溶解热分析仪

仪器信息网溶解热分析仪专题为您提供2024年最新溶解热分析仪价格报价、厂家品牌的相关信息, 包括溶解热分析仪参数、型号等,不管是国产,还是进口品牌的溶解热分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溶解热分析仪相关的耗材配件、试剂标物,还有溶解热分析仪相关的最新资讯、资料,以及溶解热分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

溶解热分析仪相关的厂商

  • 400-801-5339
    自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。 我们始终坚持以产品创新和客户满意度为第一导向。“客户至上、品质第一、探索创新”的理念让林赛斯在前沿科研机构和工业企业中享负盛名。多年来,一直为热分析研究领域提供优质的仪器。 林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。 林赛斯公司因技术领先而得以不断发展壮大。我们以高标准、高精度和严要求来研发热分析仪器。创新驱动和高精确度让我们成为热分析领域倍受客户信赖的一流生产商。 针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。
    留言咨询
  • 400-601-1369
    德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,我们都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃...2000℃,导热率范围为0.005...1500W/(m*k)。作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。德国耐驰仪器制造公司以其雄厚的实力和可靠的品质,愿与您共创美好的前程。
    留言咨询
  • 北京普瑞分析仪器有限公司是集研制,生产和销售气相色谱仪(GC),液相色谱仪(LC).等分析仪器为一体的一家高技术企业。旨在用数十年的GC、LC等分析仪器设计经验和技术,不断研制适合市场需求的产品。数年来,本公司以技术领先、工艺精湛、质量可靠和服务优良等在广大用户中赢得了良好的声誉。 北京普瑞分析仪器有限公司主要产品有:GC-7800系列、GC-7900系列、GC-6890系列气相色谱仪、LC-2010系列液相色谱仪、色谱工作站\氢气发生器\空气发生器\氮气发生器以及配套品等产品,以及用于燃气分析\酒类分析、食品安全准入评价及认定、室内空气中总挥发性有机物分析、电力变压器油溶解气分析等专用分析仪器。产品广泛应用于大专院校、科研机构、石油化工、电力、生物医药、食品、酒类、香精香料、环境监测等分析领域。 北京普瑞分析仪器有限公司同时拥有一支年轻且富有工作经验的技术服务队伍和各门类中高级技术人才,为广大用户提供技术咨询、专用仪器设计改造、应用培训、安装调试、实验室配套等全方位的技术支持。
    留言咨询

溶解热分析仪相关的仪器

  • NDRH-5S 溶解热(中和热)实验装置产品特点:1.装置本身可独立完成实验,也可以连接电脑,利用专门软件完成实验。菜单选择溶解热模式或中和热模式2.大屏幕液晶显示,高精度数据采集,加热功率连续可调。直流低压电机搅拌,搅拌速度连续可调,稳定安全3.内置高精度铂电阻传感器4.实时功累计,即功率积分显示5.实验过程中允许加热电流电压功率进行调节,不影响测量结果6.测量结果不受电压电流波动影响技术指标:A溶解热模式*1.液晶超高精千分温度计2.测温范围:-50~180℃,分辨率:0.001℃3.加热电流:0~2A连续可调,电流分辨率:0.0001A4.加热电压:0~24V连续可调,电压分辨率:0.001V*5.加热功率显示分辨率:0.001W6.功显示范围:0~999.9J,分辨率:0.1J7.多组样品连续分段记录功和时间,按键切换记录/停止8.单样品记录,按键切换记录/停止/清零B.中和热模式9.液晶超高精千分温度计10.测温范围:-50~180℃,分辨率:0.001℃11.加热电流:0~2A连续可调,电流分辨率:0.0001A12.加热电压:0~24V连续可调,电压分辨率:0.001V*13.加热功率显示分辨率:0.001W*14.温度记录倒计时锁定功能,倒计时时间:0~120秒可设定15.USB通信,配套专用实验软件16.底置磁力搅拌或者顶置搅拌杆搅拌可选。搅拌无级调速
    留言咨询
  • Parr 6755 溶解热量热仪 400-860-5168转2765
    Parr 6755 溶解热量热仪可测量焓变动的一台多用途测热器。它是由测热器集成与一个转动的样品管和一个基于微处理机的温度计。能使用测量反应热,混合热,溶解热,冲淡热并且润湿热。有项目单取使的屏幕显示的一个易操作的设备。温度测量是准确的和被显示明亮地和完整色彩。产品通过打印机、计算机或者以太网样式被提供网络(LAN)连接。其他模型的模拟输出通过在LCD屏幕上的实时密谋显示。产品特点:1、标准偏差:相对标准偏差:0.4%(温度升高1.5 °C- 5°C)相对标准偏差:1.0%(温度升高 0.5 °C 或者6 °C);2、温度分辨:0.0002°C; 3、温度范围:10 °C- 50 °C;4、测量范围:2-1000cal;5、测量精度:0.1cal;6、热值当量:100-145 cal/°C;7、溶质:20ml;8、溶剂容积:90-120ml;9、配置类型:补偿夹套和杜瓦瓶内桶。 产品特点:1、仪器特点自动测量温度和计算结果,打印数据;2、用于测量反应热、混合热、溶解热、稀释热、 吸湿热。
    留言咨询
  • 一 、溶解热法水泥水化热测定仪SHR-650产品简介:水泥水化热测定仪是水泥指标检测仪器,设备有自动恒温功能,自带制冷功能,无需外接恒温水浴,一体式设计,结构紧凑,操作方便。适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥等的任何水化龄期的水化热测定。二、溶解热法水泥水化热测定仪SHR-650技术参数:★水槽温度:20℃±0.1℃ ★真空瓶容积:约650mL冷却速度为盛满比室温高5℃的水静置30分钟后≤0.001℃/min.℃ ★酸液搅拌棒转速:500rpm ★功率:10W ★电压:AC220V ★转速:1500 rpm ★贝克曼差示温度计 ,示差范围:5~6℃ 分度值:0.01℃ ★外形尺寸:700×500×760mm★仪器净重 :80kg三、溶解热法水泥水化热测定仪SHR-650使用方法:★在试验开始时,应将试验内筒从水槽内提升至水面以上位置固定好,打开试验内筒筒盖,将真空瓶、耐酸内衬、酸液搅拌棒放入内筒,将试验筒盖盖好,并拧紧蝶形螺母,密封筒盖,再将内筒慢慢沉入水中固定。★将温度传感器插入水槽盖板上的插孔内并联接到控制仪,将其它各插件联接到控制仪相应插口。接通电源,检查接地是否可靠,打开控制仪电源开关。 ★当水槽内水温高于20.1℃时,应慢慢地向水槽内放入冰块或冷水,待温度略底于20℃时即停止,此时,系统会自动将水温升至标准规定温度,并保持恒温。 ★松开横梁上的锁紧手柄,将横梁转到使主轴与酸液搅拌棒在同一轴线上的位置,松开夹头,将搅拌棒向上提升装入夹头内,调整好酸液搅拌棒的高度位置后拧紧夹头,微调横梁转角,使酸液搅拌棒与筒盖上的孔同心,锁紧横梁上的锁紧手柄。装好贝克曼差示温度计和装料漏斗。★按试验标准规定步骤完成操作。 ★试验完成后,先逐一关闭各部动作,再关掉总电源开关。拔下电源插头,再依次取出贝克曼差示温度计、装料漏斗、酸液搅拌棒、耐酸内衬等,清洗干净后妥善保存以备后用。试验内筒盖好后放置在筒座下面位置,盖好水槽活动盖板。四、溶解热法水泥水化热测定仪SHR-650注意事项;1.禁止在水槽内没有加水的情况下接通电源,进行操作,以防意外。2.向水槽内加水前应先将试验内筒的筒盖盖好密封,并移至筒座底部的位置放好,防止加满水后再放入试验内筒时,溢流管来不及排水,大量的水从水槽上面外溢。3.从主轴夹头上装卸酸液搅拌棒时应小心操作,防止酸液搅拌棒从高处跌落至真空瓶内,损坏真空瓶。 4.贝克曼温度计插入酸液部分及软木瓶塞表面应均匀涂覆石蜡等防酸涂料,试验前应仔细检查防酸涂层是否完好。
    留言咨询

