数字虚拟仪

仪器信息网数字虚拟仪专题为您提供2024年最新数字虚拟仪价格报价、厂家品牌的相关信息, 包括数字虚拟仪参数、型号等,不管是国产,还是进口品牌的数字虚拟仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字虚拟仪相关的耗材配件、试剂标物,还有数字虚拟仪相关的最新资讯、资料,以及数字虚拟仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

数字虚拟仪相关的厂商

  • 一家整合立体影像、虚拟现实、人脸识别等技术专业的数字视觉创意策划方案提供商,整合立体影像、虚拟现实、人脸识别等技术,构建多行业多领域的服务网,致力于光影空间、文旅夜游、数字展厅、互动、电子沙盘、互动展厅等研发及跨领域应用。专业为各大机构、企事业展厅、主题馆、博物馆、健身馆、文旅企业等打造行业领先的智能化、数字化综合解决方案。
    留言咨询
  • 公司成立于2019年,位于先后取得国内卫生先进城市、国内科技进步先进市、国内文明城市的安徽省淮北市源创客众创空间11栋。公司主要从事数字医学虚拟仿真和生命科学实验室设备的研发、销售于一体。随着科技的高速发展,与之对应的是新的先进教学技术与科研技术的不断涌现,为提高实验教学与科研教学的效率,实验设备的信息化、智能化、集成化、网络化的发展已是必然趋势,能否为客户提供完整的解决方案,是高效地解决实验室建设一系列问题的关键;安徽耀坤拥有较完整的自主知识产权体系,已取得医学虚拟仿真实验系统软件著作权证书,医学信号采集处理系统软件著作权证书等等。安徽耀坤坚持自主研发的同时,另一方面我们与国外科学仪器知名品牌等建立良好的关系,公司现主要产品有医学影像学技术模拟仿真系统、解剖学虚拟仿真系统、机能学虚拟仿真系统、中医穴位虚拟仿真系统、三维互动VR体验系统、激光立体呈像虚拟实训系统、医学信号采集处理系统、动物行为学分析系统、全自动动物采血给药系统、小动物实验跑台、小动物步态视频分析系统、小动物代谢检测系统、小动物脑力体定位仪、全自动小动物脑脊髓损伤撞击仪
    留言咨询
  • 北京君合泰测控技术有限公司成立于1993年,位于中关村高科技开发区内,是专业从事测量测试设备和高校与高职高专实验实训教学仪器设备的公司。 经过多年的努力,我们先后开发出虚拟仪器、Labview 虚拟仪器测控实验实训系统、物理化物数字化教学实验系统、通信系列实验实训系统、微波通信和天线实验实训系统、无线传感器网络教学实验系统、RFID射频接触卡教学实验系统、电子应用创新设计实训系统等产品。 公司本着“诚信为本、服务为源”的宗旨,秉承“以人为本、心系客户”的理念,十多年来,不断的向各行各业提供了测量测试设备和高校与高职高专实验实训教学仪器设备以及相关的服务。我们将一如既往地提供个性化和专业化的能够满足不同需求的测量测试设备和学校实验室设备以及优质的服务。
    留言咨询

