爆炸容器

仪器信息网爆炸容器专题为您提供2024年最新爆炸容器价格报价、厂家品牌的相关信息, 包括爆炸容器参数、型号等,不管是国产,还是进口品牌的爆炸容器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合爆炸容器相关的耗材配件、试剂标物,还有爆炸容器相关的最新资讯、资料,以及爆炸容器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

爆炸容器相关的厂商

  • 安徽达安防爆电气有限公司位于安徽省蚌埠市,是一家开展防爆电气产品科研与开发、制造、销售及技术咨询服务的高新技术企业,是国家防爆电器工业协会会员单位,是蚌埠市的重点企业。 依靠国家防爆电气产品监督检验中心雄厚的研发和技术优势,自主研发生产销售适合各种爆炸性危险性气体存在场所的防爆电气产品,包括:防爆除湿机、防爆暖风机、防爆电气控制柜(配电箱)、防爆接线箱、正压型防爆电气控制柜、防爆软起动柜、防爆变频柜、防爆监控、防爆灯具等电气产品;同时承接防爆电气非标设备、高低压成套、工业自动化控制系统及智能配电系统的设计开发及生产。
    留言咨询
  • 沧州渤海防爆特种工具有限公司始建于1978年,以沧州渤海防爆特种工具制造厂为基础于2006年成立的集团公司,是国内知名的防爆工具、特种工具、防磁工具、平台量具四大系列为一体的专业生产厂家。我公司产品主要有防爆工具、特种工具、防磁工具、五金工具、平台量具、铸件、机床配件等产品,产品包括300多个种类近万种规格。我公司于2001年度产品全部通过ISO9001国际质量管理体系认证,并获得英国UKAS皇家证书。经国家五金产品检测监督部门连续不定时随机抽样检验,各项指标全部达标,中国人民保险公司对本公司产品质量承包,连续多年获得省级“重合同、守信誉单位”荣誉称号。我公司凭着防爆工具、特种工具多年的生产制造经验及铜合金等有色稀有金属的冶炼合成技术,于2006年本公司研发部自主开发了防磁工具系列产品,以满足高磁场、高腐蚀场所的作业需求,达到无磁、无腐蚀的作业目的。我公司产品广泛用于石油、石化、军工、电力、电子、铁路、矿山、采气等潜在火患和爆炸的危险环境中,也是机械制造和机械维修必不可少的专用工具。产品覆盖全国31个省、市、自治区,部分产品直接出口到欧美、中东、东南亚、南非、东欧等地区,深受国内外广大客户的一致好评。我公司始终秉承“质量第一,客户至上”的方针,以高质量的产品和完善的售后服务,作为赢得广大客户信赖的基石,真诚的希望与广大同僚共同发展、共创辉煌。
    留言咨询
  • 400-860-5168转2099
    深圳市莱雷科技发展有限公司成立于1998年,公司是专业提供便携式元素、分子成分、晶体结构等现场即时定性定量分析技术,快速识别检测仪器的综合服务商。多年来专注于激光光谱分析仪、XRF元素分析仪、拉曼光谱仪、X射线衍射仪、气相色谱质谱联用仪等技术的应用研究,是国内较早将便携式快速识别手段引入到合金识别、金属找矿、有害元素,重金属及有机物污染,爆炸物监测等领域方便快速检测,公司于2010年被深圳市认定为“国家高新技术企业”。经过多年的发展,先后成为很多国际知名品牌如SciAps、OLYMPLUS、PerkinElmer、FLUKE、THINKY、QUICK等在中国的长期稳定的战略合作伙伴。深圳市莱雷科技发展有限公司与ciAps Inc.公司前身与于2006年达成战略合作,同年双方在深圳成立了中国服务中心。2018年11月22日,我司与美国SciAps签订战略合作协议。主要服务行业包括:地质勘察、采矿找矿、金属材料、土壤检测、环境保护、考古、有害物质监测、电力、石化、高铁工程、飞机制造、锅炉压力容器、再生资源金属、玻璃回收、刑事证据鉴定等各种元素现场识别与分析。其中XRF快速现场检测仪是联合国武器核查和欧美多国海关现场检测的专用装备。
    留言咨询