溶解热分析仪相关的资讯

  • 分析技术新视野——从热分析到微量热
    p    strong 仪器信息网讯 /strong 热分析技术发展得非常迅速,已有许多较好的方法和装置。 a href=" https://www.instrument.com.cn/list/sort/6.shtml" target=" _self" 热分析仪 /a 研究物质的物理化学性质与温度的依赖关系,但是仪器结构上的固有缺陷使测定困难。样品池的热传导性能、样品的装填形式以及物质在发生相态转变后热传导率的改变等,使其基线不能回到原来的起始位置。因此,测量的比例系数不是仪器的固有常数,而是在不同的实验条件下都可能发生变化的系数。 /p p    strong 1. /strong a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" strong 差式扫描量热( /strong strong DSC /strong strong ) /strong /a strong 与微量热的两者的差别在哪里? /strong /p p   DTA和DSC均是直接或者间接地测量样品与参考物质的温度差或者补偿值,而样品池、匀热块、热电偶等都具有较好的热传导性能。于是,对于那些反应速度较缓慢,反应热效应较小的过程测量(这些物理化学过程总是相伴而生),仪器对热量的准确捕获是十分困难的。 /p p   热量计具有快速、样品量少、操作简单、实验结果有一定可靠性等优点,特别适于监测和生产控制。 /p p    strong 2. a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" DSC /a 与微量热两者的紧密关系 /strong /p p   ⑴ 两者均预测热相关,原理相同,都是差示式。可以说微热量计就是一个大“DSC” /p p   ⑵ 从热量捕获上讲,热量计是DSC的“继续”: /p p   ★DSC热捕获量粗犷、收集不全面、不准确 但快速、宏观,温度范围宽 /p p   ★量热计实时在线捕获,准确,热力学和热动力学的统一,可在二维空间中获得信息 微观、精细 可观察慢反应过程 使用温度范围上限受限 /p p   ★量热计着重研究“物质的生成过程”(相互作用),DSC是拿 “生成物”研究 /p p   ★量热计可研究不同物质状态,DSC着重非气态物质。 /p p    strong 3. 建议 a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" DSC /a 与微量热两者结合使用 /strong /p p   也就是说,先用DSC获得全程信息,再进一步利用量热计准确实验,获得精确结果,这无疑对研究是有利的。 /p p   DSC和量热计结合使用可用于: /p p   ⑴ 揭示微结构变化 /p p   ⑵ 物质的吸附量热研究 /p p   ⑶ 含能材料的热效应测定 /p p   以含能材料为例,一般地,高含能材料样品在DSC中的样量不能大于0.75mg,结果是信息不明显 然而增加样量就会发生爆炸! /p p   在微热量热计中却可以用于研究物质在动态温度下的热效应。即样品在防爆池中等速升温,测定在整个温度范围中的热效应,实验结果要比差热分析和差示扫描仪器量热精确得多。尤其适合于测定热分解反应诱导期和极缓慢升温速度下的热效应。 /p p   总之, a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" DSC /a 能做的事,量热计都可以接手完成得更好。 /p p style=" text-align: center " strong 量热计的应用 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" align=" center" tbody tr class=" firstRow" td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 1 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 熔化热和熔化温度的测定 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 2 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 晶型转化温度和转化热的测定 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 3 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 溶解热和混合热的测定 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 4 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 化合物生成反应焓的测定 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 5 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 稀释结晶热的测定 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 6 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 比热容的测定 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 7 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 固体材料热导率的测定 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 8 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 火炸药热分解研究 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 9 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 炸药合成工艺的研究 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 10 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 高分子化学及物理上的应用 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 11 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 水解反应 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 12 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 生物化学及农业科学上的应用 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 13 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 反应体系对温度变化的原位动态研究 /span /p /td /tr tr td width=" 29" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " 14 /span /p /td td width=" 234" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 物质的吸附量热研究 /span /p /td /tr /tbody /table p    strong 致谢:本文由西北大学教授高胜利所提供相关资料经编辑整理撰写而成,特此致谢! /strong /p p strong   延伸阅读: /strong /p p strong    /strong a href=" https://www.instrument.com.cn/news/20190517/485442.shtml" target=" _self" strong 高胜利:热分析检测技术与相图构筑 /strong /a /p p strong    /strong a href=" https://www.instrument.com.cn/news/20190627/487852.shtml" target=" _self" strong DSC数据处理——基线的校正 /strong /a /p p strong    /strong a href=" https://www.instrument.com.cn/news/20190628/487896.shtml" target=" _self" strong 5分钟速览热动力学研究方法 /strong /a /p p br/ /p
