扫描荧光仪

仪器信息网扫描荧光仪专题为您提供2024年最新扫描荧光仪价格报价、厂家品牌的相关信息, 包括扫描荧光仪参数、型号等,不管是国产,还是进口品牌的扫描荧光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合扫描荧光仪相关的耗材配件、试剂标物,还有扫描荧光仪相关的最新资讯、资料,以及扫描荧光仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

扫描荧光仪相关的厂商

  • 留言咨询
  • 留言咨询
  • 荷兰MILabs是全球顶尖级临床前成像影像设备公司,可提供四种临床前分子影像设备:&bull SPECT - 单光子发射计算机断层扫描&bull PET - 正电子发射断层扫描&bull CT - X射线电子计算机断层扫描&bull Optical - 活体光学成像(生物发光、荧光发光、科伦切夫)针对每种成像模式,MILabs都有最好的解决方案。SPECT成像早已成为业界的金标杆。单次扫描即可完成四种模态(SPECT/PET/CT/Optical)同时成像。MILabs突破性成像系统,已获得多项国际创新和科学奖项,例如Frost & Sullivan ,The Society of Nuclear Medicine & World Moleculer Imaging Society。每年,MILabs 都会大力投资软件和硬件升级等新技术,以确保MILabs 的客户能够不断扩展其前言研究。MILabs 致力于通过市场上最好的成像解决方案来支持科学和医学界,MILabs的目标只有一个:促进和开展诊断和治疗诊断的最佳研究。https://www.milabs.com芮徕(上海)实验仪器有限公司是MILabs的专业授权代理商,具有专业的高水平团队,专业的技术团队背靠MILabs公司的大力支持,提供24小时的支持服务和售后维修的快速服务能力。https://www.covilla.com
    留言咨询

扫描荧光仪相关的仪器

  • 研究级荧光数字切片全景扫描仪 型 号: FLS-PRO4 产品概述 FLS-PRO4研究级数字切片全景扫描仪搭载磁悬浮电动扫描平台,使用LogiScanner扫描软件,可实现一键式操作,自动对焦、自动扫描,图像质量优异。FLS-PRO4具有每批次全自动扫描多片荧光组织切片的功能,可应用于形态学教学、临床诊断、科学研究及AI人工智能领域等。 应用领域可用于免疫荧光、荧光原位杂交(FISH)、循环肿瘤细胞检测(CTC)、结核杆菌筛查、真菌、支原体、微生物、叶绿体等科研与临床样品的形态学分析、病理分析,及微生物、动植物观察与研究。 系统参数自动扫片数量:≥4片物镜 20X/40X荧光专用物镜荧光通道:多通道可选图像分辨率 0.29 um / pixel扫描时间 90 秒 (15 mm * 15 mm)对焦方式 自动 / 手工扫描模式 标准 / Z-Stack预览相机 200万像素扫描相机 500万像素光源 金属卤化物灯 / 汞灯 / LED 推荐工作站配置CPU Intel Core i9内存 DDR4 16G硬盘 7200rpm 1TB显示器 24寸 研究级荧光数字切片全景扫描仪 型 号: FLS-PRO4 产品概述 FLS-PRO8研究级荧光数字切片全景扫描仪搭载磁悬浮电动扫描平台,使用LogiScanner扫描软件,可实现一键式操作,自动对焦、自动扫描,图像质量优异。FLS-PRO8具有每批次全自动扫描8片荧光组织切片的功能,可应用于形态学教学、临床诊断、科学研究及AI人工智能领域等。 应用领域可用于免疫荧光、荧光原位杂交(FISH)、循环肿瘤细胞检测(CTC)、结核杆菌筛查、真菌、支原体、微生物、叶绿体等科研与临床样品的形态学分析、病理分析,及微生物、动植物观察与研究。自动扫片数量:≥8片物镜 20X/40X荧光专用物镜荧光通道:多通道可选图像分辨率 0.29 um / pixel扫描时间 90 秒 (15 mm * 15 mm)对焦方式 自动 / 手工扫描模式 标准 / Z-Stack预览相机 200万像素扫描相机 500万像素光源 金属卤化物灯 / 汞灯 / LED 推荐工作站配置CPU Intel Core i9内存 DDR4 16G硬盘 7200rpm 1TB显示器 24寸