数字虚拟仪相关的仪器

  • 单介绍医学仿真实验室是由省内多所医学院校长期坚持在教学与临床一线的专家悉心指导而创建的。现已经建成机能学、诊断学、形态学、解剖学等基于计算机虚拟现实和仿真技术的网络化虚拟实验与教学系统。产品描述 医学机能仿真实验室是由省内多所医学院校长期坚持在教学与临床一线的专家悉心指导而创建的。现已经建成机能学、诊断学、形态学、解剖学等基于计算机虚拟现实和仿真技术的网络化虚拟实验与教学系统。医学仿真实验室分为虚拟实验和虚拟教学两大模块,虚拟实验采用人机交互的方式实施实验,具有过程仿真、虚拟现实、三维动画、智能语言特点;虚拟教学可根据教学需求定制实验,通过系统的动态开放性实施交互教学,内建的题库系统,提供在线自测自评功能,这些都可以充分调动学生的学习兴趣。技术参数:技术参数:1、采用网络化的体系结构(C/S结构),可以直接连接到校园网或Internet网络上;2、具有完整的知识结构,包括:三维实验室浏览、实验基础知识介绍,实验动物介绍,实验设备和实验器械介绍,模拟实验操作过程,模拟实验波形操作等 3、实验基础知识包括生理、药理、病生、机能、信号采集系统,传感器、实验室常用试剂等方面的知识4、实验仪器介绍包含不低于20种生理药理仪器介绍,包含镇痛类、抗焦虑类,疲劳类,心血管类药理设备以及行为学实验仪器设备,介绍方式为3D动画和录像 5、包含生理、药理、病生、人体实验以及综合性实验的各类大型经典实验项目,数量达90个6、客户可根据自己的实验项目增加虚拟实验,可对药品特性进行编辑 7、生理实验项目:刺激强度与肌肉收缩的反应关系、刺激频率与肌肉收缩之间的关系、神经干动作电位的引导实验、神经兴奋传输速度的测定、神经干不应期的测定、减压神经放电、膈神经放电、大脑皮层诱发点位、离体蛙心灌流、期前收缩与代偿间歇、心肌细胞动作电位、家兔血压调节、家兔呼吸运动调节、尿生成的影响因素、消化道平滑肌生理特性8、药理实验项目:**对动物学习记忆的影响、酸枣对小鼠的镇定作用、安定的抗惊厥作用、***的镇痛作用、地塞米松对实验大鼠脚趾肿胀的**作用、苯海拉明药效实验、神经体液因素及**对心血管活动的影响、**急性毒性实验、**半衰期的测定、给药剂量对**血浓度的影响、给药途径对**血浓度的影响、**在体内的分布、肝肾功能状态对**血浓度的影响、多次给药对**血浓度的影响9、病生实验项目:急性心力衰竭、心率失常、急性缺氧、急性失血性休克、急性高血钾症10、人体实验项目:人体指脉信号的测定、人体全导联心电信号的测定、ABO血型的测定、人体前臂肌电的测定、人体握力的测定、人体心音图的记录和测定简介11、综合实验:家兔呼吸运动调节、影响尿生成的因素及****、神经体液因素及**对心血管活动的影响12、每个实验项目包含实验简介,实验原理,实验录像,实验模拟操作以及实验模拟波形5个方面的内容13、实验项目中的波形模拟可以和动物的反应同步,比如在刺激强度与反应的关系实验中,波形上的变化和蟾蜍腓肠肌的收缩反应应同步表现,波形模拟高度逼真,比如对血压波形的模拟要表现出心室收缩与心房切迹,还要表现出叠加在血压波形上的呼吸波形(二级波)14、进行各种药理学参数的计算,比如PA2,LD50,半衰期等,使学生在进行药理学实验的同时理解各种药理学参数的意义及计算方法,帮助学生建立科研的思维能力系统具有开发性,用户可以将自己的实验图片,实验录像,实验原理和操作的文字加入到系统中,从而扩充系统的适用性15、新版本增加了常用的药品的虚拟配置,如:生理盐水的配置 性能特点:无论开放多少实验,都无需增加额外的投资虚拟的动物、器材、试剂使得实验经费在为压缩带教老师和实验准备从开放实验中解放出来拓展实验项目可以在虚拟实验中定制完成采用动态开放模式,所有实验器材及手术操作视频无限扩展紧密贴近教学,可以借助实验平台构建自己的实验体系内建的题库系统,可以在线处测自评,为学生提供一个良好的平台采用仿真化学习、抓住了学生的兴趣,提高学生的学习热情。多校共建的模式使得实验体系内容得以不断更新、完备根据自我需求构建虚拟实验室,成为实验积累、特色展示的一个良好的交流平台一、医学机能虚拟实验室 机能学虚拟实验室是基于计算机仿真技术的网络化实验教学系统,包括以计算机仿真技术为核心的生物仿真引擎、处理因素数据、虚拟环境界面和网络化硬件平台等部分。在计算机系统中建立的虚拟实验环境使实验者可以像在真实的环境中一样运用各种虚拟实验器械和设备,对“实验动物或标本”进行虚拟操作,完成预定实验,机能学虚拟实验从功能上包括仪器介绍、手术操作、仿真实验(仿真实战、虚拟实验)、模拟测试、求知**确定和后台数据管理、用户管理等模块。 1、采用网络化的体系结构(C/S结构),可以直接连接到校园网或Internet网络上;2、具有完整的知识结构,包括:实验基础知识介绍,实验动物介绍,实验设备和实验器械介绍,模拟实验操作过程,模拟实验波形等方面的内容;3、实验基础知识包括生理、药理、病生、机能、信号采集系统,传感器、实验室常用试剂等方面的知识;4、实验仪器介绍包含不低于20种生理药理仪器介绍,包含镇痛类、抗焦虑类,疲劳类,心血管类药理设备以及行为学实验仪器设备,介绍方式为Flas***和录像,拓展学生思路;5、至少包含对不低于10种常见实验动物的用途、生理指标等方面的介绍;6、包含生理、药理、病生、人体实验以及综合性实验的各类大型实验项目不低于90个,实验项目包括:6.1生理实验项目:刺激强度与肌肉收缩的反应关系、刺激频率与肌肉收缩之间的关系、神经干动作电位的引导实验、神经兴奋传输速度的测定、神经干不应期的测定、减压神经放电、膈神经放电、大脑皮层诱发点位、离体蛙心灌流、期前收缩与代偿间歇、心肌细胞动作电位、家兔血压调节、家兔呼吸运动调节、尿生成的影响因素、消化道平滑肌生理特性。6.2药理实验项目:**对动物学习记忆的影响、酸枣对小鼠的镇定作用、安定的抗惊厥作用、***的镇痛作用、地塞米松对实验大鼠脚趾肿胀的**作用、苯海拉明药效实验、神经体液因素及**对心血管活动的影响、**急性毒性实验、**半衰期的测定、给药剂量对**血浓度的影响、给药途径对**血浓度的影响、**在体内的分布、肝肾功能状态对**血浓度的影响、多次给药对**血浓度的影响。6.3病生实验项目:急性心力衰竭、心率失常、急性缺氧、急性失血性休克、急性高血钾症。6.4人体实验项目:人体指脉信号的测定、人体全导联心电信号的测定、ABO血型的测定、人体前臂肌电的测定、人体握力的测定、人体心音图的记录和测定简介。6.5综合实验:家兔呼吸运动调节、影响尿生成的因素及****、神经体液因素及**对心血管活动的影响。7、每个实验项目包含实验简介,实验原理,实验录像,实验模拟操作以及实验模拟波形5个方面的内容;8、实验项目中的波形模拟可以和动物的反应同步,比如在刺激强度与反应的关系实验中,波形上的变化和蟾蜍腓肠肌的收缩反应应同步表现;9、波形模拟高度逼真,比如对血压波形的模拟要表现出心室收缩与心房切迹,还要表现出叠加在血压波形上的呼吸波形(二级波);10、进行各种药理学参数的计算,比如PA2,LD50,半衰期等,使学生在进行药理学实验的同时理解各种药理学参数的意义及计算方法,帮助学生建立科研的思维能力;11、系统具有开发性,用户可以将自己的实验图片,实验录像,实验原理和操作的文字加入到系统中,从而扩充系统的适用性。