220V/50Hz ;2、负载:AC220V 3A;3、控制线圈: DC24V 50mA;4、精度:±1% ;5、真空部件: 最大连续负载电流:5Amps 最大工作电压:DC 60V 最大工作时间/最大释放时间:20us; 9、最大耐压: 2500Vrms ;10、绝缘电阻: 500MΩ ;11、工作温/湿度:温度20±5℃;湿度30%~60%。12、含DC60V可调电源1台,DC200V可调电源1台。
    留言咨询

脉冲继电器相关的资讯

  • 可替代继电器的RF-MEMS开关技术提高仪器可靠性
    p   11月10日,Analog Devices, Inc. (ADI)宣布在开关技术领域取得的重大突破,提供用户期盼已久的替代产品,以取代100多年前即被电子行业采用的机电继电器设计。由继电器导致的多种性能局限早在电报问世之初就已存在,ADI公司全新的RF-MEMS开关技术解决了此类局限,从而能够开发出更快速、小巧、节能、可靠的仪器仪表。随着采用该技术的产品正式发布,原始设备制造商(OEM)能够显著改进自动测试设备(ATE)以及其他仪器仪表的精确性和多功能性,以帮助客户降低测试成本和功耗,缩短产品上市时间。未来的MEMS开关系列产品将在航空航天和防务、医疗保健以及通信基础设施设备等行业内取代继电器,让这些行业的OEM能够为客户提供体积相似,但功耗和成本更低的产品。 /p p   ADI公司将MEMS开关技术真正投入商用Analog Devices, Inc. (ADI),今日宣布在开关技术领域取得的重大突破,提供用户期盼已久的替代产品,以取代100多年前即被电子行业采用的机电继电器设计。作为全新产品系列的第一代产品,与传统机电继电器相比,ADI公司的ADGM1304和ADGM1004 RF MEMS开关的体积缩小了95%,速度加快了30倍,可靠性提高了10倍,而功耗仅为原来的十分之一。 /p
  • 阿拉莫斯国家实验室创人类最强脉冲磁场(图)
    磁场既看不见也摸不着,但是其却是一股强大的力量   据国外媒体报道,洛斯阿拉莫斯国家实验室的两位科学家野茨库尔特(Yates Coulter)和迈克戈登(Mike Gordon)成功创造了在最强磁场领域的世界级记录。该国家实验室的高脉冲磁场实验室的研究小组取得了97.4特斯拉的的磁感强度,这比金属废品收购站使用的巨型电磁铁产生的磁感强度高出100倍。   在今年的8月18日(星期四),一个德国科学家组成的研究团队取得了92.5特斯拉的磁感强度值,而紧随其后,洛斯阿拉莫斯国家实验室的科学家就创造了97.4特斯拉的磁感强度。别小看这些看似数值并不是很高的磁感强度值,要知道,地球的磁感强度为0.0004特斯拉,而一个垃圾场用于吸取废旧金属的磁铁产生的磁感强度为1特斯拉,以及医疗用得核磁共振成像扫描的磁感强度为3特斯拉。在物理学中,描述磁场的强弱用磁感强度(磁感应强度)来表示,在国际单位制中,磁感应强度单位为特斯拉(T),而高斯与特斯拉换算比为,1特斯拉等于1万高斯。   能够产生极高磁感应强度的无损脉冲为科学家提供了一个前所未有的工具,这项技术可以应用于研究材料的基本属性,范围可以从金属和超导体到半导体和绝缘体。而在高磁感强度下,也为科学家提供了有关材料性能的研究方向,以及关于电子相互作用的有价值线索。随着近年来对高磁感强度领域的成就,洛斯阿拉莫斯国家实验室脉冲磁场实验室将定期为磁场研究领域的科学家提供高磁感强度的脉冲磁场,可以达到95特斯拉的水平,这同时也说明,洛斯阿拉莫斯国家实验室可以为全世界的磁场研究人员提供研究服务。   而能够将磁感应强度达到100特斯拉,是来自全世界各国磁场研究人员的共同梦想,其中包括德国、中国、法国和日本的磁场实验室,都在追逐着100特斯拉的极限目标,而洛斯阿拉莫斯国家实验室则率先将磁感强度提高至非常接近这个极限目标。   如此强大的磁铁产生的磁场,有着非常广泛的科学研究价值,同时也对相关领域的调查研究产生深远的影响,特别是在微观领域上,让科学家了解如何设计和控制材料的性质和功能。