    留言咨询
  • 产品概述FLS-PRO8研究级荧光数字切片全景扫描仪搭载磁悬浮电动扫描平台,使用LogiScanner扫描软件,可实现一键式操作,自动对焦、自动扫描,图像质量优异。FLS-PRO8具有每批次全自动扫描8片荧光组织切片的功能,可应用于形态学教学、临床诊断、科学研究及AI人工智能领域等。应用领域可用于免疫荧光、荧光原位杂交(FISH)、循环肿瘤细胞检测(CTC)、结核杆菌筛查、真菌、支原体、微生物、叶绿体等科研与临床样品的形态学分析、病理分析,及微生物、动植物观察与研究。系统参数自动扫片数量:≥8片物镜:20X/40X荧光专用物镜荧光通道:多通道可选图像分辨率:0.29 um/pixel扫描时间:90 秒 (15 mm * 15 mm)对焦方式:自动/手工扫描模式:标准/Z-Stack预览相机:200万像素扫描相机:500万像素光源:金属卤化物灯/汞灯/LED推荐工作站配置CPU:Intel Core i9内存:DDR4 16G硬盘:7200rpm1TB显示器:24寸
    留言咨询
  • 科研产品,不能用于临床德国专业酶标仪生产商BMG LABTECH公司于2013年5月份推出CLARIOstar全波长荧光扫描酶标仪,创新性采用了Tandem专利技术+线性渐变滤光片(LVF)光栅技术,突破了传统滤光片酶标仪不能进行荧光全光谱扫描以及传统光栅型酶标仪带宽窄及带宽不灵活的各种缺点,特别是线性渐变滤光片(LVF)光栅的卓越光学性能,让CLARIOstar全波长荧光扫描酶标仪在荧光全波长扫描时也具备与滤光片相当的灵敏度。同时,超快速全波长光度计和激光AlphaScreen功能,更是大大扩展了仪器的性能。CLARIOstar全波长荧光扫描酶标仪的推出,吹响了多功能酶标仪性能全面革新的号角。CLARIOstar全波长荧光扫描酶标仪是模块化的,同时拥有单色器,分光计和滤光片的高端多功能酶标仪。拥有多达8种检测模式,包括荧光强度,FRET,荧光偏振,化学发光,BRET,UV/Vix吸收光,时间分辨荧光,TR-FRET,和AlphaScreen /AphaLISA。CLARIOstar全波长荧光扫描酶标仪特点 超速分光计(1 sec/well)全光谱UV/Vis吸收(220 to 1000 nm) ;AlphaScreen/AlphaLISA检测,高能激光;用于动力学和细胞检测的试剂注射器;内置集成荧光基团数据库更方便用户开发应用; 高端LVF单色器&滤光片选择系统 完美的检测和开发荧光检测方法,CLARIOstar全波长荧光扫描酶标仪拥有一种高端单色器可以灵活的与滤光片结合使用,大大提高灵敏度。该单色器可连续调整激发和发射的波长 (320 - 850 nm)和带宽(8 to 100 nm) ,相比较于传统光栅,性能显著提高。 CLARIOstar典型应用: l 荧光偏振蛋白结合分析l 膜流动性测定l 色氨酸本征荧光测量l 细胞活力/凋亡分析l 细胞迁移分析l 抗氧化力/ORAC分析l 受体研究,如GPCRl 荧光素酶报告基因分析l 酶活/NADH分析和酶动力学l DNA/RNA/蛋白紫外定量l 胞内NADH/NADPH监测l DNA和Bradford蛋白定量(Elisa)l 凝集分析,如Thioflavin Tl PARP抑制剂评估l 线粒体膜电位分析l 报告基因分析,GFP,YFP等l ORAC,氧耗和ROS测定l 蛋白-蛋白相互作用分析l 亲合力测定l 基因分型及报告基因分析l 分子结合分析l 配体研究l 蛋白磷酸化分析(Alpha技术)l TR-FRET分析(HTRF等)l 细胞分析l