12、配置:医学机能虚拟实验室客户端软件16套、医学机能虚拟实验室服务器端软件1套。二、诊断学虚拟实验室诊断学虚拟实验是一个C/S模式的系统。该系统以虚拟病人为主体,管理员(老师)可以通过网络登陆服务器后台管理程序,设置虚拟病人的各种体征参数。当学生通过网络在学生端登陆后,即可对已经设置好的虚拟病人进行病史采集(问诊)、心电检查、体格检查以及化验检查等四个方面的虚拟检查。学生通过对检查结果的分析,判断虚拟病人的患病情况,从而达到考察学生综合运用诊断学知识的目的。三、形态学虚拟实验室该系统实现了显微镜的虚拟操作,仿真镜读片,拓展了显微镜的分辨率和测量等功能,解决了显微镜和片库的资源短缺和协调问题,设计了实验视频点播和考试与自测,该仿真实验系统由学生端、老师端、管理端三大部分组成。学生端分为两大部分共五个模块:一、教学与自学:视频点播、虚拟操作、仿真读片、课堂自测,二、考试模块:模拟考试;老师端集教学与实验数据管理为一体,共有七个模块组成:视频管理、虚拟操作、数码教学、片库管理、试卷管理、考试管理、试卷评阅;管理端则对登陆用户进行授权管理、功能分组、信息查看、按需排序等。
    留言咨询
  • NI myRIO虚拟仪器实验平台NI myRIO虚拟仪器系统是融合实时操作系统和FPGA技术的虚拟仪器平台。 NI myRIO 是为学生设计的嵌入式开发平台,能帮助他们在一个学期内完成“真实工程系统设计”。NI myRIO 支持 667 MHz 双核 ARM C ortex-A9 可编程处理器和可定制的现场可编程门阵列(FPGA),使学生可以快速开发系统、解决复杂设计难题。这些都可以通过小巧方便的 NI myRIO 实现。NI myRIO 作为可重配置、可重复使用的教学工具,帮助学生学习众多工程概念,完成设计项目。通过 实时应用、FPGA、内置 WiFi 功能,学生可以远程部署应用,“无头”(无需远程电脑连接)操作。三个连接端口(两个MXP和一个与 NI myDAQ接口相同的 MSP 端口)负责发送接收来自传感器和电路的信号,以支持学生搭建的系统。共有40条数字 I/O 线,支持SPI、PWM 输出、正交编码器输入、UART和I2C,以及8个单端模拟输入,2个差分模 拟输入,4个单端模拟输出和2个对地参考模拟输出,方便通过编程控制连接各种传感器及外围设备。所有这些功能都已经在默认的 FPGA 配置中预设好, 帮助学生即刻开始着手真实工程——例如无线控制 智能车或嵌入式生物医电设备设计。NI myRIO 易于设置,方便学生判断运行状态。设备出厂时已配置好 FPGA,初学者可以直接运行基础功能,无需为 FPGA 编程。同时也支持对FPGA自定义, 并重新配置I/O。NI myRIO 的可扩展性使学生在入门的嵌入式系统到毕业设计或课外创新项目中均可使用。可用于实时嵌入式控制、机电一体化、机器人、视觉处理等课程教学和学生课外创新实践中。NI myRIO便携式虚拟实验仪器,口袋实验室设备NI myRIO虚拟仪器系统采集卡板载资源:Xilinx FPGA和双核ARM Cortex™ -A9微处理器;三个连接端口(两个MXP和一个与 NI myDAQ接口相同的 MSP 端口);10条模拟输入线(8个单端+2个差分);6条模拟输出线(4个单端+2个对地参考);40条数字I/O线(支持SPI、PWM 输出、正交编码器输入、UART和I2C);拥有板载WiFi、LED 、按钮及加速度计;可使用LabVIEW或C进行编程; 标准实验内容:流水灯控制与显示实验交通灯控制与显示实验 共阳数码管控制与显示实验独立按键实验 波段开关实验 继电器控制实验 五向摇杆实验光敏电阻实验 热敏电阻实验电位器实验 蜂鸣器/扬声器实验 霍尔元件检测实验旋转编码器实验直流电机实验
    留言咨询
  • 虚拟演播室系统组成按功能分为视频、音频、虚拟、通话、、蓝箱灯光等子系统。简单描述其工作流程为:在演播室搭建一个蓝箱替代实景演播区背景,进行高均匀度的布光。摄像机拍摄主持人在蓝箱上的前景视频信号,并输入到虚拟演播系统主机中。同时摄像机跟踪系统采集到的摄像机运动参数被送到虚拟场景生成系统中,系统根据这些参数实时生成相应的虚拟场景,使背景与前景的空间 关系保持一致。将前景信号进行色键处理,把蓝箱换成电脑制作的虚拟场景,再与前景掩膜合成后形成节目输出。这样,制作人员就可以在一块场地、一台虚拟设备上分别制作多个不同风格的节目,且场景可以随时、任意的修改。  采用高性能的图形工作站,加上高品质的3D图形处理卡的并行协同运算,使得具有实时高清三维渲染能力,能够使复杂而逼真高清三维虚拟场景顺畅运行。视讯天行VSM高清虚拟系统的优点就是容易设定,系统具有简洁的操作界面。任何使用者只要听过简易的教学,就能轻松上手,开始制作高水平的课程内容。VSM高清虚拟系统只需利用摄影棚中的一小部分空间搭配蓝或绿背景,加上摄影灯光,把人物的全身、或半身景拍下即可。然后通过虚拟合成,使得前景中的主持人看起来完全浸尽于计算机所产生的三维虚拟场景中,而且能在其中运动,从而创造出逼真的、立体感很强的电视演播室效果。VSM高清虚拟系统可以根据自己的实际需求,自由添加场景道具,比如灯光、LED大屏幕等,采用专业曲线调色功能,可实现人物层、背景层的局部调色以及整体层调色功能,自由调整对比度。场景中有元素都可以自由搭配,每个元素为三维建模,可以任意调整大小、位置、角度与前后层的关系,让使用者更加灵活的搭建每一个场景。系统功能切换台多机位切换功能,更可以切换视频及图片即时简单更换视频及图片文件,让导播更加丰富性四组DSK,实时动画效果及字幕叠加,轻松增加节目的精彩度实时CG字幕EFP作业时经常要上标题字或图片等需要,这时还要再带一台字幕设备,就略显麻烦,所视讯天行VSM系列新媒体一体机就有弹性的选择,内建CG字幕系统可以依模板建立字幕,也可以导入做好的图档、字幕,若嫌不足可用内含的字幕工具制作精致的字幕;多视图组合多个输入一起使用不同的“多视图”预置或自定义每个元素的位置,可变焦,平移,旋转和裁剪控制。数字影音播放与录制视讯天行VSM系列新媒体一体机内建的数字影音播放器,可以播放客户的形象广告、活动宣传影片,在EFP作业时也免去携带播放设备,可以排序、轮播、循环,而且可将录制完成的影片直接放到DD列表;所以在录制的功能中,除了增列DDR选项外,还可同时录制3种以上的档案,选择不同的画面,这都归功于独立影源编码录制IsoCorder的技术,选择不同的规格,并且分录制到不同的硬盘,省下购买携带硬盘录像设备的费用。视讯天行VSM系列新媒体一体机内建的虚拟场景的专有技术,所提供的虚拟场景,包括了空间中对于被摄人物的「背景」和「前景」。在"无需操作摄像机"的状态下,可以由近景直接变换到全景,还提供了嵌入第二路现场影片、预录像片或图片于默认的虚拟显示设备中的功能,轻松完成现场合成的报导工作。一机位摄像机输入,即可拥有N个虚拟机位仿真无轨虚拟系统,虚拟机位皆能享受虚拟演播的真实性,制作推拉摇移对于每一个连接到系统的摄像机信号,视讯天行可动态的改变每一个镜头现场画面的大小,它能够自动产生运镜效果,或是由中景画面慢慢地到广角,这些动作都无需人为操作或移动摄像机,视讯天行的虚拟场景就可以帮您完成现场节目的一切所需。
    留言咨询