爆炸容器相关的仪器

  • 产品简介ECB-2002A 多相高温高压爆炸极限测定仪是一款依据 EN 1839、ASTM E918、ASTM E2079、EN 15967、UL9540A等标准为基础开发的测试燃爆特性仪器,该仪器可实现爆炸极限、极限氧浓度、爆炸压力、压升速率等燃爆特性的测试。参考标准EN 1839ASTM E918ASTM E2079EN 15967UL9540A产品特点1) 模块化概念设计,灵活应对各种测试要求2) 面向不同测试需求,实验过程自由编辑3) 测试容器为316L不锈钢材质,耐腐蚀4) 夹套控温方式,控温效率高5) 恒温条件可灵活设置,兼顾效率和精度6) 配备高效真空泵,清洗参数可设置,充分消除残留影响7) 精密的测控系统,带补偿配气算法,实现气体浓度精确控制8) 具有搅拌功能,保证混合气体的均匀性9) 采用爆炸专用压力传感器,工作温度高,动态性能好10) 气体样品自动控制,自动抽真空,自动配气,自动搅拌11) 设备具备安全互锁功能,提高安全性12) 安全阀、爆破片等多重安全防护,有效保证实验人员安全技术规格工作环境 (-5~45)℃,95%RH测试容器温度控制范围 室温~200℃配置气体最大压力 支持一个大气压,±0.1%FS测试容器设计压力 ≥2.0MPa爆炸压力传感器 ≥5.0MPa,线性为±1.0%FS爆炸压力采集系统采样频率 ≥5kHz爆炸压力采集系统单次实验数据 ≥10000次气体输入通道 3通道最大搅拌器转速 400rpm,转速可调
    留言咨询
  • |气体爆炸特性测试装置用途气体爆炸特性测试是一种用于评估气体在特定条件下发生爆炸的能力和行为的实验。这些测试通常用于确定气体的爆炸极限、爆炸性质和安全参数,以便在各种应用中采取适当的安全措施。以下是一些常见的气体爆炸特性测试方法:爆炸极限测试(Explosion Limits Testing):这种测试用于确定气体的爆炸极限,即气体与空气混合物中最低和最高浓度的范围,在该范围内气体能够发生爆炸。常见的方法包括可燃性极限(Lower Flammable Limit,LFL)和上限可燃性极限(Upper Flammable Limit,UFL)的测定。点火能力测试(Ignition Capability Testing):这种测试用于确定气体在受到点火源时的点火能力。测试中,气体与点火源(如火焰或电火花)接触,观察其是否能够发生燃烧或爆炸。爆炸压力测试(Explosion Pressure Testing):这种测试用于测量气体在爆炸过程中产生的压力。这可以帮助确定气体的爆炸能力和爆炸产生的威力。爆炸传播速度测试(Explosion Propagation Testing):这种测试用于评估气体爆炸时的传播速度和扩散能力。通过测量气体爆炸在封闭空间中的传播速度,可以评估其对周围环境的影响范围。这些测试通常由专业的实验室或研究机构进行,以确保测试的准确性和安全性。对于进行气体爆炸特性测试的具体要求和方法,建议咨询相关领域的专家或参考相关的安全标准和规范。产品标准BS EN 15967:2011:气体和蒸气的最大爆炸压力和最大压升的测定产品规格控制系统:PLC 操作界面:彩色15寸触摸屏+Windows工控机,中英文切换;爆炸容器 1800(L)x750(D)x1750(H)mm控制箱650(W)x675(D)x1750(H)mm电源AC220V,50/60Hz重量约330kg客备气源 氮气产品特点电气控制柜采用金属框架结构,表面采用静电喷涂、高温烘烤等工艺,耐脏、耐磨、耐油污,便于清洁,美观大方箱体内置19寸触摸屏,集成电气控制电路,便于移动放置。控制系统采用西门子PLC及模拟量模块,实现抽真空、吹扫、温度、著通压力据读取;可实现温度、压力、爆炸压力、爆炸斜率以及测试流程的实时监控、显示以及数据存储,可对测试过程数据进行报表与报告输出,以Excel、Word、PDF等文件格式形式进行存储,便于查看编辑。爆炸压力采集采用动态数据采集卡采集,24位分辨率,128KS/s采样频率。试验容器采用球体结构设计,球体内部容积约20L,内部半径168mm,壁厚约12mm,采用不锈钢材质制作,最大耐压3MPa。球体前端配置防爆玻璃观察窗,用于观察记录测试过程中内部试验现场;球体顶部配置螺纹安装结构点火装置,可定期更换清理;球体后端配置热电偶安装法兰,可根据测试需求适配热电偶。球体四周预留抽真空口、样气进口、吹扫口、手动取样口,压力监测口多种接口,并预留多个1/2口径接口,用于连接客户额外配置产品,满足测试使用需求。舱体最大耐压3Mpa,恒定承受压力不低于2MPa,配置工程压力2.5Mpa安全阀点火电极位于试验容器中心,直径约4mm,尖端角度60°,尖端之间距离约为5mm,整体固定在可拆卸螺纹法兰上,当电极两端产生积碳时,可方便拆卸清理采用K型铠装热电偶,量程1000℃,精度0.1℃。采用带螺纹卡套接口对热电偶进行固定安装,便于拆装与密封。安装手动球阀,用于测试结束手动取样对爆炸燃烧后气体进行分析。
    留言咨询
  • 1)产品简介:锂电池热失控,高温高压爆炸极限测试仪用于将标准气体通入5L爆炸舱后,在完成气体浓度配比后,进而点燃气体,并测量其爆炸极限。 3)技术参数:1. 压力容器:容积为5L±0.25L,系统操作压力:2Mpa,系统设计压力:3Mpa;2. 加热炉:最高使用温度200℃,设计温度250℃,温度控制精度0.1度;3. 结构形式:采用快开式结构,盖体固定,压力容器电动升降;4. 压力表:量程不低于0-3mpa,精度不低于2%;5. 点火装置:配备2支点火针,点火变压器为13-15KV;6. 测试功能:可对可燃性气体按照要求进行配比,测量高温爆炸下限以及高温爆炸上限;7. 测试结果:可测量压力、温度、爆炸极限所对应的气体浓度;8. K型热电偶:耐温不低于1100度,II级精度热电偶;9. 真空泵:真空泵抽气速率不低于1L/s,到达真空度:不高于1.0kPa,吸气口口径:外径6mm。10. 电脑:研华工控电脑及标准测试软件
    留言咨询