在这种类型的强磁场下,可以让研究人员仔细地调整材料的参数,实现更加完美的非损性磁场。高磁感强度的磁场可以使电子局限于纳米尺度的轨道上,从而有助于揭示材料的基本量子性质。   在阿拉莫斯国家实验室8月18日的实验中,物质凝聚态学的科学家们,高场磁体技术人员,技师以及脉冲磁铁的工程师们目睹了NHMFL-PFF高强度磁感发生器夺回世界纪录的瞬间时是多么地兴奋,而在此之前,磁场实验室的氛围是非常地窒息,科学家们都聚集在控制显示屏前,显示了创纪录前的紧张与期待感。而当迈克戈登指挥控制1.4千兆瓦发电器系统对准磁铁时,实验室中的所有目光都聚集在监控显示器上,显示了接近100特斯拉的世界级磁感强度。而其中还有一个小插曲,在实验进行之前,实验室所在在大楼根据安全协议必须是个无人区。   在实验过程中,实验室的科学家们听到了一种变形程度较低的嗡嗡声,紧随其后的是金属发出刺耳的声音信号,感觉到类似脊柱刺痛感,精确的分布式电流超过了100兆焦耳的能量。随着声音的消退,以及显示器显示磁铁的完美表现,科学家将注意转向在实验过程中的现成测量,证明磁铁已达到92.5特斯拉,这个数据对于洛斯阿拉莫斯国家实验室而言,早在五年前就已经达到了,这同时也是德国的科学家小组所取得的数据。   而在第二天的下一阶段的实验中,实验室一举达到97.4特斯拉的成就。后来,研究人员查尔斯米尔克(Charles Mielke)、尼尔哈里森(Neil Harrison)、苏珊(Susan Seestrom)和阿尔伯特(Albert Migliori)联名向吉尼斯世界纪录申请认证。
  • 脉向成功,冲出未来之脉冲氙灯介绍
    许多前沿技术都在以全新的方式使用光子。无论是在3D打印、印刷电子、光伏、碳纤维铺放、金属沉积退火等领域,通常来讲——光或热的使用在这些领域中都是关键的生产工具。激光或气体烘箱的生产系统体积大、难以使用、且很昂贵。脉冲氙灯工艺技术的出现,极好的替代传统的处理方法。脉冲氙灯系统相对于激光和传统烘箱体积更小、使用更方便,脉冲氙灯系统让生产具有较大的灵活性。现在正是技术革新的时候了。脉冲氙灯是利用贮存的电能或化学能,在极短时间内发生高强度闪光的氙灯。19世纪50年代,脉冲光源进入工业领域。脉冲氙灯一般由密封在玻璃或石英玻璃体内的两个电极组成,壳体中充以氙等惰性气体。脉冲氙灯选择优质滤紫外线石英管作为灯管材料,以高质密度电极为氙灯电极,具有负载能力强,泵浦效率高,激光光束质量好,寿命长等特点。贺利氏脉冲氙灯系统的功能: 紫外到红外光谱 高峰值功率脉冲 - 兆瓦/平方厘米 (MW) 短脉冲持续时间 - 微秒 (us) 快速重复率 - 千赫(kHz) 即时开/关循环 不升温 —— 在低温基板上进行高温处理 综合能源监测 轻松更换灯泡 集成 QRC© 反射器,以获得最佳的能量传递 高吞吐量 可堆叠的光模块允许更大的曝光区域 灵活的操作软件 易于集成到外部系统 无毒(无汞) 您要想改进工艺流程,贺利氏特种光源是您理想的合作伙伴。我们擅长于灯管设计、精确控制、波长优化、光路设计、以及智能化加热。这些都能为您量身定制系统解决方案。想要知道脉冲氙灯工艺技术如何为您的应用带来效益,欢迎联系我们的工程师,一起讨论贺利氏如何让您“脉”向成功、“冲”出未来。 应用: 快速热处理(RTP) 强脉冲光烧结 退火 分子活化 太阳光模拟 加热 杀菌等 贺利氏特种光源拥有最先进的全自动激光灯生产线,在2015年获得“英国女王企业创新奖",自动化生产流程不仅显著提高了生产率,让生产更加灵活便捷,而且还能有效改善灯管的稳定性,极大地延长了使用寿命。而且我们始终和广大客户及研究机构通力合作,不断探索提高产品性能的新方法。贺利氏特种光源携手贺利氏石英玻璃业务部闪亮登场慕尼黑上海光博会(LASER WORLD of PHOTONICS CHINA),为您带来从原材料到光源的众多惊喜!同时欢迎您来我们的展台与光博士合影,丰富的抽奖活动等着您的参与! 欢迎大家跟我们的专家当面沟通,我们在N1馆1700展位恭候您的光临!