  • 中国科学技术大学理化科学实验中心热分析与吸附组在用设备简介
    p    strong 本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。 /strong /p p   目前热分析与吸附组在用的分析仪器主要包括热分析仪、吸附仪和粒度粒形分析仪,这些仪器与常规的结构和成分分析仪器不同,主要侧重于材料的性质表征。热分析仪是在程序控温和一定气氛下测量材料的物理性质(主要包括质量、热量、尺寸、电学性质、光学性质、磁学性质等)随温度或时间连续变化关系的一大类仪器,而吸附仪则通过测量材料在不同条件下(主要指压力、浓度、温度、时间等)对于某种或某几种气体的吸附能力来获得材料的结构、性质等方面的信息的一类仪器,主要分为物理吸附仪和化学吸附仪两大类,粒度粒形分析系统可以得到材料的粒径分布、粒形和Zeta电位等信息。和以下将分类进行介绍。 br/ /p p style=" text-align: center "    strong I热分析仪 /strong /p p    a href=" https://www.instrument.com.cn/zc/62.html" target=" _self" strong 1.热重仪 /strong /a /p p   热重仪(Thermogravimeter),是一种利用热重法检测物质温度-质量变化关系的仪器。按其结构形式可以分为下皿式(即吊篮式)、上皿式和水平式三大类。目前的商品化仪器中,上皿式和水平式结构的热重仪通常与差热分析和差示扫描量热技术联用,通常称为同步热分析仪(SimultaneousThermal Analyzer)。下皿式结构的仪器通常为单一的热重仪。在用的热重仪主要有日本岛津公司TGA-50H热重仪(图1)、美国TA公司Q5000IRTGA热重仪(图2)、美国TA公司DiscoveryTGA热重仪(图3)和德国Netzsch公司TGA209F1四台仪器。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7cc54975-2e83-4193-afbe-9362093fddab.jpg" title=" 图1 Shimadzu TGA-50H热重仪.png" alt=" 图1 Shimadzu TGA-50H热重仪.png" / /p p style=" text-align: center " 图1 Shimadzu TGA-50H热重仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/60fcd219-634a-4501-b236-0c8383beb3f5.jpg" title=" 图2 TA Q5000IR TGA热重仪.png" alt=" 图2 TA Q5000IR TGA热重仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图2 TA Q5000IR TGA热重仪   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3cc6fee1-5c9e-42d8-b072-1cf2aa19198b.jpg" title=" 图3 TA Discovery TGA热重仪.png" alt=" 图3 TA Discovery TGA热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" 图3 TA Discovery TGA热重仪 /a    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/62aaf285-e5ee-4ded-9d8f-68c63487286c.jpg" title=" 图4 德国Netzsch公司TGA209F1热重仪.png" alt=" 图4 德国Netzsch公司TGA209F1热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" 图4 德国Netzsch公司TGA209F1热重仪 /a /p p   其中,TGA-50H热重仪购于1993年,经过多次的加热炉、热电偶、吊篮以及软件的升级改造,这台仪器至今各项指标都可以满足检测要求。目前该仪器主要用于完成一些特殊条件下(主要指耗时特别长、水蒸气、还原气氛等可能会对仪器带来潜在损害的实验)的热重实验。美国TA公司的Q5000IRTGA和DiscoveryTGA可以实现温度调制(MTTGA)和速率超解析(HRTGA)实验。德国Netzsch公司TGA209F1带有200位自动进样器,可以实现真空条件下的TG实验。Q5000IR TGA和DiscoveryTGA主要用于常规测试,这两台仪器均带有25位自动进样器,可以高效率地完成各种常规测试需求。另外,由于其红外加热的优势,可以实现快速的升降温和准确的等温,可以用来研究高加热速率和等温下的热解行为。 /p p    a href=" https://www.instrument.com.cn/zc/469.html" target=" _self" strong 2.同步热分析仪 /strong /a /p p   同步热分析仪是在程序控温和一定气氛下,对一个试样同时采用两种或多种热分析技术,是一种常见的热分析技术。通常特指热重-差热分析仪或热重-差示扫描量热仪。在用的热重仪主要有日本岛津公司DTG-60H热重-差热分析仪(图5)、美国TA公司SDTQ600热重-差热分析仪(图6)、美国PE公司STA-6000同步热分析仪(图7)、美国PE公司STA-8000同步热分析仪(图8)和德国耐驰公司STA449F3同步热分析仪(图9)。这五台仪器中除STA-8000最高温度为1000℃外,其余四台仪器的最高温度均为1500℃。其中,STA-6000和STA449F3带有自动进样器,可以高效率地完成各种常规测试需求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9bf825ec-6e41-4322-a420-e5f38d3601ee.jpg" title=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图5 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/2892e4a4-5470-4edf-a2fe-9dd437fd5c40.jpg" title=" 图6 TA SDT Q600热重-差热分析仪.png" alt=" 图6 TA SDT Q600热重-差热分析仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图6 TA SDT Q600热重-差热分析仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/97dabaf9-0bbb-4f90-afb6-2f726f88a4c9.jpg" title=" 图7 PerkinElmer STA-6000同步热分析仪.png" alt=" 图7 PerkinElmer STA-6000同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" 图7 PerkinElmer STA-6000同步热分析仪 /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f7d5b2c6-6263-4064-a733-1ef18dbaa4d3.jpg" title=" 图8 PerkinElmer STA-8000同步热分析仪.png" alt=" 图8 PerkinElmer STA-8000同步热分析仪.png" / /p p style=" text-align: center " 图8 PerkinElmer STA-8000同步热分析仪 br/ /p p    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9831667e-4650-43cb-97bf-36dc8d2341dd.jpg" title=" 图9 Netzsch STA 449F3同步热分析仪.png" alt=" 图9 Netzsch STA 449F3同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" 图9 Netzsch STA 449F3同步热分析仪 /a /p p    a href=" https://www.instrument.com.cn/zc/68.html" target=" _self" strong 3.热重/红外光谱/(气相色谱/质谱联用)联用仪 /strong /a /p p   在用的两台热重/红外光谱/(气相色谱/质谱联用)联用仪(图10)分别购于2012年(热重部分为Pyris1TGA、红外光谱部分为Frontier红外光谱仪、GC为Clarus680、MS为ClarusSQ 8T)和2018年(热重部分为TGA8000、红外光谱部分为Frontier红外光谱仪、GC为Clarus690、MS为ClarusSQ 8T),主要用来研究材料随着温度的变化材料由于分解等引起的质量减少产生的气体的种类和含量的信息,是一种常用的联用技术。