数字虚拟仪相关的资讯

  • 病理学数字化——介绍虚拟显微镜以及要问的问题
    • Katharina Eser病理学实验室作为一个机构正在发生变化。即使有一段时间的滞后,这门至关重要的医学学科也正在转向数字化:实验室正在变得虚拟。这个过程的一部分也是虚拟显微镜,它支持向数字病理学的转变。许多病理学家仍然通过模拟显微镜观察,同时决定作为切片制剂位于他们面前的一小段组织是否注入了肿瘤细胞。在其他实验室,这项任务已经由一个自动化系统完成,该系统将切片制剂独立放置在扫描显微镜下,扫描样本,最后由人工智能识别、标记和计数肿瘤细胞。要采取这一步骤,你不仅需要合适的设备,还需要实验室中的新工作流程和经过培训的人员。本文将有助于强调这一过程中的挑战和出现的问题。全球病理学家短缺如今,癌症发病率正在上升,同时,能够治疗和检测癌症的人数正在减少。世界上许多地方的医疗服务不足,但即使在最富裕的国家,也缺乏病理学家等专家。造成这种情况的原因包括医学院期间的教育和广告太少,以及在实验室工作是孤立的情绪因素,与患者的接触往往仅限于观察他们的组织。但也有一个事实是,大多数疾病观察的时间越长,就会变得越复杂。人类无法提供识别某些相关性所需的数据量。因此,病理学实验室的数字化带来的可能性是无限有吸引力的。病理学的一个重要支柱是在显微镜下观察组织样本。虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。为此,显微镜制剂被数字化,因此可以在以后的屏幕上查看和处理,而不考虑位置和/或工作站。这些数字制剂可以存储在数据库中,并与无限数量的用户共享。为了生成样本的数字图像,可以使用配有额外摄像头的模拟显微镜。然而,病理学的发展趋向于使用数字显微镜。根据模型的不同,这些显微镜通常不仅可以产生标本的实时图像,还可以对其进行扫描。数字显微镜不仅可以显示单个视场,还可以扫描整个标本。数字化显微镜载玻片可以称为虚拟载玻片、扫描或全载玻片图像。这些术语描述了完全数字化的显微镜标本。为了产生数字图像,该仪器逐片扫描载玻片上的整个样本。该软件将生成的高分辨率单个图像合并为一个完整的图像。这个过程叫做缝合。在电脑上,用户可以浏览样本,放大并分析。图1:虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。©Precision股份有限公司试样质量至关重要与所有显微镜手术一样,标本的质量在虚拟显微镜中也起着重要作用。样品必须尽可能均匀地切割,因为软件在扫描过程中会自动设置焦点。过大的高度差异可能导致平面跳跃和完成扫描中的模糊区域,并且无法校正。样本也必须在仪器的固定扫描区域内。样本必须均匀染色,以正确表示所有细胞结构。此外,应避免样品出现气穴、重叠和其他污染。在特殊情况下,样本的性质会退隐到背景中。例如,在肿瘤手术过程中,通常会在手术过程中对切除的组织进行切片,即所谓的冷冻切片。然后在显微镜下只观察样品的某些区域。数字样本的质量也取决于所用相机的质量。模拟显微镜上的相机附件通常不能提供高质量,因为这些系统不是为数字化过程设计的。数字显微镜是为这一过程设计的,除了扫描功能外,它还具有实时视图,因此可以在屏幕上实时观察样本。纯幻灯片扫描设备为用户提供了在速度和分辨率之间进行选择的可能性。较高的扫描速度会导致图像质量的损失。然而,由于这些设备是自主操作的,因此也可以通过调整扫描仪的工作时间来调整时间损失,例如在晚上。为了充分利用显微镜扫描,需要合适的图像查看软件。根据图像格式的不同,只有非常专业的程序才能处理病理切片的图像。所谓的查看软件也提供了评估图像的不同可能性。例如,使用不同的注释工具,可以绘制直线和圆,也可以附加书面注释。此外,还可以将人工智能集成到此类程序中。在集成人工智能的帮助下,对某些结构或细胞的自动评估成为可能。理想情况下,可以根据图像来存储注释和评估。可以将查看软件集成到云中。这样一来,扫描不仅可以通过网络服务器与其他用户共享,还可以直接在平台上查看。此外,通常可以提供关于图像的特定信息。在大多数云服务中,图像存储、图像共享和图像查看设施都是可用的。任何终端设备都可以查看扫描结果。不管是大屏幕、智能手机、平板电脑还是笔记本电脑。然而,屏幕的性质对于再现的图像质量是决定性的[1]。表1:拥有数字工作流程可以使病理实验室的工作更快、更高效,并为创新腾出空间。©Precision股份有限公司今天的病理学是手工工作目前,在大多数情况下,需要在病理学实验室进行检查的样本都会带着一张提交单到达,上面会手工注明如何处理。这些信息由工作人员传输到实验室信息系统。在病理学家对组织进行宏观检查后,医疗技术人员准备样品进行进一步检查。这些标本有时需要大量的手工制作、切割、在煤油中固定,并使用各种组织化学和免疫组织学技术进行染色;它们被切割,安装在载玻片上,并用玻璃覆盖。然后将标本分类到文件夹中,并提交给病理学家进行检查。在某些情况下,标本也会被扫描。为此,还必须手动插入样本并进行登记。如果存在质量缺陷,则必须重复该过程。这个工作流程在这里只是粗略地概述,涉及许多手册和小规模的工作步骤,其中有许多错误来源。在向完全数字化病理学实验室发展的另一端,大量切片制剂的自动扫描、诊断的数字提供以及临床数据以及数字报告文本生成即将到来。该系统可以在输入样本注册后对订单进行优先级排序和处理,并处理质量控制。此外,人工智能用于支持组织病理学诊断。此外,该系统可以将分析的图像数据和分子信息集成到工作流程中。与此同时,几个研究项目正在接近实现这一愿景,揭示了这一理论的实际机遇和挑战。图2:有了数字样本,算法就有可能取代昂贵的计数和注释工作。©Precision股份有限公司算法打开了广泛的可能性尽管数字图像有很多优点,但它并不能解决用户的许多问题和要求。然而,数字化为使用算法进行图像分析开辟了广泛的可能性。经典算法可以检测和计数定义明确的结构,如肿瘤细胞。这使得病理学家能够通过具体的测量值进行量化。在这样做的过程中,算法有效地进行并且没有偏差。压力或时间压力以及影响人类的视错觉的影响等因素在这里不会发生。现在市场上有许多产品可以用于不同的分析方法。这些程序可以快速有效地找到预定义的结构,并可重复地对其进行量化。有许多研究描述了算法在不同器官和各种疾病的组织学制备中的应用[3]。通常,对这些算法进行训练,以便专家在组织学切片中标记定义的结构。该算法用一系列类似的部分进行训练,直到它自己识别出标记的结构。市场上常见的程序通常专门针对特定的疾病模式;他们的任务是识别和量化预定义的结构。一个算法只能和它所训练的数据集的质量一样好[4]。所寻求的结构的数量越多,变化越大,评估就越好、越可靠。这就是目前正在世界各地建立的生物库发挥重要作用的地方。这些不仅提供了许多物理样本,而且还提供了许多已经数字化的样本。下一步是专门针对用户的应用需求进行训练的算法。在这里,一系列有趣的产品也在开发[2]。挑战在于将获得的数据集转换成什么格式,以及如何最终将其整合到实验室信息系统和相关部门的系统中。当然,还有实验室人员和工作流程的问题。图3:正确的样品制备是虚拟显微镜的关键。©Precision股份有限公司结论病理学实验室向数字化病理学实验室的转变只能循序渐进。该过程的开始是所有过程的文档化和可视化,必须根据各种参数(如人员、机器和开发程度)以及IT和过程支持级别对其进行分析。由此可以产生有意义的转型规划。其中一部分是虚拟显微镜、满足要求的设备以及支持这项工作的算法。现在有许多公司专门帮助实验室进行这种转变。这是一项非常明智的服务,因为这种转变很复杂,需要时间和金钱,而且还必须在人员方面得到很好的支持才能发挥作用。References[1] Brochhausen C. et al (2015) A virtual microscope for academic medical education: the pate project. Interact J Med Res. 4: e11. [2] Li Z et al. (2021) Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images – The ACDC@LungHP Challenge 2019. IEEE J Biomed Health Inform 25: 429-440[3] Mun SK et al. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021 Jan 28 7:614258. DOI: 10.3389/fmolb.2020.614258 [4] Cui, M., Zhang. D.Y. Artificial intelligence and computational pathology. Lab Invest 101, 412-422 (2021). DOI: 10.1038/s41374-020-00514-0 .关于作者Katharina Eser在学习艺术史之前曾在一家日报担任编辑。2021年,她加入PrecisPoint,担任业务创新经理,现在是该公司的自由职业者。来源:Going digital in pathology——Introducing Virtual Microscopy and what questions to askMicroscopy Light Microscopy Lab Automation Image Processing , 17 May 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 当虚拟现实遇见科研产业