脉冲继电器相关的方案

  • 氦质谱检漏仪密封继电器检漏
    随着科技进步, 应用于航天相关的电子元器件泄漏检测已逐步成为生产检测的重要环节之一, 电子元器件中目前应用检漏技术的主要为密封继电器, 微型密封高可靠极化继电器要求漏率小于 1×10-9 Pa m3/s.
  • 动态改变激光脉冲和电压脉冲的交替场蒸发方法用于原子探测分析
    采用立陶宛Ekspla公司的PL2201JE型千赫兹高重复频率皮秒脉冲激光器的二倍频355nm输出的激光束,聚焦后和电压脉冲交替施加在钨金属靶上,观察所产生离子的飞行时间谱特征。
  • 超短激光脉冲与透明介质相互作用
    飞秒激光具有超短脉冲和超高电场强度两个特征。它已广泛应用于物理化学反应的动力学过程分析和热效应可忽略的超精细加工。在这个过程中,飞秒激光显示出与皮秒、纳秒脉冲不同的特性,如热影响区域小、作用效果能够超过光学衍射极限、良好的空间选择性等。这些特性在许多领域有着重要的应用价值,如超精细加工、微光子器件制造、医学精密手术、高密度三维光存储等。本文针对这一领域中的一些问题进行了讨论,特别是对飞秒激光脉冲与透明介质非线性相互作用进行了初步的研究。1分别使用脉冲宽度为ps和fs量级,波长为800nm,重复频率lkHz的激光脉冲,在熔融石英中形成了单发脉冲导致的损伤位点阵列。并对单个损伤位点,使用光学显微镜和图像传感器对其形态进行了观测。分析了激光照射后沿入射光方向将出现分立的损伤结构原因。另外,发现透明介质的材料损伤阈值与聚焦条件有关系,随着数值孔径的增加,阈值能量逐渐减小。2使用不同脉冲宽度的激光照射白宝石晶体,得到不同的损伤形态。白宝石在rlS激光脉冲作用下形成的典型的“米”字形结构,这与白宝石晶体结构相对应。在2.Ips激光脉冲作用下,晶体内部产生的“十”字形损伤。fs激光脉冲聚焦到白宝石内部时,出现“一”字形结构。损伤外型与偏振方向无关,显然不同脉宽的激光照射晶体产生不同的热效应。3近红外飞秒激光在石英玻璃照射后诱导产生色心,分析认为,在近红外飞秒激光强度低于宏观破坏阈值时,纯石英玻璃中SiE’心的形成主要是由于超短脉冲激光引起的焦点区域激光能量沉积和激子自陷引起的,属于玻璃网络的本征结构改变。4采用高温熔融法制备了银掺杂的锂铝硅酸盐微晶玻璃。经近红外飞秒激光照射和热处理后,通过显微镜观察及x射线衍射分析,发现玻璃内部形成以银原子为晶核的工f204,2033Si02多晶结构微晶,晶体细小,呈乳白色,为六方晶系。呈现空间取向分布结构。飞秒激光照射部位玻璃折射率发生明显变化,出现析晶:末照射部位折射率无明显变化,仍为玻璃体。