爆炸容器相关的资讯

  • 6个机组4个已爆炸 放射物质在日本扩散
    日本政府表示,当地时间15日晨6时10分左右,福岛第一核电站2号反应堆附近传来爆炸声。早些时候的报道指出,福岛第一核电站2号反应堆容器出现部分破损,这表明可能导致更为严重的核泄漏。  中新网3月16日电 综合外电报道,16日,日本311特大地震和海啸进入到第六天,救援人员仍然在灾区搜寻幸存者。但与此同时,世界却将关切的目光集中到日本福岛核电站,接二连三的事故令人对日本核危机愈演愈烈的现状感到担忧。  2号机组发生爆炸  15日清晨,日本政府表示,福岛第一核电站2号反应堆容器出现部分破损。这表明可能导致更为严重的核泄漏。  日本内阁官房长官枝野幸男(Yukio Edano)在记者会上称,反应堆用于盛装冷却水和控制内部气压的容器底部“抑制池”出现部分破损。但他同时强调,目前尚未检测到核辐射量有任何剧增的迹象。  到15日晨6时10分左右,福岛第一核电站2号反应堆附近传来爆炸声。  据悉,2号反应堆的压力控制控制池可能在这次爆炸中遭到损坏,反应堆散发出的辐射量“相当危险”,辐射量已超过法定标准。当地工作人员随州撤离现场。报道同时指出,福岛第一核电站2号机组燃料再次完全露出水面。  4号机组先失火后爆炸  日本官房长官枝野幸男15日早些时候在记者会上说,第一核电站的四号机组也发生火情,放射性物质辐射量有所上升。  东京电力公司官员称,15日上午起火的福岛第一核电站四号机组乏燃料池可能正在沸腾,导致里面冷却水位下当天稍早时候,日本表示已扑灭了该乏燃料储存池的大火。但东京电力公司后又称,无法将水注入福岛第一核电站4号反应堆的废燃料储存池。  15日中午12时(北京时间15日上午11时)左右,4号机组发生爆炸。据称,这是一次与一、二、三号机组类似的氢气爆炸。  核辐射物质飘至东京  日本福岛第一核电站发生放射性物质泄漏后,东京等地检测到辐射量超标的情况。消息称,15日,日本千叶县的辐射量达到正常标准的2到4倍。  据报道,15日,东京市检测到辐射微量超出正常标准。东京市一名政府官员表示,这样的辐射量不会对人体健康造成危害。  日本东京都当地时间15日下午13时发表核辐射监测报告说,福岛第一核电站泄漏的核物质已经飘至东京,东京地区的放射线量已经超过了往常的20倍,而且继续处于上升的趋势。另外,与东京都相邻埼玉县政府也发表报告说,埼玉县的核辐射量也比平时增加了20倍。东京度知事石原慎太郎发表谈话说,目前的这些核辐射量不会对健康构成危险。  菅直人发表告国民书  当地时间15日上午11时,日本首相菅直人就日本大地震和海啸引发的核电站危机发表告国民书。  菅直人说,受损核电站还有进一步放射性物质泄漏的可能性。菅直人再次呼吁福岛第一核电站附近20公里半径的居民离开避难,并表示绝大多数人已经疏散避难,  菅直人还表示,超过20公里半径、30公里半径的居民根据今后核反应堆的情况,不要外出,在家或办公室待命。福岛第二核电站已经向方圆10公里内的居民发出避难要求,希望所有居民避难。  菅直人称,我们正全力避免更多的爆炸发生和放射性能量物质的泄漏。东京电力公司和其他相关机构的人员正在注水,他们奋不顾身,全力以赴,我们将尽全力避免事态进一步扩大。