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/8ca48239-3f8c-4b57-95ab-95682e17f65b.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 来自德国的VR/AR服务商,我们更懂科研产业 /strong /p p strong br/ /strong /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong VR/AR行业现状 /strong /span /p p   虚拟现实和增强现实(VR/AR)热潮近年来接连在全球范围内引爆。目前,VR/AR技术已成功应用于广告传媒、教育培训、房地产、工业生产、医疗服务、文化旅游、互动娱乐等领域,并为行业带来新的发展机遇和升级机会。 /p p   教育行业VR/AR试点更为广泛,将会有超过500家学校采用VR/AR方案。 /p p   教育行业是 VR/AR厂商关注最多的产业,一方面由于教育行业IT终端产品采购量巨大,另一方面则是因为教育行业对应用新科技产品来提高教育质量需求较大。 /p p   教育部发布《教育部办公厅关于2017-2020年开展示范性虚拟仿真实验教学项目建设的通知》后,多个地方政府也出台虚拟产业鼓励政策,以促进教育行业VR及AR的发展。 /p p   2018年,政策推动加上教育行业VR内容的完善,将促使更多学校采用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/1c227c8e-8a88-4e83-8e38-3602b604c9ec.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 品牌营销对于VR/AR利用将达到新高度 /strong /p p   IDC中国商用渠道和终端用户访谈显示,目前医疗、零售、制造、服务、房地产等行业正在利用VR/AR技术来更好的帮助其产品营销,以更具创意的数字营销手段吸引注意,让消费者身临其境的感受产品特点。 /p p   基于手机的AR技术有望结合LBS地理位置服务以及SLAM同步定位建图,提供更为精准个性的营销方案,提升销售转化。 /p p   现在越来越多的科研产业领域先行者,已经在通过VR技术实现更具现代科技感的营销工具,不断为用户的体验而达到极致。 /p p   技术从来不是万能的,但是这个时代,只有技术能够实现效率的极大提升。领先一步就是商机和优势! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/1de1e7cb-9136-4986-928a-a00e5bb59725.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 优质内容商将成为VR/AR的优势竞争者 /strong /p p   2018年,VR体验店将迎来差异化、精细化以及渠道下沉的运营方向。为实现体验店差异化运营,更多类型的体验店和体感设备将投放市场。高端体验店的服务也将更为精细,将提供更多主题化体验的VR服务。 /p p   在目前市场普遍缺乏优质内容的阶段,一款好的内容有能力驱动一种硬件形态的发展,并因此成为VR/AR行业的优势竞争者。 /p p   2018年,将会有更多优质内容商以及内容与VR/AR设备协同,带动市场向各产业细分应用场景纵深发展。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/3ae520b3-5479-4e63-bac2-346e9cd4876b.jpg" title=" 4.jpg" / /p p   而RW1,realworld one, 作为从IKA分拆出来的独立公司,拥有40多名来自全球各地的虚拟现实领域的专业人士,realworld one致力于打造专为工业和仪器设备制造商、高校教育领域以及应用于化工、制药、化妆品及食品等行业的虚拟现实产品和增强现实产品。 /p p   和IKA一样,RW1的优势也在于产品品质,即虚拟现实产品优质内容的精细打造。 /p p   我们拒绝粗制滥造,因为我们的服务对象是科研产业,这是一个比其它任何产业都要讲求精工专业的应用行业。 /p p   我们深懂科研,凭借IKA一百多年的专注,RW1有实力专为科研产业领域提供世界顶级的VR及AR体验。 /p p   而我们的梦想,远不止于此。我们要打造一个国际范围内的VR生态圈! /p p   一睹realworld one的风采,请来这里: /p p   2018年6月,法兰克福阿赫玛大展,RW1将以600平米的超级空间等候您的光临。 /p p   2018年4月15-16日,中国常州,ACCSI,科学仪器行业“达沃斯”论坛,RW1将盛大亮相。或者,您想单独预约体验一下?也是So Easy~ 留个言,剩下的交给我们。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/c34bdf49-e5ce-4906-8804-fdf42343b3b7.jpg" title=" 5.jpg" style=" width: 600px height: 351px " width=" 600" vspace=" 0" hspace=" 0" height=" 351" border=" 0" / /p p span style=" color: rgb(112, 48, 160) " strong 年会介绍 /strong /span :http://www.instrument.com.cn/accsi/2018/ /p p span style=" color: rgb(112, 48, 160) " strong 年会报名 /strong /span :http://www.instrument.com.cn/accsi/2018/Register.html /p
  • 中国虚拟仪器之父应怀樵:攻克十大世界性难题
    5月24日,北京东方振动和噪声技术研究所名誉所长应怀樵在第十五届北京科博会“2012中国战略性新兴产业发展论坛”上,作题为《云智慧时代第三次工业革命正在走来——“从软件制造仪器”到“软件制造一切”》的主题演讲。   科学无国界,而科学家是有国界的,这句话在“中国虚拟仪器之父”应怀樵身上,就是近半个世纪的岁月里,他始终以“砍柴樵夫”般的坚韧与顽强,跋涉在为中华崛起而奋斗的科学高峰上,即使古稀之年,面对“3次中风、4次心梗、7次至阎王殿”的生命挑战,依然以超人的毅力、坚定的信念,战胜病魔,执著奋进在创世界一流的“虚拟仪器”科研阵地上。   而支撑他的则是中国科学界应为人类文明进步作出更大贡献的使命感与荣誉感!正是怀着振兴中华、造福人类的理想追求,他数十年如一日,呕心沥血,将全部精力投入虚拟仪器(VI)科学研究之中,自主创新112项新技术,攻克十大世界性难题并填补国内空白,特别是对“传递函数的测试及实时控制和反演关键技术”的成功突破,为提高虚拟仪器测量精度和范围开创新途径,被认为“可与‘光纤之父’诺奖得主高锟教授的‘光纤通信’成果相提并论”,使中美两国同步创造的虚拟仪器达到可问鼎诺贝尔物理学奖的,具有世界性重大意义的成果,是中华民族继四大发明之后,对人类文明有重要意义和影响的现代发明之一。   生命熔铸:“虚拟仪器之父”是怎样炼成的   1941年7月,应怀樵出生于浙江绍兴,这里人文底蕴深厚,而无论是早年受笃信佛教的母亲的熏陶,还是得益蔡元培曾担任校长的小学优良的教学传统,都使他从小树立了为民族崛起而读书的远大理想。   1959年,应怀樵就读浙江大学理论物理专业,后应国家需要全班调整为应用力学专业。1964年,大学毕业后,他被分配到中国铁道科学院,致力于高速列车风洞课题研究,并到清华学习风洞测试分析技术。