脉冲继电器相关的资料

脉冲继电器相关的论坛

  • 【白皮书】数字信号与脉冲序列调理

    【白皮书】数字信号与脉冲序列调理

    数字信号与脉冲序列调理数字IO接口数字信号采用数字信号进行通信是计算机和外设、仪器以及其他电子设备之间最常见的通信方式,因为这是计算机工作的基本元素。任何信号,都必须转换为数字信号之后,才能输入计算机,并进行处理。数字信号流入或流出系统时,或是单个信号,或是一串脉冲,可以只经过单一端口,也可以经过多个并行端口,并行端口上每根信号线代表字符中的一个bit。计算机的数字输出信号线往往用于控制继电器,以间接控制其他设备的开关。类似地,数字输入信号线可以代表某个传感器或开关的两种状态之一,而一串脉冲序列可以指示某个设备的当前位置或瞬时速度。输入信号可能来自继电器或其他固态设备。大电流、高电压数字IO通过继电器,可控制超出计算机内部处理范围的电压或电流,但信号或状态的响应速度受限于线圈的频率响应和触点移动。同时,当电感负载由闭合切换至断开时,两端的反向自感电动势必须被抑制,可将续流二极管反接在负载两端,为脉冲电流提供通路,以释放能量。如果没有这个二极管,继电器两端的电弧会缩短自身使用寿命(见图11.01)。[img=,315,349]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514034446_4291_3859729_3.jpg!w315x349.jpg[/img]TTL和CMOS设备通常用于连接高速低压信号,例如速度或位置传感器的输出信号。但是在需要用计算机去激励继电器线圈的应用中,TTL或CMOS设备也许无法满足电压和电流需求。因此需要在TTL信号和继电器之间接入一级缓冲,以提供30V,100mA的驱动能力。 [img=,315,323]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514151811_8384_3859729_3.jpg!w315x323.jpg[/img]这种系统的一个例子是用于数字IO仪器的板卡,板载放大/衰减单元,由一个PNP晶体管、一个续流二极管和一个电阻组成(见图11.02)。为了控制标准的24V继电器,需要从外部引入24V电源。内部TTL输出高电平时,三极管导通,输出低电平(约0.7V);TTL输出低电平时,三极管进入截止区,输出被拉到24V。因为继电器线圈是感性负载,所以需要反接一个续流二极管,用于在开关切换时保护继电器。图11.03演示了高压数字输入的降压电路。这使得TTL电路可以处理高达48V的电压。高压信号接入电阻分压电路,得到衰减。选取一个阻值适当的电阻R,用于处理不同程度的高压信号。图11.04中的表格提供一些常用方案。[img=,368,288]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517039909_4386_3859729_3.jpg!w368x288.jpg[/img][img=,351,168]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517036364_4408_3859729_3.jpg!w351x168.jpg[/img]数字输入计算机处理数字输入的方法各种各样,有难有易。这一章节简要讨论软件触发,单字节读取;硬件控速,数字输入;外部触发,数字输入。数字输入的异步读取当计算机周期性的采样数字引脚时,需要使用软件触发的异步读取方式。有时,读取数字输入的速度和时机至关重要,但是采用软件触发的单字节读取方式,读取间隔很难保持稳定,尤其是当应用程序运行在多任务操作系统下的时候,例如在PC机上运行。原因是读取间隔受计算机的运行速度和其他并发任务的影响。读取间隔的不稳定可用软件定时器进行补偿,但是小于10ms的时间分辨率在PC上很难得到保证。数字输入的同步读取有些系统提供硬件控速的数字输入读取方式,用户可以设置数字输入端口的读取频率。例如,某系统能够以100kHz的频率读取16位IO口,某些系统可以达到1MHz的速度。硬件控制的读取,最大优点就是可以做到比软件快得多的速度。最后,此类设备可以在读取模拟输入的同时读取数字输入,使得模拟输入和数字输入的数据具有紧密的关联性。数字输入的外部触发读取某些外部设备以独立于数据采集系统的速率,产生以比特、字节或字为单位的数据。只有当新数据可读时才进行读数,并非以预先设置好的速率读数。因此,这些外部设备通常采用信号交换技术进行数据传输。当新的事件发生,例如外部数据就绪或门控信号输入时,外部设备在单独一根信号线上产生电平翻转。为了与这些设备交互,数据采集系统必须具备可被外部信号控制的输入锁存功能。这样,一个逻辑信号会提交到主控计算机,提示新数据准备就绪,可从锁存器中读取。举例来说,一个以此方式工作的设备,在其6根控制信号线中有一根线用来通知外部设备主机正在读取输入锁存器中的数据。这个动作使外部设备能够保持住新数据,直到本次读取完成。数字隔离由于多种原因,数字信号往往需要被隔离,比如保护系统一端免受另一端随时可能出现的高压信号的损害、使得不共地的两个设备之间正常通信或保证医学应用中用户的安全。常见的隔离方案是光耦。光耦包含一个用于发射数字信号的LED或激光二极管,和一个用于接收信号的光电二极管或光电三极管(见图11.05)。光耦体积虽小,但可以隔离500V高压,这种技术还可以用于控制并监控不共地的设备。[img=,554,221]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517178877_2957_3859729_3.jpg!w554x221.jpg[/img]脉冲序列信号调理在许多测量频率的应用中,脉冲信号被计数或与某个固定的时基单元做比较。脉冲也可作为一种数字信号,因为只有上升沿或下降沿会被计数。在很多情况下,脉冲序列甚至可能来自模拟信号源,比如电磁拾波器(magnetic pickup)。举例来说,数据采集系统中应用广泛的频率采集卡,提供4路频率输入通道,并包含2个独立的前端电路,一个用于数字信号输入,另一个用于模拟信号输入。采集卡将数字输入划分为不同逻辑状态,将模拟输入转换成一个随时间变化的纯净的数字脉冲序列。图11.06演示了原理框图:总共模拟输入和信号调理两部分。前端RC网络提供交流耦合,允许高于25Hz的信号通过。衰减比例可调的衰减器降低了波形的整体幅度,削弱了不必要的低压噪声的影响。当需要使用来自继电器闭合时的脉冲序列时,此电路单元为用户提供了软件可配置去抖时间的功能。数字电路监控着被调节的脉冲序列,保持高电平或低电平。如果没有去抖动环节,信号中额外的边沿将导致过高的、不稳定的频率读数。[img=,378,240]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517366706_1103_3859729_3.jpg!w378x240.jpg[/img]大量传感器输出调频信号,而不是调幅信号。