G-蛋白受体分析(GPCR) 技术参数 检测模式荧光强度 FRETUV/Vis 吸光度荧光偏振AlphaScreen/AlphaLISA化学发光BRET时间分辨荧光-包括 TR-FRET测量模式顶读和底读终点和动力学检测连续多发射检测连续多激发检测光谱扫描[荧光,化学发光和吸收光]比率检测孔扫描微孔板类型6-1536孔板,用户自定义16个微量孔(2ul)的LVis板光源高强度闪烁氙灯AlphaScreen/AlphaLISA专用的固体激光光源检测器低噪音PMT吸收分光计双LVF单色器荧光顶读与底读化学发光顶读与底读荧光激发/发射光谱扫描化学发光发射光谱扫描光谱范围:320-850nm[0.1-10nm递进]带宽:8-100nm线性变量分色镜光谱范围:340-740nm[0.1nm递进]UV/Vis吸收光分光计 光谱扫描或8个不连续波长扫描低于1秒/孔光谱范围:220-1000nm[可选递增:1-10nm]带宽:3nm光学滤光片除了吸收光,所有检测模式都可以顶读和底读4个激发滤光片,4个发射滤光片,3个分色镜光谱范围:230-900nm灵敏度荧光强度顶读:0.5pM荧光素 10 amol/well,384sv,20uLLVF单色器底读:3.0pM荧光素 150 amol/well,384,50uL荧光强度顶读:0.4pM荧光素 8amol/well,384sv,20uL滤光片底读:1.0pM荧光素 50 amol/well,384,50uLFP0.7 mP SD 在 1 nM荧光素384sv,20uLTRF40fM铕 0.8 amol/well ,384sv,20uLHTRF黑色和白色微孔板HTRF认证读板控制试剂盒(Eu),18小时孵育,384sv,20ulHigh Calibrator 880% Delta FLow Calibrator 30% Delta F Standard 0 2.0%CVLUM0.4pM ATP,8 amol/well ,384sv,20uL动态范围:7 decadesAlphaScreen100 amol/well P-Tyr-100,384sv,20uLABS(分光计)准确度: 1% (2 OD)精度: 0.5% (1 OD) , 0.8%( 2 OD )OD范围: 0 - 4 OD读板时间1个闪光:8 s (96) 15 s (384) 28 s (1536)10个闪光:19s (96) 57 s (384) 184 s (1536)试剂注射2个内置试剂进样器单个进样器每个孔加样体积 (3- 350 µ L)可变加样速度-420 µ L / s试剂返回冲洗振荡线性、圆周和双圆周,用户可自定义振荡速度和幅度孵育室温+3°C 到+ 45°C或65°C(选配)软件整合荧光文库Multi-user Reader Control 和 MARS 数据分析软件MARS数据分析软件,符合FDA 21 CFR Part 11尺寸宽:45cm;长:51cm;高:40cm;重量:32 kg配件LVis 板16样品低体积检测板及QC标准Stacker最多可自动进样50块微孔板,连续载板
    留言咨询

扫描荧光仪相关的资讯

  • 内源差示扫描荧光技术如何应用到多功能蛋白质稳定性分析
    内源差示扫描荧光技术如何应用到多功能蛋白质稳定性分析北京佰司特贸易有限责任公司蛋白质是生物体中广泛存在的一类生物大分子,具有特定立体结构的和生物活性以及诸多功能,根据这些功能我们可以将其应用于蛋白质的分子设计、蛋白质功能的改造、疾病的基因治疗以及新型耐抗药性药物的开发与设计甚至是发现生物进化的规律等先进科研领域上。因此,蛋白质具有非常重要的研究价值。进行蛋白质性质和功能研究的前提是获得稳定的蛋白质样品,而由于蛋白质自身性质的复杂性,难以保证获得的蛋白质样品是否具有正确的三维结构以及功能,因此急需一种技术手段或设备,对蛋白质的稳定性进行分析,确定获得蛋白质最ZUI适宜的缓冲液条件、蛋白质的长期储存稳定性等。