1965年,他参与我国核爆炸防护工程研究,接触到震动噪声和频谱分析,开始了虚拟仪器科研生涯,而早年五次转换专业,则练就他扎实的学术功底和多学科交叉研究课题的优势。更重要的是,科技水平对国家命运的深刻影响更使他深感责任重大。成为世界一流的科学家,为国争光成为他深埋心中的梦想。而他也毫不讳言对诺奖的钟情,在他看来,诺奖不仅是一种崇高的荣誉,更是激励创新、造福人类的精神泉源。   在他看来,以“四大发明”为标志,中华民族曾为人类科技进步作出重要贡献,然而近代以来却落伍了,应怀樵认为,伴随中华民族的伟大复兴,中国科学家理应在高科技领域取得原创的重大突破,向诺奖冲刺。这不仅是一个科学家的荣誉,更是中华民族屹立世界民族之林的时代要求。   正是怀着这样一份强烈的使命感和荣誉感,应怀樵走过了一条不平凡的科研探索之路。要成为世界一流的科学家,首先要有敏锐、超前发现重大课题的科研能力。应怀樵介绍说,所谓“‘虚拟仪器’其实并非是传统的仪器,它是指集数据采集和信号调理器、信号处理技术与PC机技术于一体的软件制造仪器”。事实上,1965年他参加国防核爆炸防护工程课题——地下铁道核爆炸震动噪声与动力学测试分析的研究,当他遇到地铁道床的下沉残余位移(OHz)用硬件无法获得的难题时,就萌生了虚拟仪器的大胆构想——“用数字算法和软件取代硬件”,1973年他尝试用数字计算机的软件数字积分取代传统硬件模拟积分的方法解决上述难题,1979年获得成功,成为虚拟仪器的最早成功范例。同年于杭州召开的国防科委核试验全国防护工程学术会上,他提出虚拟仪器的核心概念——“软件制造仪器”,获得主持会议的中科院力学所所长郑哲敏院士、清华大学副校长张维院士、同济大学校长李国豪院士的赞扬和支持,比美国NI公司“软件是仪器”的概念提出早7年。   成为世界一流科学家,还要有瞄准国际前沿,不断自我超越的创新意志。据了解,科学仪器与实验技术发展至今已走过模拟式、数字式、智能式三个阶段,从1983年~1986年,开始出现第四代仪器即虚拟仪器(简称VI)。而应怀樵的研究始终走在国际前列。1979年,他编撰的具有该领域应用成果的国内首部专著《振动测试和分析》出版发行,并不断自我超越:1982年《CZ测震仪与测振技术》出版发行,1983年出版了具有中国虚拟仪器早期构思实例框图的《波形和频谱分析与随机数据处理》。1985年他自筹资金创建东方振动和噪声技术研究所(简称东方所),开始系统从事虚拟仪器库、移动实验室技术研究,提出“把实验室拎着走”的目标,正式立题“DASP虚拟仪器库—振动噪声、模态分析移动实验室技术”研究,为此,他自立课题、自筹资金开始研究“PC卡泰”(PCCATAI)—微机卡式自动采集测试分析仪器。他还是国内外最早提出“用软件制造仪器”、“用软硬件相结合”来取代传统仪器的学者。此后,依靠持续创新,他带领团队突破了虚拟仪器的核心技术,开发出适合便携机和笔记本使用的小型数采卡和大容量数据采集分析(LCAS)软件,研制成功台式和笔记本式大容量智能数据采集和信号处理系统以及DASP“达世普”虚拟仪器库系统。这是我国最早研制成功的虚拟仪器产品,实现“把实验室拎着走”的目标。   1988年9月16日,中国虚拟仪器应用于火箭激振钱塘江大桥模态实验圆满成功。1993年3月,该仪器参加北京新技术展览会,并远赴加拿大参展获一致好评。1995年用于“长三捆”火箭全箭模态实验,1996年用于神舟载人飞船移动发射平台模态实验。2004年用于航天员超重训练设备臂架系统模态分析。2007年,在第二届全国虚拟仪器学术交流大会上,东方所的卓越贡献受到高度评价,应怀樵被誉为“中国虚拟仪器之父”。   产业报国:让DASP虚拟仪器库运行在每个实验台   伴随经济全球化及信息时代的来临,如何在世界高科技领域拥有一席之地,如何将中国的高科技产品行销全世界,正成为中华民族是否真正崛起的重要标志。   数十载春秋,对十大世界性难题原创性的解决让其成为具有中华民族自主知识产权关键技术的经历为应怀樵平添几分豪迈与自信。   一是基于平台式设计的VI库技术。用软件制造仪器,软硬件结合取代传统仪器,这一具有里程碑式划时代意义的新路线对仪器制造业和测试技术界产生巨大影响,代表了我国在VI研发方面的最高水平。   二是变时基(VTB)传递函数(导纳)测量分析方法。达到国际领先水平,获国家发明专利。已完成神舟飞船750吨移动发射平台、“长三捆”大型运载火箭、航天员超重训练机模态实验等数十项国家重点项目,效果优良。   三是高精度频率、幅值、相位和阻尼测量技术。东方所原创的高精度频率计和幅值计,比国外常规方法提高精度100万倍,具有重大国际影响力。   四是超低频信号快速测量技术,达到国际领先水平。   五是原创倒熵熵、倒熵富、倒富熵等三种倒熵谱分析方法,达到倒谱分析的国际领先水平。   六是FFT/DFT分析方法,成为目前频谱细化主要方法之一,达到国际领先。   七是振动全息AVD“一入三出”实时测试分析创新技术,原创性地提出了全程微积分方法,实现AVD“一入三出”振动全息实时动态连续测量,达到国际领先。   八是自动化模态分析方法。一般人员通过简单操作即可获得专家级的模态分析结果。   九是24位“双核”变幅基A/D高精度超量程160dB数采仪技术达到国内首创,国际领先。   十是突破传递函数的测试及实时控制和反演关键技术为提高仪器测量精度和范围开辟新途径。此技术是一项世界难题,可极大扩展仪器的频率测试范围,提高测试精度,极具国际竞争力。   仅仅拥有一流的成果还远远不够,在应怀樵眼里,诺贝尔不仅是一位杰出的科学家,还是一代企业家,对科学及人类进步事业的热爱,和凭借巨额财富设立的诺贝尔奖,使他成功激励了一代又一代热爱科学与进步的杰出人物,为人类文明的进步作出不可磨灭的贡献。为此,当虚拟仪器技术攀上科学顶峰的时候,应怀樵直面7次与死神擦肩而过的生命危机,依然没有停止探索与奋进的脚步,开始积极思考中国虚拟仪器的产业化之路,树立起“让INV系统走进每一个实验室,让DASP软件运行在每个实验台上”的宏大目标。   为此目标,他在建所之初就提出“勤奋、创新、坚持、自强、和谐”的十字座右铭和完全自由的判断与讨论的“玻尔所”精神和“六要三不要”的处事准则等基础上,发展成为涵盖精神追求、道德情操的18条共336字法则及幸福六大原则的企业文化,加强了东方所的文化凝聚力。   以此为纽带,东方所不断加强人才队伍建设,一方面加强与全国重点高校合作,为国家培养出大批专业急需人才,以及行业高端人才,该所研究团队也扩大到40余人,拥有博士、硕士数十名,成为虚拟仪器领域一支重要力量。同时他还成功组织和主持了23届全国振动与噪声高技术学术会议,1997年至今主编《现代振动与噪声技术》九卷等十多部专著及《倒熵谱研究》等150多篇论文报告。同时,不断创新软硬件研发,推出CPCI式INV3020和LAN以太网式INV3060、USB式INV3018系列新产品,无线INV9500、手持式INV3080等硬件新产品和DASP的最新软件版本,积极推动产品市场化。   “软件制造仪器,软硬件结合取代传统仪器”能省掉大量昂贵和笨重的硬件材料和人力物力、设备、厂房和能源,便于生产和携带。这是一条划时代的新途径,是科学仪器和测试领域的一次突破和革命,是21世纪的仪器的重要发展方向,是中华民族原创的具有自主知识产权的重大发明之一。中国虚拟仪器DASP软件和INV移动实验室系统是与美国NI同步并行研发的,其中自主创新112项新技术,其中20多项达国际领先水平,是研发最早且核心技术搞得最好的科研成果。   截至目前,该成果产品累计销往2000多家用户,经济效益超过1亿元,打破了此类仪器长期依赖进口的局面,为国家节省外汇数亿美元。目前,已广泛用于国防军工、航天航空等许多部门,参与完成上百项国家重大工程项目测试。若在国内全面推广,其经济价值按我国2007年仪器产值估算,按软件取代硬件30%到一半计算,将产生600亿元到1000亿元/年的巨大价值,为促进技术变革和推动新兴产业形成,造福国计民生发挥重大作用。   面对激烈的国际竞争与广阔的国际市场,应怀樵认为中国虚拟仪器产业化之路任重道远,“达到世界普及”,这是一个目标,更是一种信念!以领先的科技与执著的信念支撑,应怀樵和他的虚拟仪器产业化之路必将迎来胜利曙光!而作为科学家,应怀樵瞄准国际前沿的战略思考从未停止,随着“云计算”和“物联网”时代的到来,他又在国内外率先提出实验室网络云时代——“云智慧仪器实验室”与“云智慧故障诊断中心”和“智慧仪器”的构想,提议国家尽快开展相关研究。   正如诺奖的创立者曾经践行的,科学精神与产业之路的生命熔铸将带给人类更加美好的未来!或许,这正是以不竭的生命激情与创新意志跋涉于科学与产业化之路的“中国虚拟仪器之父”应怀樵教授所真正钟情的。