比如用于测量转动和流体流速的传感器,通常属于这一类。光电倍增管(photomultiplier tubes)和带电粒子探测器(charged-particle detectors)常用于测量领域,并输出频率信号。原则上,这些信号也可以用AD采集,但这个方法将产生大量冗余数据,使得分析工作难以进行。直接进行频率测量效率则高得多。频率 - 电压转换数据采集系统可通过多种途径测量频率:对连续的AC信号或脉冲序列做积分,产生与频率成比例关系的DC电压,或用AD将交流电压转换成二进制的数字信号,或对数字脉冲计数。[img=,382,294]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517493299_2073_3859729_3.jpg!w382x294.jpg[/img]脉冲序列积分一种常见的用于单通道的转换技术,模块化的信号调节:对输入脉冲做积分,并输出与频率成比例的电压信号。首先, AC信号经过一系列电容耦合,滤除超低频和DC分量,此输入信号每次经过零点,比较器产生一个恒定宽度的脉冲,脉冲再经过积分电路,如低通滤波器,然后输出一个变化缓慢的信号,信号电压将正比于输入信号频率(见图11.08)。[img=,387,297]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518092778_237_3859729_3.jpg!w387x297.jpg[/img]频压转换器的响应时间比较慢,约为低通滤波器截止频率的倒数。截止频率必须远低于待测信号频率,又要足够高,以保证所需的响应时间。若待测信号频率接近于截止频率,明显的纹波将会成为一个严重的问题,如图11.09所示。[img=,379,238]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518237403_2408_3859729_3.jpg!w379x238.jpg[/img]外部电容决定了专用频压转换的IC时间常数,使得电路可测量较宽频率范围内的信号,但频率改变时,电容也必须随之改变。不幸的是,这种频压转换器在频率低于100Hz时,表现得很差,因为截止频率低于10Hz的低通滤波器需要超级电容器。数字脉冲计数另一种用于测量数字脉冲或AC耦合模拟信号频率的技术。可输出正比于输入信号频率的DC电压,类似上面提到的积分法,只不过这里的DC电压来源于DAC。前端电路将输入的模拟或数字信号转换成纯净的脉冲序列,使其在进入DAC之前,不会带有来自继电器的毛刺,高频噪声以及其他多余信号(见图11.10)。[img=,554,257]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518331462_5120_3859729_3.jpg!w554x257.jpg[/img]举例来说,一个标准的带有频率输入的数据采集卡,模拟输入通道前置低通滤波器,截止频率可设置为100kHz、300Hz或30Hz,测频范围1Hz至100kHz,信号峰峰值50mV至80V。数字输入部分直流耦合至TTL电平的施密特触发器,可测量0.001Hz至950kHz,±15VDC的信号。采集卡通常具有上拉电阻,用于继电器或开关应用。微控制器准确测量几个脉冲的周期之和,频率分辨率取决于用户可配置的最小脉冲宽度。从测得的周期数据中可换算出频率,再根据频率值,控制DAC向数据采集系统输出相应的模拟信号,信号流入DC调理电路,最后,软件再将此电压转换成频率值。这种方法可以测量幅值和频率范围很宽的信号,且响应迅速。程序可控的频率量程可以最佳匹配ADC的量程,提高测量性能。DAC输出范围±5V,用户配置的最低频率对应-5V,最高频率对应+5V。实际上,用户可任意配置频带范围,如500Hz-10kHz、59.5Hz-60.5Hz。但ADC固定为12位分辨率,不管频宽如何,-5V至+5V的电压都会被按比例划分为4096个等级,所以设置的频宽越窄,频率分辨率越高。例如1Hz的频宽划分为4096份,分辨率高达1/4096Hz(0.00244Hz),而100Hz的频宽,分辨率则降至24.41Hz。虽然不同量程下,分辨率都是固定的12位,但测量速度却有所不同。从1Hz至自定义的频率上限,电压转换时间2至4ms,最长不超过输入信号的周期。0至10kHz范围内的信号,更新速率2至4ms;0至60Hz,则需要16.6ms。随着输入量程越来越窄,例如49至51Hz,12位分辨率去处理2Hz的带宽,消耗时间越来越长,转换时间大约59ms。除了低通滤波器,内置的迟滞功能也可防止由于高频噪声导致的错误计数。去抖时间可被软件配置为0.6ms至10ms,用于处理机电设备,如开关、继电器等切换状态时会产生毛刺的设备。基于门控脉冲计数的频率测量门控脉冲计数相对于频压转换法精准度更高。门控脉冲计数法记录在指定时间内出现的脉冲个数,除以计数时间即频率值,频率误差可以低至计数时间的倒数,例如以2s作为计数时间,频率误差低至0.5Hz。许多数据采集系统包含TTL电平兼容的计数器/定时器IC,可以产生门控脉冲、测量数字输入,然而并不适用于未经调理的模拟信号。所幸多数频率输出设备可以输出TTL电平。有些产品上的一个计数器/定时器IC,包含了5个计数器/定时器,而且通常使用数据采集系统的内部晶振,或外部晶振。这些IC通常使用多个通道配合完成计数功能,每路通道都包含一个输入部分,一个门控部分和一个输出部分。最简单的计数只需使用输入部分,PC以一定的周期读取计数值并复位计数器,这种方法的不足之处是读取周期不确定,函数执行过程中突然出现的情况可能随时启动或停止计数。另外,延时函数,例如延时50ms,依赖于不精确的软件定时器。这两点原因致使计数时间较短的频率测量毫无意义,但是,这种技术足以应对计数时间超过1秒的频率测量。门控信号控制着计数时间,所以改变门控信号可以获得更高的精准度。这样,频率测量就变得与软件方面的时间问题无关。可以配置门控信号,在其高电平时才进行脉冲计数。同样的,也可以配置成在检测到一个脉冲时开始计数,检测到另一个脉冲时停止计数。这种方法的一个缺点是需要额外的计数器用于控制。但在多通道频率采集的应用中,一个计数器可以控制多个通道。例如在5个通道的系统中,4通道用于计数,1通道用于控制。计时应用计数器/定时器同样可用于需要计时/定时的应用场合。将连接至输入通道的时钟信号作为门控信号是不错的选择,当信号为高电平时,使能计数。同样的方法可用于测量两个脉冲之间的时间间隔,只需配置成在第一个脉冲到来时开始计数,下一个脉冲到来时停止计数。由于16位计数器在计数到65535时,即将发生溢出,所以以1MHz的时钟频率计数时,可测脉宽不超过65.535ms,更宽的脉冲将会导致计数器溢出,除非降低时钟频率。如需了解更多内容请关注嘉兆科技嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等,并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。