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/66e27249-e41c-489f-aff5-843ec2e531a7.jpg" title=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" alt=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" style=" max-width: 100% max-height: 100% " / br/ /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" 图10 PerkinElmer TL-9000热重/红外光谱/(气相色谱/质谱联用)联用仪 /a /p p   该仪器可以实现热重/红外光谱联用、热重/红外光谱/质谱联用、热重/红外光谱/(气相色谱/质谱联用)联用等实验,是研究材料的热解机理的一种很强大的分析手段。另外,这两套联用系统分别配置了捕集阱顶空(型号为TurboMatrix40 Trap)和热脱附(型号为TurboMatrix300)附件,通过切换,可以实现室温~300℃下的逸出气体的组成分析。 /p p    a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" strong 4.差示扫描量热仪 /strong /a /p p   差示扫描量热仪(differential scanning calorimeter,简称DSC仪)是在程序控温和一定气氛下,测量输给试样和参比物的热流速率或加热功率(差)与温度或时间关系的仪器。DSC仪通过测量试样端和参比端的热流速率或加热功率(差)随温度或时间的变化过程来获取试样在一定程序控制温度下的热效应信息。与DTA仪相比,DSC仪具有较高的灵敏度和精确度。常用的DSC仪主要有热流式和功率补偿式两种类型。在用的差示扫描量热仪主要有日本岛津公司DSC-60差示扫描量热仪(图11)、美国TA公司Q2000差示扫描量热仪(图12)、美国PE公司DSC8500差示扫描量热仪(图13)、美国TA公司MC-DSC多池差示扫描量热仪(图14)和德国耐驰公司DSC204F1差示扫描量热仪(图15)。其中DSC-60、Q2000、DSC204F1和MC-DSC属于热流型DSC仪,DSC8500属于功率补偿型DSC仪。除MC-DSC外,仪器的工作温度范围为-180℃-725℃(DSC8500的最高温度为750℃)。Q2000带有紫外光源,可以用来研究光照条件下的热效应的变化。Q2000和DSC8500还可以分别实现MTDSC和DynamicDSC的功能。另外,Q2000和DSC8500带有自动进样器,可以高效率地完成各种常规测试需求。与常规DSC不同,MC-DSC可以用来测量大尺寸样品(通常可以用来测试的样品的体积在1mL以上)的热效应,该仪器可以同时测量三个样品。但工作温度范围比较有限,在-40-150℃范围内。该仪器还可以用来测量高压、混合等条件下的热效应变化。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/85f4eb27-c25a-4c14-9101-0d2911440760.jpg" title=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图11 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/066e1243-684f-422e-b8fb-9ee60db94cfd.jpg" title=" 图12 TA Q2000 DSC 差示扫描量热仪.png" alt=" 图12 TA Q2000 DSC 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图12 TA Q2000 DSC 差示扫描量热仪  a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/2b5272a7-b5f4-448f-b74e-9cd33c5f9447.jpg" title=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" alt=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" 图13 Perkin Elmer DSC 8500 差示扫描量热仪 /a br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/63c667fb-8897-4c0f-b75f-4b728311c955.jpg" title=" 图14 TA MC-DSC 差示扫描量热仪.png" alt=" 图14 TA MC-DSC 差示扫描量热仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图14 TA MC-DSC 差示扫描量热仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/30fa6369-9982-48be-bdb6-bf29b1f1f914.jpg" title=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" alt=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" 图15 Netzsch DSC 204F1差示扫描量热仪 /a br/ /p p    strong 5.微量差示扫描量热仪 /strong /p p   与常规的DSC仪相比,微量差示扫描量热仪(microDSC)具有更高的灵敏度。其工作原理属于功率补偿型。我组在用的microDSC主要有美国Microcal公司(现已并入美国马尔文公司)的VP-DSC微量差示扫描量热仪(图16)和美国TA公司的NanoDSC微量差示扫描量热仪(图17)。由于该仪器的研究对象主要为大分子溶液体系,其工作温度范围为-5℃-130℃。与常规DSC实验中样品加入可移动的坩埚中不同,microDSC的样品池为固定池。实验时溶液通过进样器加入具有一定体积的固定池中,实验结束后再将待测溶液移除,然后清洗样品池。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d2ed8ad-c2d8-470e-9794-3029a265cd3f.jpg" title=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" alt=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" 图16 Microcal VP-DSC微量差示扫描量热仪  /a   /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5d86b323-37aa-4a09-903b-0e4c5912c60f.jpg" title=" 图17 TA Nano DSC微量差示扫描量热仪.png" alt=" 图17 TA Nano DSC微量差示扫描量热仪.png" / /p p style=" text-align: center " 图17 TA Nano DSC微量差示扫描量热仪 /p p    strong 6.闪速差示扫描量热仪 /strong /p p   闪速差示扫描量热仪(FlashDSC 2+)(图18)可以用来研究许多亚稳态材料如半结晶聚合物、多晶型材料、复合材料以及合金等的结构变化过程,可以实现常规的DSC无法实现的超高加热/降温速率下的实验。借助其UFS1传感器可以实现最高加热速率为3000000K/min(300万度每分钟)和最快加热速率为2400000K/min(即240万度每分钟)的超高温度扫描速率下的实验,实验温度范围为-100-1000℃。仪器采用嵌于陶瓷基体之上的微型芯片式传感器。该传感器基于MEMS 技术并且像常规DSC 一样拥有两个独立的量热组件(样品池及参比池)。两个量热组件所在的传感器主体由两个相同的正方形氮化硅薄膜构成。薄膜边长为1.6mm、厚度为2μm,嵌于300μm厚的硅框架内。用于闪速DSC 的典型样品为薄膜、块状材料或者粉末。块状材料在制样时首先从基体材料上切下一些小圆片。然后在显微镜下用刀片在传感器的附件将小圆片切成更小的小片。利用尖端带有一根细毛的专用毛笔将制备成的样品直接放置于传感器上。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/79f58b82-4ab2-44d7-9216-fb9b56bdde39.jpg" title=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" alt=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" 图18 闪速差示扫描量热仪(FlashDSC 2+) /a br/ /p p    strong 7.