  • 合川一工厂实验室亚硝酸钠爆炸
    工厂实验室亚硝酸钠爆炸   12日18时20分许,合川区工业园区一工厂实验室内一装有亚硝酸钠的容器发生爆炸,并造成泄漏,工厂二楼冒出滚滚白烟,区公安消防支队接到报警后迅速出动,历经近一个半小时成功处置,事故未造成人员伤亡。   18时22分左右,合川区消防支队接到群众报警:合川区工业园区一工厂车间内冒出白烟,请求消防官兵到场处置。支队接到报警后,迅速出动南津街中队3台消防车,调集特勤中队1台抢险救援车赶赴现场,支队羊绍庭政委、李明副支队长、颜太平副主任、罗献红副处长立即遂行出动,深入一线靠前指挥。   中队官兵到场后,发现工厂车间二楼窗口有白烟不断的向外涌出。中队指挥员立即根据现场泄漏情况,安排人员组成疏散警戒小组对现场群众进行疏散,并设置警戒。随后,指挥员又向该工厂的技术人员进一步了解情况。据技术人员介绍,泄漏的物质为亚硝酸钠,发生泄漏的原因是操作人员在进行试验时容器罐突然发生爆炸。当时,室内存放有4桶亚硝酸钠,1桶发生爆炸造成泄漏。中队指挥员得知泄漏危险品为亚硝酸钠后,立即利用化学灾害处置决策系统,进一步查询其理化性质、处置方法及注意事项。随后,指挥员迅速下令组成侦检组、化危品输转组、洗消组,并安排专人对已泄漏的亚硝酸钠用雾状水进行稀释降毒。   经过近一个半小时的稀释、输转,泄漏的亚硝酸钠得到了成功处置,参战官兵及周围群众无一人发生误吸、中毒情况。
  • 河南义马气化厂爆炸,高压气体难辞其咎
    7月19日傍晚,河南三门峡义马市气化厂发生爆炸事故,气化厂上空火光冲天,把整个城区天空照得异常明亮刺眼,继而厂区上空升起黑色“蘑菇云”。截止至21日,事故已造成15人死亡,15人重伤。专家分析,爆炸可能是压力容器安全泄放失控导致超压,即温度升高,液体迅速汽化,液氧和液氮变成气体后体积急剧膨胀,压力过高导致爆炸。近年来,因用气不当而酿成的惨剧屡见不鲜:2018年12月26日,北京交通大学实验室发生氢气爆炸,3名学生遇难;同年12月18日,如皋众昌化工有限公司发生一起液氮泄漏事故,2名员工窒息死亡;2015年12月18日,清华大学化学系何添楼实验所用的一个氢气瓶意外爆炸起火,导致现场的一名实验人员死亡。对于实验室及工厂人员,用气安全与生命安全息息相关,而气体对于很多实验室和工厂都是必需品。钢瓶及液氮罐作为高压容器有很大的安全隐患,液氮有冻伤和泄漏的风险,氢气作为易燃易爆气体危险性更是不言而喻,而且钢瓶搬运中也很可能出现砸伤的危险。用气安全刻不容缓,而气体发生系统因其即产即用、按需供给的特点保证了用气的安全性。Peak气体发生器可根据您的应用提供安全实用、多种流量范围的氮气、氢气和零级空气。以氮气为例,Peak既能提供实验室级的小流量氮气发生器,也能为企业提供加工过程中所需的大流量制氮系统。Peak气体发生器既消除了重复性的管理和运输成本,也消除了手工搬运高压气体所带来的安全风险。更多最新资讯,可关注“毕克气体”官方微信。