数字虚拟仪相关的方案

数字虚拟仪相关的资料

数字虚拟仪相关的试剂

数字虚拟仪相关的论坛

  • 虚拟仪器技术在测控调闸系统中的应用

    摘要:本文描述了基于虚拟仪器思想在实际测控系统中的应用。通过选用多功能数据采集卡和信号调理电路组成自动测试系统,软件开发以专业测控工具LabWindows/CVI为平台,实现了数据采集、分析和处理。使整个测控系统既经济又便于操作,同时易于改进和功能扩展。同时,与基于传统的开发平台的测控系统进行了比较。   关键词:虚拟仪器;Labwindows/CVI;数据采集      1、引言      虚拟仪器是以一种全新的理念来设计和发展的仪器,它是20世纪90年代发展起来的一项新技术。虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种自动测试、过程控制、仪器设计、数据分析和自动化的应用。灵活高效的软件能帮助您创建完全自定义的用户界面,其基本思想是在仪器设计或测试系统中尽可能用软件代替硬件,即“软件就是仪器”,它是在通用计算机平台上,根据用户需求来定义和设计仪器的测试功能,其实质是充分利用计算机的最新技术来实现和扩展传统仪器的功能,这种测试仪器的硬件功能软件化,给测试仪器带来了深刻的变化,因此虚拟仪器代表了当前测试仪器发展的方向之一。      2、虚拟仪器的特点和构成      2.1虚拟仪器的特点   与传统仪器相比,虚拟仪器具有高效、开放、易用灵活、功能强大、性价比高、可操作性好等明显优点。      2.2虚拟仪器的构成   虚拟仪器的构建主要从硬件电路的设计、软件开发与设计两个方面考虑。   根据目前我们所完成的测试设备,硬件电路的设计一般是选择现有的各种不同功能的板卡以及信号调理板来搭建。所选用板卡的功能包括:高速数据采集和信号转换;信号输出与控制;数据的A/D转换。将具有一种或多种功能的板卡结合信号调理板组建起来,就能构成任何一种虚拟仪器。例如使用高速数据采集板卡和高速实时数据处理就能构成1台示波器、1台数字化仪或 1台频谱分析仪;使用数字量信号输入/输出板卡和实时数据处理就能构成1台函数发生器、1台信号源或1台控制器。      3、虚拟仪器在实际测控系统中的应用      3.1虚拟仪器在航空机载电子测控系统中的应用   测控系统在航空机载成件中起着举足轻重的作用,提高和完善测控系统的精度和测试能力对于整个飞机性能分析具有重要的意义。我们主要完成了基于虚拟仪器的各型继电器盒、各型开关盒测控系统的测试。使用数字采集板及工控机并在LabWindows/CVI开发平台中实现了对整个测试的电压采集、对各型继电器盒的逻辑状态及延时时间进行输出存储和分析。  3.1.1 测试系统组成   整个测控系统由美国NI公司的LabWindows/CVI8.0,研华的1块PCI_1751 48路数字量输入/输出板,2块PCI_1754 64路数字量输入板、2块PCLD_785B 24通道继电器输出板、6块PCLD_782 24通道光电隔离数字量输入板,1块PCL_818L 16通道A/D转换板、若干信号调理板及工控机组成。   测控系统的数据采集和处理采用虚拟仪器测量平台。测控部分主要作用是参与被测产品的控制、测试数据处理和量化,驱动测试数据显示;工控机通过数字量输出板,经继电器输出板变换为被测产品的模拟控制信号;从被测产品采集来的电气逻辑信号经光电隔离数字量输入板转换为数字量信号,通过数字量输入板输至工控机;另外,利用A/D转换板来显示电压;利用系统时钟来完成被测产品的时间继电器延时时间的测试。   3.1.2 基于虚拟仪器的航空机载电子系统测控平台   该平台整体系统采用美国国家仪器公司的虚拟仪器专用开发平台LabWindows/CVI系统。由于CVI在标准C语言(Ansi C)的基础上增加了仪器控制和工具函数库的虚拟仪器开发软件,它的集成化开发平台、交互式编程方法、丰富的面板功能和库函数使其自身功能更加强大,应用更加方便,界面完全能够虚拟真实实物进行设计,使得人机对话界面直观、友好。   由于测试的产品种类多,归属性强,因此系统测控平台的用户界面采用下拉菜单式,所需测试的产品一目了然,选用方便。      3.2基于虚拟仪器的测控平台在测控系统中的应用所使用的几个关键技术   3.2.1 通过采用系统时钟的方法提高软件测时时间   在测试过程中要获得延时继电器的时间,一种方法是采用定时器/计数器板专门进行计数,另一种方法是采用系统时钟进行计数。由于所需测试的时间为秒级,要求误差为20%,采用后一种方法完全能达到,一是可以节约成本,二是选购的计算机可不必多配置一个插槽,节省了空间。在程序中使用了以下函数来获取高精度时间,它的精度可以达到毫秒级。   3.2.2 在测控系统中运用了数据库管理技术   由于Lab Windows/CVI开发平台能够方便使用NI公司开发的SQL工具包,使得大量的测试数据能够以数据库的形式存储、查询。   在测控系统中,可以通过所设置的产品名称、件号、时间、测试结果、温湿度、试验者、质控者等字段来进行保存,完成了一套产品的履历记录,通过查询产品的件号、时间等就可以调出每个产品的测试记录,这样就解脱了人工管理的诸多不便,提高了工作效率。   3.2.3 调用ActiveX自动化编程技术并打印生成了Excel表格   ActiveX自动化是一种能将单个应用程序和其他应用程序结合在一起的方法。通过Lab Windows/CVI提供的ActiveX控件可以直接调用Excel程序,并使用这些控件提供的函数对从Excel表格进行操作,从数据库中读取测试数据,转换并填入单元格,最后自动生成产品正式履历表并进行打印。      3.3 基于虚拟仪器的测控平台与一般测控平台比较   采用LabWindows/CVI开发工具使得不同的信号可以统一在同一个程序里面实现方便的采集与保存。继电器盒测试系统以前有一个运用Visual C++开发的测试平台,和基于虚拟仪器的测控平台相比,它们在本系统中功能的实现和维护都存在很大的差距。   首先运用Visual C++开发的测试平台不如使用LabWindows/CVI开发的基于虚拟仪器的测控平台简单方便[url=http://www.dttjf.c

  • 【讨论】大家谈谈——虚拟仪器的前景

    大家谈谈——虚拟仪器的前景虚拟仪器及技术随着低成本高性能的计算机资源普及运用,数字化测量平台逐渐成为测量仪器的基础。在20世纪80年代末美国研制成功虚拟仪器,代表了仪器发展的一种新方向。虚拟仪器是计算机技术与电子仪器相结合而产生的一种新的仪器模式,它通常是由个人计算机、模块化的功能硬件与用于数据分析、过程通信及图形用户界面的应用软件有机结合构成,使计算机成为一个具有各种测量功能的数字化测量平台。它利用软件在屏幕上生成各种仪器面板,完成对数据的处理、表达、传送、存储、显示等功能。