等温微量量热仪 /strong /p p   在用的美国TA公司的TAMIV等温微量热仪(图19)是一种非常灵敏、稳定和灵活的微量热系统,能够直接测量所有的热信号、从而定量得到一个过程热力学和动力学信息。四个独立的量热通道可以在相同的实验条件下同时进行不同样品的实验,目前该仪器配置了等温滴定量热计、溶解热量热计、气体灌注量热计和六通道微瓦级量热计和纳瓦级量热计。可用于反应过程中向系统内添加反应试剂或是精确控制添加试剂的时间及用量。该系统可用来测量反应热,材料稳定性,材料寿命预测,工艺安全性评价,配方筛选等。通过等温滴定量热检测,可以对含有不同基团分子的两者液体材料在相互滴加时,根据产生测量产热情况,计算两种基团的结合情况,从而评估两者物质的相容情况 通过气体灌注/吸附热量检测,可以在一定温度下,得到材料对气体吸附过程的吸/放热测量 可以实现材料体与不同气氛(或湿度)作用下的吸/放热测量 通过溶解量热检测,可以在实际应用中,需要检测固体材料溶解到液体或者两者液体混合时所产生的溶解热。如含能材料溶解于水时的热量检测。通过纳瓦级量热计可以很容易实现此应用 通过多通道量热检测,可以在实际应用中用于同种样品材料的目标性筛选,极大地提高工作效率。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4f50435-e361-4d77-8f17-b10c95be8972.jpg" title=" 图19 美国TA公司TAMIV等温微量热仪.png" alt=" 图19 美国TA公司TAMIV等温微量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" 图19 美国TA公司TAMIV等温微量热仪 /a br/ /p p    strong 8.等温滴定量热仪 /strong /p p   等温滴定量热仪为生物分子结合的研究提供了最高的灵敏度和灵活性。仪器采用固态热电偶加热和冷却系统,实现了精确的温度控制,同时具有同样灵活性的注射器附件可确保准确有效地输送滴定剂。在用的美国TA公司的NanoITC等温滴定量热仪(图20)的工作温度范围为2℃~80℃,注射针筒体积为50µ L 和250µ L,检测热量范围是0.1µ J~5000µ J。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/f44de75d-a260-4a1c-b0c1-3aff5dcf91a5.jpg" title=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" alt=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" 图20 美国TA公司的NanoITC等温滴定量热仪 /a /p p    a href=" https://www.instrument.com.cn/zc/66.html" target=" _self" strong 9.热膨胀仪 /strong /a /p p   热膨胀仪是在程序控温和一定气氛下,负载力接近于零的条件下测量材料的尺寸(通常为长度)随温度和时间变化关系的一类技术。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。通过材料的尺寸变化可以测量与研究材料的线膨胀与收缩、玻璃化温度、致密化和烧结过程、热处理工艺优化、软化点检测、相转变过程、添加剂和原材料影响、反应动力学研究等方面的信息。在用的热膨胀仪为德国耐驰公司的DIL-402C热膨胀仪(图21),该仪器可以用来测量材料在室温-1600℃范围内的尺寸变化信息。  /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/35f4cc01-6a98-4340-a275-1bf96127b13b.jpg" title=" 图21 Netzsch DIL-402C热膨胀仪.png" alt=" 图21 Netzsch DIL-402C热膨胀仪.png" / /p p style=" text-align: center " 图21 Netzsch DIL-402C热膨胀仪 /p p   strong   a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" 10.静态热机械分析仪 /a /strong /p p   静态热机械分析仪(ThermalMechanical Analyzer,简称TMA仪)是在程序温度控制下(等速升温、降温、恒温或循环温度),测量物质在受非振荡性的负荷(如恒定负荷)时所产生的形变随温度变化的一种技术。热机械分析虽然涉及的材料对象非常广泛,包括金属、陶瓷、无机、有机等材料,但用它来研究高分子材料的玻璃化温度Tg、流动温度Tf、相转变点、杨氏模量、应力松弛等更具有特殊的意义。在用的热机械分析仪为美国TA公司的Q400TMA 热机械分析仪(图22),该仪器可以用来测量材料在-150-1000℃范围内的尺寸变化信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/d5b4ef1a-0f74-4262-909d-c4255d0aa8e7.jpg" title=" 图22 TA Q400 TMA热机械分析仪.png" alt=" 图22 TA Q400 TMA热机械分析仪.png" / /p p style=" text-align: center " 图22 TA Q400 TMA热机械分析仪 br/ /p p    a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" strong 11. 动态热机械分析仪 /strong /a /p p   与TMA相比,动态热机械分析仪(DynamicMechanical Analyzer,简称DMA仪)是在程序温度控制下测量物质在承受振荡件负荷(如正弦负荷)时模量和力学阻尼随温度变化的一类仪器。它在测量分子结构单元的运动,特别在低温时比其他分析方法更为灵敏、更为有用。在用的DMA仪为美国TA公司DMAQ800动态热机械分析仪(图23)和DiscoveryDMA Q850动态热机械分析仪(图24)。该仪器可以用来研究材料在拉伸、压缩、单/双悬、三点弯曲、剪切条件下的动态受力下的形变,工作温度范围为-160~600℃。最大力为18N,频率范围0.001~200Hz。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9d52c1f2-8b54-4933-bf5f-3a948bfe6abc.jpg" title=" 图23TA Q800 DMA热机械分析仪.png" alt=" 图23TA Q800 DMA热机械分析仪.png" / /p p style=" text-align: center " 图23TA Q800 DMA热机械分析仪 br/ /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ca2ea5ba-9a29-4ff3-8766-fd29bb8c78d1.jpg" title=" 图24TA Discovery DMA 850热机械分析仪.png" alt=" 图24TA Discovery DMA 850热机械分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" 图24 TA Discovery DMA 850热机械分析仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/84.html" target=" _self" strong 12.流变仪 /strong /a /p p   流变仪(rheometer),即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。分为旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。在用美国TA公司的DiscoveryDHR-2 流变仪(图25)属于旋转流变仪。通过改变不同的外界调节(如温度,压力,频率,应变,时间等)作用于材料,得到材料的回馈信号分析出其工艺过程和结构特性,研究材料或样品的性能(如零剪切粘度,凝胶点,固化点等等),计算材料的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪测量时将样品置于特定的上下测量夹具之间,夹具的一端对样品施加一个力或变形,相应的传感器测量样品回馈对所施加的力或变形的响应,通过对该响应分析就得到样品粘弹性的总和特性曲线(如零剪切黏度,凝胶点,固化点等),计算样品的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪的测试模式包括:流动(稳态测量)、振荡(动态测试)、蠕变和应力松弛(瞬态测量)等模式。