  • 时间继电器及抗干扰方法

    数字技术和相关专业的不断发展,继电保护技术也有了很大发展,如静态继电器在电力系统中的应用,其中数字式时间继电器作为基础元件,已广泛应用于各种继电保护及自动控制回路中,使被控制设备或电路的动作获得所需延时,并用以实现主保护与后备保护的选择性配合。时间继电器:(1)交流频率50Hz,额定控制电源电压AC380V及以下(2)直流额定控制电源电压DC220V及以下(3)自动控制电路中作时间控制元件,按预定的时间接通或断开电路标准:JB/T 9568特点:(1)本系列产品主要由整流稳压器、振荡/分频/计数器、电子开关、电位器及执行继电器等组成的 “元器件组合”部件和外壳等部件组成(2)本系列产品延时整定机构操作方便,并有合适的操作力。电位器旋转时手感平滑,并有适当强 度和旋转力矩。表示整定时间的刻度盘清晰、易读 数字继电器: 数字式时间继电器用于继电保护,首先用于替换电磁型和晶体管型时间继电器。它可缩短过流保护的级差,减少维护量,提高保护的动作正确率。保护了主系统及主设备的安全稳定运行。由于它具有精度高、稳定性好、整定方便、直观、改变定值无需进行校验、整定范围宽等特点,深受用户的欢迎。由此数字式时间继电器在电力系统中得到广泛应用。 但近几年,数字式时间继电器在电力系统中多次出现误动,给用户造成很大的损失。误动的原因如系统环境差、使用维护问题、产品质量问题、器件损坏、抗干扰性能差等等原因,但最难处理的问题是数字式时间继电器抗干扰性能差,本文在此针对数字式时间继电器抗干扰性能方面,提出了自己的看法,供参考。 1提高抗干扰能力方法 1.1干扰的主要来源 在电力系统运行中的继电器受到干扰主要是电磁干扰,来源有以下几种 (1)直流低压回路断开电感性负载(如接触器、中间继电器等)或电磁型电流、电压继电器触点抖动时,常会产生快速瞬变脉冲组电波; (2)高压变电所临近高压电器设备操作时产生的感应干扰; (3)移动电话、携带式步话机和相邻或附近设备发生的调频电磁波及电弧放电时产生的高频电磁辐射; (4)设备中脉冲电路、时钟回路、开关电源、收发讯机等通过空间传播的电磁能量; (5)带电荷的操作人员触及到设备的导电部件时产生放电。 1.2电磁干扰的传播方式 电磁干扰的传播方式主要有两种形式,即传导和辐射。传导是通过导线以电流或电压的形式作用在继电器上。辐射是通过空间以电磁场的形式作用于继电器上。对于数字式时间继电器主要的传导路径为电源线。因此抑制传导干扰的主要部分在数字式时间继电器的电源部分。 1.3提高抗干扰的措施 根据电磁干扰的来源和干扰方式及数字式时间继电器的工作特点,对数字式时间继电器提高抗干扰能力采用的措施主要从以下方面进行解决。 (1)电源输入端增加EMI滤波器。EMI滤波器是一种低通滤波器,由无源元件构成的多端口网络。它不仅能衰减由传导传播干扰方式引起的干扰,同时也对辐射干扰方式的干扰有显著的抑制作用。这样的滤波器对于低频(20—100kHz)特别有效。再通过选用合适的铁氧体材料铁芯,它的抑制频率范围可增大到400MHz。 由于数字式时间继电器的体积小,受结构的限制,成型的EMI滤波器一般体积较大,不适用。 而继电器工作频率不高,设计及工艺相对要求不高,同时也可降低成本,因此在电路里直接设计出EMI滤波器是非常可行的。 配件经严格筛选,可选到接近理想状态,但实际上存在偏差。 滤波器中介质电容、电感均可改变,适当变化期间的耦合,对于线路开关、接触器、执行机构,触点抖动产生的瞬变干扰能起到充分的抑制作用。 (2)数字电路抗干扰一般措施 ①时钟频率应在工作允许的条件下选用最低的;②必须对电源线,控制线去耦以防止外部干扰进入;③每个集成电路的电源与地之间要加去耦电容。要求电容的高频性能好;④在速度不快的信号线上加去耦电容。 (3)合理设计印刷电路板①印刷板上的电源与地线要呈“井”字形布线,以均衡电流,降低线路电阻;②布线时高、低压线分开,交、直流分开;③输入、输出线不要紧靠时钟发生器、电源线等电磁热线,不要紧靠复位线、控制线等脆弱信号线;④相邻板间交叉布线;⑤尽量减少电源线走线的有效包围面积,这样可以减少电磁耦合;⑥相邻层布线应互相垂直;⑦走线不要有分支,以防导致反射和产生谐波;⑧正确接入旁路电容。数字电路在工作时,电流突变较大,会产生很强噪声信号,应按图4在电源线上正确接入旁路电容;⑨接地点集中。 (4)合理配线①输入电源线与地线应尽量短;②板与板间的连线或接插件连线应尽量短。且线与线间分开;③配线时,电源线与触点引出线应分开;④正、负电源线应互相绞合,以降低共模干扰。 (5)采用新工艺①采用贴装技术采用表面贴装装封技术,可以显著减少由于器件的引线较长而产生的杂散寄生电容、电感,简化了屏蔽的设计,所以在很大程度上减少了电磁干扰和射频干扰。②采用多层线路板从2层印制电路板改为4层印制电路板,可大大改善发射和抗扰度性能。