爆炸容器相关的方案

爆炸容器相关的资料

爆炸容器相关的论坛

  • 复旦大学一实验室发生连锁爆炸

    昨天凌晨左右,复旦大学化学西楼一实验室内突发爆炸,放置室内的试管、容器等相继发生连锁爆炸,所幸校方及消防部门扑救及时,没有酿成人员伤亡。详情请看http://news.china.com/zh_cn/domestic/945/20060316/13173263.html

  • 【原创】预防化学爆炸的基本理论

    一、爆炸及其种类 爆炸是物质在瞬间以机械功的形式释放出大量气体和能量的现象。 爆炸发生时压力猛烈增高并产生巨大声响。 爆炸分为物理性爆炸和化学性爆炸两类。 A 、物理性爆炸是由温度、体积和压力等因素引起,爆炸前后物质的性质及化学成分均不变。 B 、化学性爆炸是物质在短时间内完成化学变化,形成其他物质同时产生大量气体和能量的现象。化学反应的高速度、大量气体和大量热量是这类爆炸的三个基本要素。 二、化学性爆炸物质 1 、简单分解的爆炸物 这类物质在爆炸是分解为元素,并在分解过程中产生热量。 Ag 2C 2=2Ag+ 2C +Q (热量) 2 、复杂分解爆炸物,如含氮炸药。 3 、可燃性混合物 由可燃物质与助燃物质组成的爆炸物质。 实际上是火源作用下的一种瞬间燃烧反应。 三、爆炸极限 1 、概念 可燃气体、可燃蒸汽或可燃粉尘与空气构成的混合物,并不是在任何混合比例之下都有着火和爆炸的危险,而是必须在一定的浓度比例范围内混合才能发生燃爆。混合的比例不同,其爆炸的危险亦不同。 混合物中可燃气体浓度减小到最小(或增加到最大),恰好不能发生爆炸时的可燃气体体积浓度分别叫爆炸下限和爆炸上限。爆炸上限和爆炸下限统称为爆炸极限。 爆炸下限和爆炸上限之间的可燃气体浓度范围叫爆炸范围。 如天然气爆炸极限在常压下为 5 % ~ 15 % 。 在 1 MPa 时爆炸极限为 5.7 % ~ 17 % ; 5 MPa 时爆炸极限为 5. 7 % ~ 29. 5 % 。 极限氧浓度 当氧浓度降低到低于某一个值时,无论可燃气体的浓度为多大,混合气体也不会发生爆炸,这一浓度称为极限氧浓度。 极限氧浓度可以通过可燃气体的爆炸上限计算。如甲烷在 1 个大气压下的爆炸上限为 15% ,当甲烷含量达到 15% ,空气的含量占 85 % ,这时氧的含量为 17. 85% ,即甲烷与空气混合,当氧的含量低于 17. 85 % 时,便不会形成达到爆炸极限的混合气。 在实际应用中,对极限氧浓度取安全系数,得到最大允许氧含量。天然气的最大允许氧含量可取 2% 。 2 、爆炸极限的影响因素 ( 1 )温度 混合物的原始温度越高,则爆炸下限降低,上限增高,爆炸极限范围扩大。 ( 2 )氧含量 混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。 ( 3 )惰性介质 在爆炸混合物中掺入不燃烧得惰性气体,随着比例 增大,爆炸极限范围缩小,惰性气体的浓度提高到某一数值,可使混合物变成不能爆炸。 ( 4 )压力 原始压力增大,爆炸极限范围扩大,尤其是上限显著提高。 原始压力减小,爆炸极限范围缩小。 在密闭的设备内进行减压操作,可以免除爆炸的危险。 ( 5 )容器 容器直径越小,混合物的爆炸极限范围越小。 3 、爆炸极限的应用 ( 1 )划分可燃物质的爆炸危险度 爆炸上限-爆炸下限 爆炸下限 ( 2 )评定和划分可燃物质标准 ( 3 )根据爆炸极限选择防爆电器 ( 4 )确定建筑物耐火等级、层数 ( 5 )确定防爆措施和操作规程 四、防爆技术基本理论 1 、爆炸反应的历程 热反应的爆炸和支链反应爆炸历程有分别。 热反应的爆炸:当燃烧在某一空间内进行时,如果散热不良会使反应温度不断提高,温度的提高又促使反应速度加快,如此循环进展而导致发生爆炸。 支链反应爆炸:爆炸性混合物与火源接触,就会有活性分子生成,构成连锁反应的活性中心,当链增长速度大于链销毁速度时,游离基的数目就会增加,反应速度也随之加快,如此循环发展,使反应速度加快到爆炸的等级。 爆炸是以一层层同心圆球面的形式向各方面蔓延的。 2 、可燃物质化学性爆炸的条件 ( 1 )存在着可燃物质,包括可燃性气体、蒸汽或粉尘。 ( 2 )可燃物质与空气混合并且达到爆炸极限,形成爆炸性混合物。 ( 3 )爆炸性混合物在点火能作用下。 3 、燃烧和化学性爆炸的关系 本质是相同的,都是可燃物质的氧化反应。 区别在于氧化反应速度不同。 火灾和爆炸发展过程有显著的不同。二者可随条件而转化。 火灾有初期阶段、发展阶段和衰弱阶段。 扩散燃烧和动力燃烧 ① 扩散燃烧 如果可燃气体和空气没有混合并点燃,燃烧在可燃气体和空气的界面(反应区),并形成稳定的火焰,称为扩散燃烧。 ② 动力燃烧 如果可燃气体和空气充分混合并点燃,氧分子和可燃气体分子不需扩散就可以迅速结合,这种燃烧称为动力燃烧。由于化学反应速度非常快,反应区火焰会迅 速从引燃位置向周围传播,发生爆炸。 化学性爆炸过程瞬间完成。 4 、防爆技术的基本理论 防止产生化学性爆炸的三个基本条件的同时存在,是预防可燃物质化学性爆炸的基本理论。 5 、防爆技术措施 可燃混合物的爆炸虽然发生于顷刻之间,但它还是有个发展过程。 首先是可燃物与氧化剂的相互扩散,均匀混合而形成爆炸性混合物,并且由于混合物遇着火源,使爆炸开始; 其次是由于连锁反应过程的发展,爆炸范围的扩大和爆炸威力的升级; 最后是完成化学反应,爆炸力造成灾害性破坏。 防爆的基本原则是根据对爆炸过程特点的分析,采取相应的措施。阻止第一过程的出现,限制第二过程的发展,防护第三过程的危害。 其基本原则有以下几点: ( 1 )防止爆炸混合物的形成; ( 2 ) 严格控制着火源; ( 3 ) 爆炸开始就及时泄出压力; ( 4 ) 切断爆炸传播途径; ( 5 )减弱爆炸压力和冲击波对人员、设备和建筑的损坏; ( 6 )检测报警。 油气田开发是一项复杂的系统工程,由地震勘探、钻井、试油、采油(气)、井下作业、油气集输与初步加工处理、储运和工程建设等环节组成。每一生产环节,因其使用物品、所采取工艺条件和所生产产品的不同,其火灾爆炸危险性亦有所区别。