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d195ae8-9c9a-4152-af09-be48efbe3c42.jpg" title=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" alt=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" 图25 美国TA公司DiscoveryDHR-2 流变仪 /a br/ /p p   strong   a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" 13.热流法导热仪 /a /strong /p p   导热仪广泛应用于包括石墨、金属、陶瓷、聚合物、复合材料等领域,具有样品制备简易,测量速度快,测量精度高等众多优点。在用的热流法导热仪为德国耐驰公司的HFM446热流法导热仪(图26),平板温度范围:-20~90℃,可用于直接测量低导热与绝热材料的导热系数,如膨胀聚苯乙烯(EPS)、挤出聚苯乙烯(XPS)、PU坚硬泡沫、矿物棉、膨胀珍珠岩、泡沫玻璃、软木塞、羊毛、天然纤维材料,包含相变材料、气凝胶、混凝土、石膏或聚合物的建筑材料等。测试时将待测材料置于两块平板之间,平板间维持一定的温度梯度。通过平板上两个高精度的热流传感器,测量进入与穿出材料的热流。在系统达到平衡状态的情况下,热流功率为常数,在样品的测量面积与厚度已知的情况下,使用傅立叶传热方程可以计算导热系数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bb1690a8-cac7-4943-b3b8-a2c41658a514.jpg" title=" 图26 德国耐驰公司HFM446热流法导热仪.png" alt=" 图26 德国耐驰公司HFM446热流法导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" 图26 德国耐驰公司HFM446热流法导热仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" strong 14.激光导热仪 /strong /a /p p   激光热导法直接测量的是材料的热扩散系数,其基本原理为:在炉体控制的一定温度下,由激光源发射光脉冲均匀照射在样品下表面,使试样均匀加热,通过红外检测器连续测量样品上表面相应温升过程,得到温度(检测器信号)升高和时间的关系曲线。应用计算机软件的数学模型对理论曲线和试验温度上升曲线进行计算修正,从而测出样品的热扩散系数,再测出比热已知的标样的热扩散系数,利用数学模型计算出样品的比热,系统根据计算公式自动计算出样品的导热系数。在用的德国耐驰公司的LFA467 HyperFlash 闪射法激光导热仪(图27),工作温度范围:-100~500℃,可在整个温度范围内连续测量16 个样品 德国耐驰公司的LFA467 HT HyperFlash 闪射法激光导热仪(图28),工作温度范围:室温~1250℃,这两款仪器都拥有极高的采样频率2MHz,特别适合于薄膜样品和高导热材料。  /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5ef34d77-68dd-4c81-8f7f-00ebd4b8e95a.jpg" title=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" alt=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪  /a   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e96ba5b-542f-4218-b48a-3e3625c3ed0f.jpg" title=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" alt=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪 /a /p p br/ /p p style=" text-align: center "    strong II 吸附仪 /strong /p p   在用的吸附仪主要有以下几种: /p p    strong 15.物理吸附仪(比表面积介孔分析仪) /strong /p p   在用的比表面积和介孔分析仪为美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪(图29)。该仪器可同时实现三个样品的测试,得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(BJH、DFT等模型)、孔容积等信息。采用脱气站与分析站分离的工作模式。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/614b0dc7-11e4-4252-9812-9630ab61d87b.jpg" title=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" alt=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" / /p p br/ /p p style=" text-align: center " 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪 /p p    strong 16. 物理吸附仪(比表面积和微孔、介孔分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国QuantachromeAutisorb iQ3M全自动气体吸附仪(图30)和美国Micromeritics2460全自动物理吸附仪(图31)。 /p p   该仪器可同时实现三个样品的测试(可以同时进行两个微孔或三个介孔的分析),得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(HK、BJH、DFT等模型)、孔容积等信息。仪器同时带有4个脱气站和3个分析站。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/fc642a87-dad4-4e50-9127-7f5177ae6865.jpg" title=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" alt=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" / /p p style=" text-align: center " 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/50880f2e-b073-4094-8018-74727f86a979.jpg" title=" 图31 美国Micromeritics2460全自动物理吸附仪.png" alt=" 图31 美国Micromeritics2460全自动物理吸附仪.png" style=" max-width: 100% max-height: 100% " / br/ /p p style=" text-align: center " 图31 美国Micromeritics2460全自动物理吸附仪 /p p    strong 17.物理化学吸附仪(比表面积、微孔、介孔和静态化学吸附分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪(图32)。该仪器可以实现对材料的物理吸附(得到比表面积、孔径分布、孔容积等信息)和静态化学吸附实验。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/07938ed4-1570-479c-ad92-01e2921cd925.jpg" title=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" alt=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" / /p p style=" text-align: center " 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪 br/ /p p    strong 18.化学吸附仪(静态和动态化学吸附分析仪) /strong /p p   在用的美国QuantachromeAutosorb iQ3MVC全自动气体吸附仪(图33)除了可测比表面积、介孔、微孔等,还可以测量蒸汽吸附、静/动态化学吸附,全方位表征样品的催化特性。