  • 在线脉冲清灰电脑控制仪

    在线脉冲清灰电脑控制仪

    SXC系列化产品:SXC-8A(在线脉冲)、SXC-8B(离线脉冲和气箱脉冲)、SXC-8C(反吹风)等,是我厂2004年开发的新产品,适用于各类袋式除尘系统的电脑控制仪。从2005年起将全面替代原有AL-8和SXC-1型及部分PLC程控柜老产品。中小除尘系统用的SXC型电脑控制仪,其中央控制单元选用美国microchip公司生产的新PIC单片机,充分发挥了它的物美价廉的软硬件资源;电源选用强抗干扰的开关型净化电源、电路进行了优秀的简化设计;中央控制单元与输出用光电隔离器,输出选用超大功率输出管(15A)或固态继电器,以大马拉小车来确保工作的高可靠性,从而实现了上述的四大特点。大除尘系统用的SXC型电脑控制仪,是PIC单片机、PLC、固态传感器三者的电子数字集成系统,与单独的单片机或PLC相比,具有功能更强、操作更灵活、可靠性更高,而且价格比PLC大幅度下降,是我厂开发的又一高新技术产品。8A1-8为1~8路(门)输出,8A1-16为1~16路(门),8A1-128为128路(门)。1、脉冲电磁阀阀数选择:1~8、9~16、17~40、40~128门四种(具体数字由用户订货时提出);2、每门输出功率:DC24V / 1.5A (一个电磁阀的电流为0.6~0.8A,需AC220V或110V输出请用户订货时提出);3、脉冲宽度: 0.01~0.25秒±0.001(出厂时已设置在通用值0.08秒); 4、脉冲间隔: 1~255秒±0.01(出厂时已设置为10秒)5、脉冲周期(循环间隔): 0~255分钟±1秒(出厂时已设置在0分) 上述三个时间设定范围,可根据用户特殊要求修改软件而确定。6、定时/ 定差压(或本地/远程)两种清灰控制方式任选(出厂时已设置为定时)。7、交流输入电源电压允许大范围波动:AC160~260V。[img=,200,126]http://ng1.17img.cn/bbsfiles/images/2017/05/201705051209_01_3163882_3.jpg[/img]