另外在进行蛋白质-配体小分子相互作用研究时,因为需要筛选的小分子配体数量巨大,因此也急需一种技术手段或设备,可以高通量的对配体结合进行筛选。蛋白中的色氨酸和酪氨酸可以被280 nm的紫外光激发并释放出荧光,其荧光性质与所处的微环境密切相关。蛋白变性过程中,色氨酸从疏水的蛋白内部逐渐暴露到溶剂中,荧光释放的峰值也从330 nm逐渐转移到350 nm。内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光(350 nm/330 nm比值)的改变,获得蛋白的热稳定性(Tm值)、化学稳定性(Cm值)等参数。相比传统的方法,无需添加染料,通量高,样品用量少,数据精度高。 多功能蛋白质稳定性分析仪PSA-16是一款无需加入荧光染料、高通量、低样品消耗量检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变形剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。基于内源差示扫描荧光技术(intrinsic fluorescence DSF),在无需添加外源染料的条件下,对蛋白进行升温变性,通过内源荧光和散射光的变化与三级结构变化的关系,PSA-16可用于测定不同buffer中蛋白的Tm值变化,获得蛋白质正确折叠的最ZUI优buffer条件;测定不同detergent条件下膜蛋白Tm值,进行detergent筛选;测定不同添加剂对蛋白稳定性的影响;测定添加配体后Tm值变化进行配体结合筛选;测定蛋白中变性部分的比例,进行质量控制;测定蛋白Tm值与浓度的相关性,获得最ZUI优蛋白浓度进行后续结晶等实验;测定蛋白去折叠过程,进行蛋白复性条件筛选;测定蛋白folding enthalpy,研究蛋白的长期稳定性;测定不同批次和存储后的蛋白的稳定性,并进行相似性评分,对蛋白进行质量控制。多功能蛋白质稳定性分析仪PSA-16,无需对蛋白进行荧光标记,可以直接测定蛋白在不同缓冲液条件中的Tm值,进行缓冲液筛选和优化;同时还可以测定添加不同配体化合物对蛋白稳定性的影响,通过Tm值变化进行配体结合筛选。PSA-16满足我们目前对于蛋白质稳定性分析的迫切需求。多功能蛋白质稳定性分析仪PSA-16可用于评估蛋白(抗体或疫苗)热稳定性、化学稳定性、颗粒稳定性等特性,实现非标记条件下的高通量的抗体制剂筛选、分子结构相似性鉴定、物理稳定性、长期稳定性、质量控制、折叠和再折叠动力学研究等功能。★ 蛋白热稳定性分析★ 蛋白化学稳定性分析★ 蛋白等温稳定性分析★ 蛋白颗粒稳定性分析★ 免标记热迁移实验(dye-free TSA)★ 蛋白去折叠、再折叠、结构相似性分析★ 蛋白质量控制分析 多功能蛋白质稳定性分析仪PSA-16基于内源差示扫描荧光(ifDSF)技术,广泛应用于蛋白质稳定性研究、蛋白质类大分子药物(抗体)优化工程、蛋白质类疾病靶点的药物小分子筛选和结合力测定等领域,具有快速、准确、高通量等诸多优点。蛋白质中色氨酸/酪氨酸的荧光性质与它们所处的环境息息相关,因此可以通过检测蛋白内部色氨酸/酪氨酸在加热或者添加变性剂过程中的荧光变化,测定蛋白质的化学和热稳定性。PSA-16采用紫外双波长检测技术,可精准测定蛋白质去折叠过程中色氨酸和酪氨酸荧光的变化,获得蛋白的Tm值和Cm值等数据;测定时无需额外添加染料,不受缓冲液条件的限制且测试的蛋白质样品浓度范围非常广(10 µ g/ml - 250 mg/ml),因此可广泛用于去垢剂环境中的膜蛋白和高浓度抗体制剂的稳定性研究。此外,PSA-16具有非常高的数据采集速度,从而可提供超高分辨率的数据。同时PSA-16一次最多可同时测定16个样品,通量高;每个样品仅需要15 uL,样品用量少,非常适合进行高通量筛选。PSA-16操作简单,使用后无需清洗,几乎无维护成本。