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4367c8af-bc74-4539-b2a7-1f2200dabd17.jpg" title=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" alt=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" / /p p style=" text-align: center " 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪 /p p    strong 19.压汞仪 /strong /p p   在用的压汞仪为美国康塔公司的PoreMaster60GT全自动压汞仪(图34),可同时分析2个高压样品。可用于介孔和大孔的总孔体积、孔体积分布、孔表面积及其分布测定,也可用于测定空心玻璃微珠的压碎强度和防水材料的水侵入研究。该仪器利用汞对材料不浸润的特性,采用人工加压的方式使汞进入材料内部孔隙,通过高精度压力传感器和标准体积膨胀计测量样品的注汞和退汞曲线,结合相关模型计算样品的孔径结构、孔隙度及真密度等参数。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4e82d57e-86b9-49c2-a473-686d65fa88f7.jpg" title=" 图34 PoreMaster 60GT全自动压汞仪.png" alt=" 图34 PoreMaster 60GT全自动压汞仪.png" / /p p style=" text-align: center " 图34 PoreMaster 60GT全自动压汞仪 br/ /p p br/ /p p style=" text-align: center " strong III 粒度粒形分析仪 /strong /p p   目前,常用的颗粒粒度表征方法主要有筛分法、沉降法、电阻法、颗粒跟踪法、激光衍射法、动态光散射法、静态图像法、动态图像法等。其中,激光衍射法因为准确性高、重复性好、测试速度快、自动化程度高、大量成熟的测试方法标准,成为微米级颗粒粒度的主流方法。动态光散射法对于纳米级颗粒具有准确、快速、可重复性好等优点,还具有测量Zeta电位等能力,已经为纳米材料中非常常规的一种表征方法。动态图像法采样数据多、无取向误差、颗粒分散度高、无粘连重叠现象,在粒形分析方面得到了广泛应用,除了给出30多种颗粒的粒形参数,还能对测试颗粒的分散情况进行分析。在用的Microtrac粒度粒形测量系统可以实现颗粒以上的表征,该测量系统在催化剂、能源、环境、化工、金属粉体、工业矿物、陶瓷、玻璃珠、油气、涂料/颜料、制药、涂层、水泥、3D打印等领域中有着广泛的应用。颗粒的粒度和粒形与材料的性能密切相关,例如药品颗粒的粒度决定着人体的吸收程度,水泥颗粒的粒度决定了水泥的凝结时间,调色剂颗粒的球形度决定了其在打印材料上的粘附力等等。通过测量这些颗粒的粒度粒形参数(如粒径、球形度、长宽比、周长、面积等),可以优化材料的相关特性。该测量系统主要包括测量范围为0.01-4000µ m的Sync测量单元(图35)和测量范围为0.8nm-6.5µ m的NanoTrac测量单元(图36)。其中,Sync测量单元除可以实现粒度分布测量功能外,还可以得到粒形信息 NanoTrac测量单元除可以实现粒度分布测量功能外,还可以得到Zeta电位信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b4fe743a-36c8-4df3-9ef2-dea228d3cac9.jpg" title=" 图35 Sync测量单元.png" alt=" 图35 Sync测量单元.png" / /p p style=" text-align: center " 图35 Sync测量单元 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7b0f6ad0-04c2-428a-bba6-87bb587dd984.jpg" title=" 图36 NanoTrac测量单元.png" alt=" 图36 NanoTrac测量单元.png" / /p p style=" text-align: center " 图36 NanoTrac测量单元 /p p   Sync测量单元由2个镜头、2块检测系统(共151个检测单元)和三个激光系统组成,可以实现高效、准确的颗粒度表征。其采用静态激光衍射技术测量微米级粒度,采用动态图像分析技术测量粒形数据,可以使用多于30种大小和形态的参数。仪器可以实现湿法和干法测量模式,满足多种样品的各种测量要求。由Sync的动态图像分析功能可以得到的散点图,由此可以得到不同尺寸范围的不同形状的颗粒的分布信息。NanoTrac测量系统采用采用先进的动态光背散射技术,180° 检测异相多普勒频率的变化,稳定性好、重现性高。采用电泳法技术测量Zeta电位数据。通过温控装置可以实现0-80℃范围内的粒度和Zeta电位测量。 br/ /p p br/ /p
  • 热分析仪有奖问卷调研活动开始啦!动动手指,话费奖励等你来拿
    p   热分析仪器是用于研究物质随温度变化而发生物理和化学变化的过程中,能量、质量、力学性能等物理性质随温度或时间变化规律的仪器。广泛应用于化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域。 /p p   为更好地了解热分析仪器在各行业、领域内的市场情况,仪器信息网特面向热分析仪器广大用户、供应商推出热分析仪市场情况有奖问卷调研活动。调研结果之后会以专题、盘点、调研报告等形式发布,来为热分析仪器相关从业人员提供更多有价值的信息。 /p p   为回馈热心参与本次问卷调研活动的用户,我们特向认真完成调研问卷者提供总计 span style=" color: rgb(255, 0, 0) " 200 /span 份 span style=" color: rgb(255, 0, 0) " 10 /span 元(最高 span style=" color: rgb(255, 0, 0) " 50 /span 元)话费奖励,奖励将在 span style=" color: rgb(255, 0, 0) " 10 /span 个工作日送达,获奖名单随活动进行不定期公布。 /p p   本次调研问卷含有单选、多选、简答等题型。如出现漏答、文不对题等情况,答卷有可能被判定为不合规,从而影响到您获取奖励,请参与用户仔细作答。 /p p   动动手指,10元话费带回家! /p p style=" text-indent: 2em " strong 点击进入活动页面: /strong a href=" http://cn.mikecrm.com/UbH6i3U" target=" _blank" title=" " span style=" color: rgb(0, 176, 240) " strong http://cn.mikecrm.com/UbH6i3U /strong /span /a /p p   或 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/a3c4df0c-b008-4ec0-b3e5-4f53c6e41921.jpg" title=" 热分析调研问卷二维码-麦客.jpg" / /p p style=" text-align: center " 长按识别二维码参与调研 /p p strong 活动细则如下 /strong /p p    strong 活动截止时间: /strong span style=" color: rgb(255, 0, 0) " 2018年9月17日 /span /p p    strong 活动对象: /strong 热分析仪相关用户及供应商 /p p    strong 奖励方式: /strong 活动期间认真、如实、完整回答调研问卷,并经仪器信息网审核确定为有效问卷的参与者,将获得 span style=" color: rgb(255, 0, 0) " 10 /span 元话费( span style=" color: rgb(255, 0, 0) " 10 /span 个工作日内送达)。总计 span style=" color: rgb(255, 0, 0) " 200 /span 份,先到先得 span style=" color: rgb(0, 176, 240) " strong 调研问卷最后一题(您对当前热分析仪市场有哪些看法?)认真、如实、完整作答者,从中择优选取 span style=" color: rgb(255, 0, 0) " 10 /span 名用户,继续获得 span style=" color: rgb(255, 0, 0) " 50 /span 元话费奖励(活动结束后统一发放)。 /strong /span /p p   本活动最终解释权归仪器信息网所有,如有问题,请联系我们的电话: strong 010-51654077-8201或邮箱:duanhb@instrument.com.cn /strong 。 /p