  • 虚拟仪表的可视化技术zt

    方案综述:   虚拟仪器是指具有虚拟仪器面板的个人计算机仪器,它是计算机资源、模块化功能硬件与用于数据分析、过程通信及图形用户界面的应用软件的有机结合。它利用软件在屏幕上生成各种仪器面板,完成对数据的处理、表达、传送、存储、显示等功能。虚拟仪器与传统仪器相比,其主要优点是可以由用户自己定义、自己设计仪器系统,以满足不同的要求,使仪器的功能更加强大、灵活,而且很容易同网络、外设及其他应用相连接。这样既降低了价格,节省开发、维护的费用,又缩短了技术开发周期。   虚拟仪器的关键技术之一就是应用软件,这是因为,虚拟仪器的主要功能是由软件来体现的,即“软件就是仪器”。虚拟仪器的软件开发平台应该提供一个图形化的编程设计环境,值得一提的是NI的LabView和LabWindows及HP的VEE。   本文介绍的基于网络的虚拟仪表系统是一个不包含数据采集及总线控制系统的虚拟测试平台,主要用于对测试数据文件的事后处理或对被测对象进行实时仿真测试,形成网络化测试仿真系统。   1、基于网络的虚拟仪表系统   系统利用软件在计算机屏幕上生成仪表面板,通过数据接口接收需要处理显示的仪表数据或软件产生的仿真数据,实时显示刷新数据、波形和图像。该系统具有两个主要的特点:一是具有方便的交互性;二是实现了网络数据传输和绘制的实时性,可以在不同的网络端点显示不同的虚拟仪表,达到多机并行处理的目的。   1.1系统组成   整个软件系统划分为两个独立的子系统:编控子系统和播出子系统。   编控子系统的主要工作是建立、编辑演示模型并控制仿真的启动和结束。编控子系统又可以划分为两个子模块:编辑模块和播出控制模块。通过编辑模块,允许用户设计建立满足自身需要的虚拟仪表模型,也可以对一个现有的仪表模型进行编辑。通过播出控制模块可以实现网络仿真功能,建立和播出子系统之间的连接关系;并通过数据接口不断接收外部输入的仪表参数,向已建立连接关系的各播出子系统发送相应的指令/数据包以更新仪表显示状态。   播出子系统负责接收播出控制系统发来的指令/数据包(包括数字仪表模型、各种参数等),对指令进行解释,不断刷新显示当前仿真结果。在播出子系统中可以指定某可视化对象是否可见,这样可以使在不同的计算机上运行的播出子系统显示不同的仪表面板来达到分布式并行处理的目的。  1.2 参数的网络传输   系统需要在不同计算机之间进行参数传输,因此网络通信是必不可少的条件。本系统采用的是客户/服务器结构的应用程序,这种结构非常适用于分布式处理的计算机网络环境。由于系统是面向PC机平台的应用,因此采用基于TCP/IP协议的Winsock接口实现网络间的数据传输。

数字虚拟仪相关的耗材

  • 供应现货美国福禄克FLUKE-451P-451p高压电离室检测仪(高压放射检测仪)
    供应现货美国福禄克FLUKE-451P-451p高压电离室检测仪(高压放射检测仪),说明书,办事处,现货热卖,特点,销售热线,15300030867,13718811058,张经理,欢迎您的来电咨询!1.应用范围广,包括(α、 γ射线)无损检验,X-射线 及环境测试2.电池供电3.自动转换量程和自动调零4.RS-232 通讯接口5.同时测量剂量率和剂量6.峰值保持模式方便峰值捕捉测量,尤其适用于诊断X线设备的屏蔽防护漏射测量7.可编程的闪光显示、报警器8.自动的超亮液晶显示9.独立累计模式10.Windows 下的Excel 电子表格(选件)11.实时数据记录12.可下载储存在仪器中的13.2700 个数据集14.虚拟仪器显示,带视听报警指示15.支持用户仪器配置和参数选择17.用户可选择工作模式供应现货美国福禄克FLUKE-451P-451p高压电离室检测仪(高压放射检测仪),说明书,办事处,现货热卖,特点,技术指标探测器300 cc 高压空气电离室检测射线大于1 MeV的β射线,大于 25 KeV的γ和X射线测量范围 0-500μR/h,0-5mR/h,0-50mR/h,0-500mR/h,0-5R/h或0-5μSv/h,0-50μSv/h,0-500μSv/h,0-5mSv/h,0-50mSv/h(mR/h或μSv/h的单位只能选择一种,需购买前定制)准确度 在任何量程满刻度指示的10%-100%之间精度在10%以内,不包括能量响应;校准源是137Cs控制按钮ON/OFF 和 MODE 两个按钮工作模式累积剂量测量模式:开机后连续工作30秒,即使以mR/h或R/h为单位显示也执行累积剂量测量模式峰值保持模式模拟条形图单条固定显示检测到的最大值,而数值显示和条图显示仍给出当前检测到的值自动特性自动回零、自动切换量程、自动背景光环境要求温度范围从- 20°C 到+ 50°C,相对湿度从0 到100%,向地性忽略不计电源两节9V碱性电池,工作200小时显示液晶显示模拟/数字信号,带背景光模拟信号100单元直方图显示160px长。直方图显示分成5个区段,每段标有仪器量程的相应值数字信号两位半数字显示,取决于仪器量程的有效数字0,数字高1/4 in (6.4 mm)。显示测量单位, 在显示器上提供电池电压过低和冻结模式指示器。体积 100mm × 200mm × 150mm重量1.11 kg供应现货美国福禄克FLUKE-451P-451p高压电离室检测仪(高压放射检测仪),说明书,办事处,现货热卖,特点,销售热线,15300030867,13718811058,张经理,欢迎您的来电咨询!
  • 数字真空计
    数字真空计为皮拉尼式真空计,即电阻式真空计,并带有控制功能。 产品型号数字真空计技术参数1、输入电压:110V-220V2、测量范围:10-4torr-1000torr3、接口:1/8″NPT产品规格尺寸:?48.3mm×104.7mm注意事项在测量腔体真空度为10-4torr-10-3torr前,必须进行零点校准,否则显示真空度会有较大的偏差。
  • 数字可调式单道移液枪
    产品介绍: 1. 用户熟悉的中央放置移液按键,而退吸头键则分开设置。 2. 符合人类工程学的手指托架让你的双手可以轻松自如地掌握移液器。 3. 无论是你惯用右手还是左手,都可以单手设定移液体积。 4. 四位数字体积显示易于读取也更精确。 5. 整支移液器可以121℃高温高压灭菌20分钟而无需拆卸。 6. 颜色识别标识让你方便直观的选择合适的吸头。 7. 耐腐蚀的活塞和退吸头装置让移液器经久耐用。 8. 数字可调式Transferpette® S的易校准技术(Easy Calibration technology)让你无需任何工具就可进行快速校准,而且出厂时的设置是否经过调节也会非常清晰的显示。 9. 有数字可调式和固定式两种类型可选,移液容量从0.1ul到10ml. 10. 具有通过欧盟体外诊断医疗设备指令(IVD-directive 98/79EC)谁的CE标识
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制