★ 非标记测试★ 10分钟内完成16个样品的分析★ 仅需10μL样品,浓度范围0.005mg/ml—200mg/ml★ 15-110℃温控范围,升温速率0.1-7℃/min★ 适用于任意种类的蛋白分子★ 无需清洗和维护★ 可增配机械手臂实现全自动工作 性能参数:★ 直接检测蛋白质内源紫外荧光,测定时无需额外添加染料,不限制蛋白缓冲液。★ 可同时测定16个样品。★ 样品管材质:高纯度石英管,8联排设计,可使用多通道移液器批量上样,亦可单管使用。★ 样品体积:15 μL/样品。★ 样品浓度范围:0.01 mg/mL–250 mg/mL。★ 温控范围:15-110℃可选。★ 升温速度范围:0.1-15℃/分钟可调。★ 温控精度:+ 0.2℃。★ 采样频率:1 HZ,1/60 HZ可选。★ 应用范围:热稳定性实验、化学稳定性实验、等温稳定性实验、温度循环实验、TSA实验。★ 软件具备比对功能,可通过热变性曲线对蛋白进行相似性评分。★ 测定参数:Tm、Ton、Cm、ΔG、Similarity。★ Tm测定精度:0.5% CV。★ 仪器使用时无需预热及预平衡,实验完成后无需清理,无后续维护费用。★ 一体机,可以通过触摸屏进行试验设置,实时采集数据和显示数据,生成详细的结果报告。应用领域:多功能蛋白质稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白质稳定性分析系统在各学科的研究中都有基础性意义。 1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 国内首张!“荧光玻片自动扫描成像系统”取得医疗器械注册证
    近日,由中科院苏州医工所研发的“荧光玻片自动扫描成像系统”在天津国科医工科技发展有限公司成功获得天津市药品监督管理局颁发的二类医疗器械注册证(注册证编号:津械注准20222220401),为国内第一张宽场超分辨病理显微成像的二类医疗器械注册证。该产品用于医疗机构进行病理切片的显微图像扫描拍摄,辅助医生进行临床诊断。 此次获批的荧光玻片自动扫描成像系统(型号:BIO-SIM1.1)属于科技部“十三五”国家重点研发计划“数字诊疗装备”重点专项“随机光学重建/结构光照明复合显微成像系统研制”项目的研究成果。该项目由苏州医工所医用光学技术研究室李辉研究员及其团队负责研发工作,在天津国科进行医疗器械产品注册。项目也于近日顺利通过了科技部中国生物技术发展中心组织的项目综合绩效评价。 BIO-SIM1.1系统将具有快速超分辨成像能力的结构光照明显微成像技术应用到病理切片样本的观测成像中,有效解决了视场小、分辨率低、成像速度慢等问题,通过对上百例的荧光原位杂交(FISH)分子病理切片的观测成像,证明其对Her-2、MDM2等基因扩增探针和需要精确间距测量的基因易位探针的成像具有优势,有助于提高对软组织和淋巴肿瘤等重大疑难疾病诊断的准确性。 苏州医工所医用光学室以超分辨光学显微成像核心器件和系统为重点发展方向,研发了大数值孔径物镜等核心器件,以及共聚焦显微镜、STED超分辨显微镜、结构光照明超分辨显微镜等高端光学显微成像仪器,与国内相关企业和应用单位联合共同推进高端光学显微成像设备的国产化进程。
  • 无需机械扫描即可获得图像 科学家研发新荧光显微镜
    新显微镜艺术图 图片来源:日本德岛大学在最近发表在《科学进展》上的一项研究中,科学家开发了一种不需要机械扫描就能获得荧光寿命图像的新方法。荧光显微镜广泛用于生物化学和生命科学,因为它允许科学家直接观察细胞及其内部和周围的某些化合物。荧光分子能吸收特定波长范围内的光,然后在较长的波长范围内重新发射。然而,传统荧光显微技术的主要局限性是其结果难以定量评价,而且荧光强度受实验条件和荧光物质浓度的显著影响。现在,日本科学家的这项新研究将彻底改变荧光寿命显微镜领域。该方法的主要支柱之一是使用光学频率梳作为样品的激发光。一个光学频率梳本质上是一个光信号,是许多离散的光学频率的和,它们之间的间隔是恒定的。在这里,“梳子”指的是信号与光频率的关系:从光频率轴上升起密集且等距“尖刺”,类似于梳子。