溶解热分析仪相关的方案

溶解热分析仪相关的资料

溶解热分析仪相关的试剂

溶解热分析仪相关的论坛

  • 用混合量热法测定冰的溶解热

    【序号】:1【作者】:【题名】:用混合量热法测定冰的溶解热【期刊】:【年、卷、期、起止页码】:第2版 国外数学名著系列影印本【全文链接】:https://wenku.baidu.com/view/0d9588c60a4e767f5acfa1c7aa00b52acec79cf8?aggId=fa84a9c9f624ccbff121dd36a32d7375a517c65d&fr=catalogMain_text_ernie_recall_backup_new%3Awk_recommend_main3&_wkts_=1701067981535&bdQuery=%E5%86%B0%E7%9A%84%E6%BA%B6%E8%A7%A3%E7%83%AD%E7%9A%84%E6%B5%8B%E5%AE%9A%E7%9A%84%E5%AE%9E%E9%AA%8C%E6%8A%A5%E5%91%8A&needWelcomeRecommand=1

  • 热分析技术在药物分析中的应用进展

    热分析技术在药物分析中的应用进展热分析技术是研究物质在加热或冷却过程中产生某些物理变化和化学变化的技术。自1887年Lechatelier提出差热分析至今已发展成为一门专门的热分析技术。因其具有方法灵敏、快速、准确等优点,该技术及其分析仪器也得到快速发展。不久Sadtler的DTA标准图谱集,热分析专著《Thermal analysis》也相继面世。热分析技术在药物分析领域也广泛应用,如化学药品的鉴别、理化常数测定、纯度考查、稳定性考察以及近年来对中药活性成分的研究、中药材真伪品的鉴别、中药制剂质量分析等。目前,一些发达国家已把热分析方法作为控制药品质量的主要方法之一,美国药典23版与英国药典1993年版均已收载了热分析方法。1 热分析技术的方法分类1.1 差热分析(differential thermal analysis,DTA)  DTA是最先发展起来的热分析技术。当给予被测物和参比物同等热量时,因二者对热的性质不同,其升温情况必然不同,通过测定二者的温度差达到分析目的。以参比物与样品间温度差为纵座标,以温度为横座标所得的曲线,称为DTA曲线。1.2 差示扫描量热法(differential scanning calorimentry, DSC)  DSC是在DTA基础上发展起来的一种热分析方法。由于被测物与参比物对热的性质不同,要维持二者相同的升温,必然要给予不同的热量,通过测定被测物吸收(吸热峰)或放出(放热峰)热量的变化,达到分析目的。以每秒钟的热量变化为纵座标,温度为横座标所得的曲线,称为DSC曲线,与DTA曲线形状相似,但峰向相反。1.3 热重分析(thermogravimetry,TGA)  TGA是一种通过测量被分析样品在加热过程中重量变化而达到分析目的的方法。即将样品置于具有一定加热程序的称量体系中,测定记录样品随温度变化而发生的重量变化。以被分析物重量(%)为纵座标,温度为横座标的所得的曲线即TGA曲线。其它尚有导数热重量分析、热机械分析(TMA)、质谱差示分析等。2 热分析技术在药物分析中的应用  热分析技术常用于新药研究中。药物分析中应用最多的是将TGA与DSC联合使用。热分析技术可用于判断药物的熔点,确定药物的结晶水,测定药物的纯度,处方及辅料筛选等。2.1 药品熔点的判断  熔点是衡量药物质量的重要指标之一。确定药物的熔点需确定这个药物是熔融同时分解还是熔点,再确定其熔融同时分解或熔点的具体温度。如果采用历版中国药典收载的毛细管测定法,很难作到准确判断。如采用DSC与TGA相结合进行测定,则可对其作出准确的判断。80年代初重庆市药品检验所曾用DSC和TGA确定磷酸氯喹的熔点,1986年杨腊虎又用DSC测定九种熔点标准品物质的熔点。2.2 药品的纯度测定  利用热分析技术测定药品纯度的理论依据是范德霍夫方程,即药品熔点的下降与杂质存在的克分子分数成正比。采用逐步加热程序技术(step heating programming technique)可扩大测定范围简化测定过程并缩短测定时间。但此方程的适用条件为被测药物不能熔融同时分解,并药物与共存杂质之间不得形成固溶剂。当不需要得到药物的准确纯度时,可采用与对照品同时测定DSC或TGA曲线,通过分析热分析曲线来确定药物的纯度。文献报道了用热分析技术测定药物的纯度和用DSC测定硝苯地平的纯度。2.3 药物的多晶型分析  不同晶型的药物具有不同的生物利用度,因而具不同疗效。区别药物的晶型,过去通常采用红外分光光度法和X-射线衍射法。后来常用DSC或DTA分析法。用热分析技术不仅可区别同一药物的不同晶型,而且还可提供其热力学变化过程,为选择转晶条件提供依据。如对甲苯咪唑、多沙唑喹、法莫替丁、头孢新酯等的多晶型研究。徐坚等还用热分析技术研究了甲氧氯普胺两种晶型的互变条件及各自的溶解热。2.4 差向异构体的分析  不少的药物存在差向异构体,同一药物不同的差向异构体之间,其生物利用度不同。侯美琴等报导了用DTA和DSC分析双炔失碳的差向异构体,测定出其中α体的纯度,并为其制剂的剂量调整提供依据。2.5 药物中结晶水与吸附水的确定  确定药物分子中有无结晶水和结晶水的个数,过去常用卡氏水份测定法或在一定条件下测定干燥失重来决定。这些方法很难区分是分子中的结晶水还是吸附水。采用DSC-TG技术则可解决此问题。2.6 药物制剂中活性成份分析  热分析技术可用于药物制剂中活性成分的定性分析、定量分析和药物与辅料间的相互作用以及处方的设计。1980年有人报道不经分离直接用DSC技术测定磺胺类药物、硝基呋喃类药物以及解热镇痛类药物的胶囊剂和片剂。近年有文献报道用DSC考察了制剂中,活性成份间及活性成份与辅料间是否发生反应,即通过观察各活性成份、辅料以及制剂的DSC曲线的差异,发现是否出现新峰,以达到考察它们间是否相容,可否进行配伍的目的。2.8 药物的稳定性研究  汤启昭利用热分析技术研究了葡萄糖酸亚铁固体的稳定性,并与气相色谱分析结合,提高了热分析的研究水平;武凤兰用热分析技术研究了固体药物对乙酰氨基酚的分解动力学。

溶解热分析仪相关的耗材

  • 美国PE热分析仪器专用 凸底氧化铝坩埚
    凸底氧化铝坩埚适用于TG 4000/STA 4000。这类坩埚可重复使用。物理清洁后,储存起来备用。如果需要,在清水中(或10%的盐酸溶液)中清洗,因为很多盐类能在水中溶解。在盐酸中,氧化物会生成氯化物,可用水冲洗掉。烘干后,将坩埚加热到赤热以确保在重复使用时不发生失重。
  • 热分析仪器专用铝坩埚
    佳航热分析耗材,各种规格坩埚.热分析仪器专用氧化铝坩埚
  • JPB-607便携式溶解氧分析仪
    JPB-607便携式溶解氧分析仪----现货供应 JPB-607型便携式溶解氧分析仪,溶解氧分析仪 仪器特点:   JPB-607型便携式溶解氧分析仪采用3 1/2位LCD液晶显示;自动温度补偿;响应时间快。便携式,携带方便;JPB-607型便携式溶解氧分析仪配D0-952型溶解氧电极(极谱型覆膜氧电极) JPB-607型便携式溶解氧分析仪,溶解氧分析仪 技术参数: 产品名称:JPB-607型便携式溶解氧分析仪,溶解氧分析仪 型号:JPB-607 1.测量范围 溶解氧:(020)mg/L 温度:(0~40)℃ 2. 仪器基本误差 溶解氧:± 0.3mg/L± 1个字     ± 0.5mg/L± 1个字(与校准温度相差± 10℃时) 温度:± 1℃± 1个字 3.残余电流:0.15mg/L 4.响应时间:30s(20℃时90%响应) 5.仪器的稳定性:± 0.2mg/L± 1个字/1h 6.自动温度补偿范围:(0~40)℃ 7.仪器重量:0.3Kg 8.外形尺寸,mm:165× 72× 35 9.仪器正常工作条件 a)环境温度:(0~40)℃ b)相对湿度:不大于90% c)被测水溶液温度:(0~40)° C d)供电电源:9F22型9V电池一节 e)周围除地磁场外无其它影响性能的振动存在。 JPB-607型便携式溶解氧分析仪,溶解氧分析仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制