脉冲继电器相关的耗材

  • HS5670B型脉冲积分声级计
    HS5670B型脉冲积分声级计 计检定规程》和IEC61627《声级计》标准对1级声级计要求。可广泛用于种种机器、车辆、船舶、电器等工业噪声测量和环境噪声测量,适用于工厂企业、环境保护、劳动卫生、交通、教学、科研等部门的声测试领域。 二. 主要技术指标及功能: 1、声级测量范围(以2× 10-5Pa为参考): 1) 25dB~135dB(A);  2) 35dB~135dB(C);  3) 45dB~135dB(Lin)。 2、频率计权:A、C计权及线性; 3、频率范围:20Hz&mdash 20kHz; 4、时间计权:F(快)、S(慢)、最大值保持; 5、自动测量功能:Leq、LAE、SD、Lmin、L95、L90、L50、L10、L5、Lmax、1/3及1/1频谱分析(外接滤波器)、混响时间T60、Lepn有效感觉噪声级(通讯软件)等数组,自动采集存储打印; 6、测量时间选择与时钟:Man(人工定时)、10S,1、5 、10、20、30 min、1、8、24h及时钟:年、月、日、时、分、秒; 7、输出接口:RS232C、交流、直流端口并设有外接电源输入插孔; 8、显示:40mm× 70mm大屏幕液晶数显4位LCD,分辨率0.1dB。 三. 其它: 1、选购附件:校准器(980元/台)、延伸电缆(5m317元/10m 565元/15m 717 元)、三脚架和专用AC(45元/只)附件; 2、尺  寸:310mm× 85mm× 70mm 重量:680g; 3、基本配置:HS5670B型精密脉冲声级计(主机)、专用电缆、程序软盘、风罩、钟表起子、携带箱;
  • HS5661+精密脉冲数字声级计
    HS5661+精密脉冲数字声级计 产品介绍概述 HS5661+型精密数字声级计是一种袖珍式、高精度的高声级声学测量仪器,由于采用了先进的数字检波技术,使得仪器的稳定性、可靠性大大提高。 本噪声测试仪器具有动态范围大、操作方便、用途广等特点。外壳采用ABS工程塑料,外形美观。重量轻,便于携带;电池供电,功耗小;可接RS232数字输出接口,可以和计算机进行远程遥控遥测,也可多台声级计组网,用计算机控制同时进行测量。 本仪器可以广泛用于各种机器、车辆、船舶、电器等工业噪声测量和环境噪声测量,适用于工厂企业、环境保护、劳动卫生、教学、科研等领域。 主要技术性能 1 传声器:Ф12.7mm(1/2&Prime )测试电容传声器 2 频率计权:A计权、C计权、Z计权 3 时间计权:快(F)、慢(S)、脉冲(I) 4 检波器特性:真有效值、峰值因数&ge 10 5 仪器精度:符合IEC61672或GB3785 1型 6 量程控制:手动,分三档,线性范围 60dB。 7 量程范围: 25dB ~ 80dB 40dB ~ 100dB 60dB ~ 120dB 80dB ~ 140dB 8 显示:大屏幕动态液晶显示,瞬时声级,具有模拟电表显示。 9 输出接口:交流输出、RS-232接口 10 校准:使用1型声级校准器或活塞发声器。 11 电源:内部用LR6(5#)碱性电池,可连续工作24小时。外接电源6V100mA。 12 外形尺寸:l× b× h(mm):230× 72× 30 13 质量: 300g(连电池) 14 使用条件: -10℃~ 50℃ 交流输出和RS232C输出的使用 从声级计右方交流输出插座可输出交流(AC)信号,供观察信号波形或信号处理使用。交流输出的最大幅度为± 1.5V(峰值),输出阻抗为600&Omega ,当有外接设备时要求外接设备的输入阻抗最好大于50k&Omega 。声级计的RS232C接口,通过它可以进行远程遥控遥测,每秒钟输出一个瞬时值、它的波特率为9600 ,8位数据,1位停止位。
  • 激光脉冲选通系统
    高重复频率(10KHz、20KHz、50KHz、100KHz)激光脉冲选通系统高速激光脉冲选通系统专门为再生激光放大种子注入和脉冲提取而设计,也适合激光脉冲拾取/斩波、锁模脉冲选通、Q开关和倒腔应用。该高速激光脉冲选通系统适合腔内和腔外两种应用,脉冲上升时间和下降时间短至3ns, 它提供了可靠、全固态、高电压开关设计和优良的电光普克尔盒方案。高速激光脉冲选通系统利用高速HV MOSFET开关电路和普克尔盒技术,提供了4种重复频率/电压范围,它使用方便,寿命长,可靠性强,无噪音。高速激光脉冲选通系统高压MOSFET开关模块比较适合RTP电光调制器在550&mdash 2000nm范围内的半波电压,也适合BBO电光调制器在200-532nm上的电压需求。用户只需要旋转控制器面板上的旋钮,就能使得系统在全部电压范围上工作---从小于四分之一电压到半波电压而损失其效率或改变上升和下降时间。与该高速激光脉冲选通系统相配备的电光调Q模块主要有两种:一种是1147型RTP普克尔盒,另一种是1150系列BBO普克尔盒。这两种普克尔和的资料在普克尔和专栏中给出。高速激光脉冲选通系统参数:光谱范围:200-2200nm最大输出脉冲@PRF: 10KHz, 20Khz, 50KHz, 100KHz上升时间:3-4ns光学脉宽:10ns-1ns输入输出脉冲延迟:50ns-1000ns输出脉冲抖动:1ns更多高速激光脉冲选通系统,激光脉冲选通系统,脉冲选通系统内容请浏览:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制