利用专用的光学设备,将一对激发频率梳信号分解为具有不同强度调制频率的单个光拍信号(双梳光拍),每个光拍携带单个调制频率,辐照到目标样品上。这里的关键是,每束光束都在一个不同的空间位置击中样本,在样本二维表面的每个点和双梳光拍的每个调制频率之间形成一一对应的关系。由于其荧光特性,样品能重新发射部分捕获的辐射,同时仍然保持上述频率—位置对应关系。然后,样品发出的荧光被简单地聚焦在高速单点光电探测器上。最后,研究人员用数学方法将测量信号转换为频域信号,根据调制频率处的激发信号与测量信号之间存在的相对相位延迟,很容易计算出每个像素处的荧光寿命。新方法除了提供对生物过程的更深入的了解外,这种新方法还可以用于多个样本的同时成像,用于抗原检测,并有望开发出新的治疗方法来治疗顽固性疾病,提高预期寿命,从而造福全人类。相关论文信息:http://dx.doi.org/10.1126/sciadv.abd2102

扫描荧光仪相关的方案

扫描荧光仪相关的资料

扫描荧光仪相关的论坛

  • 荧光芯片扫描仪

    荧光芯片扫描仪   由于杂交时产生序列重叠,会有成百上千的杂交点出现在图谱上,形成极为复杂的杂交图谱。序列重叠虽然可为每个碱基的正确读出提供足够的信息,可提高序列分析的可靠性,但同时信息处理量也大大增加了。一般说来,这些图谱的多态性处理与存储都由专门设计的软件来完成,而不是通过对比进行人工读谱。用计算机处理即可给出目的基因的结构或表达信息。扫描一张10cm2的芯片大概需要2-6分种的时间。目前专用于荧光扫描的扫描仪根据原理不同大致分为两类:一是激光共聚焦显微镜的原理, 是基于PMT(photomultiplier tube,光电倍增管)的检测系统(另文介绍);另一种是CCD(charge-coupled devices,电荷偶合装置)摄像原理检测光子。CCD一次可成像很大面积的区域,而以PMT为基础的荧光扫描仪则是以单束固定波长的激光来扫描,因此或者需要激光头,或者需要目的芯片的机械运动来使激光扫到整个面积,这样就需要耗费较多的时间来扫描;但是CCD有其缺点:目前性能最优越的CCD数字相机的成像面积只有16×12mm(像素为10μm),因此要达到整个芯片的面积20×60mm的话,需要数个数码相机同时工作,或者也可以以降低分辨率为代价来获得扫描精度不是很高的图像。由于灵敏度和分辩率较低,比较适合临床诊断用。   生产商业化扫描仪的公司包括:Genomic Solutions公司、Packard公司、GSI公司、Molecular Dynamics、Genetic Microsystems公司、Axon ?Instruments公司等。其中GSI Lumonics 公司ScanArray 系列一直是生物芯片扫描检测系统中的领头产品。2000GSI并入著名的Parkard公司后ScanArray的软、硬件都得到进一步加强。   ScanArray利用其专利的激光共聚焦光学系统,通过计算机控制,对生物芯片的荧光杂交信号进行全自动的扫描采集,并通过分析软件对数据结果进行定量分析。  最高灵敏度高:0.1荧光分子/μm  扫描精度可从5μm-50μm分级调整  全范围扫描时间仅需5分钟,快速方便  多达十种检测滤光片,涵盖所有生物芯片荧光染料的检测,适用于多种荧光标记探针   不同波长依次扫描避免交叉光污染  扫描后的图像还需要进一步的处理,这要求一定的软件支持。现有的分析软件包括:Biodiscovery的ImaGene系列,Axon Instruments的GenePix系列,GSI的QuantArray等  3. 基因芯片上各克隆荧光信号的分析原理   用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5)(2),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到到有关基因图谱。美国GSI ?Lumonics 公司开发出专专业基因芯片检测系统(ScanArray 系列),采用激光共聚焦扫描原理进行荧光信号采集,由计算机处理荧光信号,并对每个点的荧光强度数字化后进行分析。利用QuantArray软件包对扫描的荧光信号进行分析,比  较每个克隆在不同组织间表达水平的差别。软件具体分析步骤如下:   首先,同时导入同一区域两个channel扫描的图像文件;将两个channel扫描的图像用不同的颜色显示并重叠;选择拟分析的区域,输入矩阵的行数及列数以及矩阵的个数等参数;在计算机给出的该区域信号图片上标定网格,使得网格中所包含的横线和竖线的交点个数同每个区域点样的克隆数相同,调整网格,使每个交点均位于点样克隆信号的中心;信号的中心确定后,计算机将自动以交点为中心,按照设定的半径圈定各克隆,并将其内部区域作为待分析的信号,同时在圈定的各克隆周围再按照预设的值圈定一定范围的区域,将该区域内的信号作为背景噪音;计算机分析每个克隆扣除背景噪音后的信号强度,并按照不同的要求对数据进行分析;利用GenePie方式对两个channel信号的进行定量比较分析,此时计算机根据各克隆两个channel扫描的信号,以饼图的形式给出两个channel信号强度的相对比例,同时可以逐个克隆读取计算机分析出的两个channel信号的值及所占的比例,进而确定各克隆在两种组织间的表达差异。  4. Microarray数据分析   Microarray数据分析简单来说就是对Microarray高密度杂交点阵图象处理并从中提取杂交点的荧光强度信号进行定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。   Microarray数据分析主要包括图象分析(Biodiscovery Imagene 4.0\Quantarray分析软件)、标准化处理(normalization)、Ratio值分析、基因聚类分析(Gene Clustering)。   1. 图象分析:激光扫描仪Scaner得到的Cy3/Cy5图象文件通过划格(Griding),确定杂交点范围,过滤背景噪音,提取得到基因表达的荧光信号强度值,最后以列表形式输出。   2. 标准化处理(Normalization):由于样本差异、荧光标记效率和检出率的不平衡,需对cy3和cy5的原始提取信号进行均衡和修正才能进一步分析实验数据,Normalization正是基于此种目的。Normalization的方法有多种:一组内参照基因(如一组看家基因)校正Microarray所有的基因、阳性基因、阴性基因、单个基因。   3. Ratio分析(Ratio Analysis):cy3/cy5的比值,又称R/G值。一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。由于实验条件的不同,此域值范围会根据可信区间有所调整。处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图、原始图象拼图等。将每个Spot的所有相关信息如位标、基因名称、克隆号、PCR结果、信号强度、Ratio值等自动关联并根据需要筛选数据。每个Spot的原始图象另存文件,可根据需要任意排序,得到原始图象的拼图,对于结果分析十分有利。   4. 聚类分析(Clustering Analysis):实际是一种数据统计分析。通过建立各种不同的数学模型,可以得到各种统计分析结果,确定不同基因在表达上的相关性,从而找到未知基因的功能信息或已知基因的未知功能。Gene Clustering就是根据统计分析原理,对具有相同统计行为的多个基因进行归类的分析方法,归为一个簇的基因在功能上可能相似或关联。目前以直观图形显示GeneCluster结果的程序已有人开发出来,可将抽象的数据结果转化成直观的树形图,便于研究人员理解和分析。  尽管基因芯片技术受到了广泛关注,但在基因表达谱分析中起着关键作用的生物信息学却没能引起大家的足够重视,认为简单人工处理一下原始数据就可以得到有价值的生物学信息,大量有价值的信息就这样被浪费和湮没了。可以肯定地说,没有生物信息学的有效参与,基因芯片技术就不能发挥最大效能。加大基因芯片技术中生物信息学的研究开发力度已成为当务之急。国内外已经进行了有益的尝试,初步开发出供芯片平台管理实验数据的软件包,就目前实际情况来看,生物信息学在基因芯片研究开发中介入的程度已经越来越深,主要涉及基因表达信息分析管理系统及其分析工具和分析方法,简单概括为以下几个方面:

扫描荧光仪相关的耗材

  • 微阵列芯片扫描仪配件
    微阵列芯片扫描仪配件专业为扫描基因芯片,蛋白质芯片等微阵列芯片而设计,是功能强大的高分辨率荧光扫描仪。适合所有微阵列芯片,如DNA芯片,蛋白质芯片和细胞和组织,并适用于各类型的应用研究,如基因表达,基因分型,aCGH,芯片分析片内,微RNA检测的SNP,蛋白质组学和微阵列的方式。微阵列芯片扫描仪配件是完全开放的系统,兼容任何标准的显微镜载玻片25x75mm(玻璃基板,塑料,透明和不透明),可以扫描生物芯片,有3 1.mu.m/像素的分辨率,同时保持高图像质量。能够同时扫描两个检测通道3.5分钟(10.mu.m/像素,最大扫描区域),InnoScan900是市场上最快的扫描器,扫描速率可调节,达10到35行每秒。 微阵列芯片扫描仪配件共焦扫描仪配备有两个光电倍增管(PMT),非常敏感,整个工作范围(0至100%)线性完美,允许用户简单地改变PMT,调整2种颜色的荧光信号。使用这种独特的动态自动聚焦系统,提供的是不敏感的基板的变形,整个扫描表面上完美,均匀。微阵列芯片扫描仪有出色光度测定性能,特别是在灵敏度和信噪比方面。 微阵列芯片扫描仪有一系列可满足您的应用程序,四扫描器(710,710 U,900 U和900)。该Innoscan® 900和900AL系列(磁带自动加载机)是专为现在和未来的高密度微阵列发展。
  • 扫描电镜X射线源
    这款扫描电镜X射线源专门用于电子显微镜设计的X射线源,非常适合扫描电镜的XRF光谱分析,是理想的XRF射线源和X射线荧光光谱仪X射线源。 扫描电镜X射线源具有紧凑的设计和滑动安装功能,允许与样品非常接近。 取向在样品表面的小到大的激发区域产生高“通量”(x射线)。 扫描电镜X射线源?XSEMTM提供500μ至25mm的激发区域。 集成的高压电源最大功率为10瓦(35千伏和0.1毫安,取决于阳极材料)。 紧密耦合提供与传统“台式”或“独立”单元相当的XRF分析结果。扫描电镜X射线源?X SEMTM设计使其不影响电子显微镜的正常工作,包括在同一样品上使用电子束,同时同时收集所有元素。不需要特殊的冷却。 电子束(来自扫描电子显微镜)产生非常高的背景隐藏样品中的微量元素。 来自真正的“X射线”源的X射线没有这种效果。 使用扫描电镜X射线源?XSEMTM可以轻松识别,量化,甚至生成痕量X射线图,以查看样品中微量元素的元素分布。 应用: 艺术与考古 石油EDXRF 化学 药物应用 涂料和薄膜 塑料,聚合物和橡胶 化妆品 电镀和电镀浴 环境 木材处理应用 食品应用 其他应用 取证 金属和矿石 矿产和矿产品 ?X 规格 阳极类型 端窗传输 目标材料 Ag,Mo&W 加速电压 10-35kV 光束电流 0-100μA 阳极点尺寸 500μm 准直器尺寸 200μm,500μm,1000μm(其他可选) 源过滤器 可应要求提供 冷却要求 传导冷却,不需要风扇 控制/安全 可变控制kV /μA,X射线开/关按钮,kV /μA显示。 连接到SEM,键控上电开关,集成高压电源,HV-On灯,警示灯
  • 蔡司ZEISS标记点,GOM三维扫描仪标记点,GOM标记点,三维扫描仪标记点
    蔡司ZEISS标记点,GOM三维扫描仪标记点,GOM标记点,三维扫描仪标记点
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制