  • 实验室爆炸性事故预防与处理——6月加2钻石币

    爆炸性事故多发生在具有易燃易爆物品和压力容器的实验室,酿成这类事故的直接原因是:违反操作规程使用设备、压力容器(如高压气瓶)而导致爆炸;设备老化,存在故障或缺陷,造成易燃易爆物品泄漏,遇火花而 引起爆炸。对易燃易爆物品处理不当,导致燃烧爆炸;该类物品(如三硝基甲苯、苦味酸、硝 酸铵、叠氮化物等)受到高热摩擦,撞击,震动等外来因素的作用或其它性能相抵触的物质接触,就会发生剧烈的化学反应,产生大量的气体和高热,引起爆炸。强氧化剂与性质有抵触的物质混存能发生分解,引起燃烧和爆炸。由火灾事故发生引起仪器设备、药品等的爆炸。预 防 和 处 理:(1)某些化合物容易爆炸。如:有机化合物中的过氧化物、芳香族多硝基化合物和 硝酸酯、干燥的重氮盐、叠氮化物、重金属的炔化物等,均是易爆物品,在使用和 操作时应特别注意。含过氧化物的乙醚蒸馏时,有爆炸的危险,事先必须除去过氧化物。若有过氧化物,可加入硫酸亚铁的酸性溶液予以除去。芳香族多硝基化合物不宜在烘箱内干燥。乙醇和浓硝酸混合在一起,会引起极强烈的爆炸;(2)仪器装置不正确或操作错误,有时会引起爆炸。如果在常压下进行蒸馏或加热 回流,仪器必须与大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通。在蒸馏时要注意,不要将物料蒸干。在减压操作时,不能使用不耐外压的玻璃仪器(例如平底烧瓶和锥形烧瓶等)。(3)氢气、乙炔、环氧乙烷等气体与空气混合达到一定比例时,会生成爆炸性混合物,遇明火即会爆炸。因此,使用上述物质时必须严禁明火。对于放热量很大的合成反应,要小心地慢慢滴加物料,并注意冷却,同时要防止因滴液漏斗的活塞漏液而造的事故。

爆炸容器相关的耗材

  • TNT标样 爆炸物测试标样
    爆炸物检测仪,炸药探测器等设备测试标样,适用于SEED-PM系列
  • 赛默飞 Acclaim Explosives 爆炸物柱
    爆炸物柱 Acclaim Explosives• 用于爆炸物分析(EPA 方法 8330)的解决方案• Acclaim E1 和 E2 色谱柱均对 EPA 方法 8330 的全部 14 种目标化合物实现基线分离• E1 和 E2 色谱柱具有互补选择性• 等度洗脱条件简易• 色谱柱坚固耐用,批次间可重现性良好Acclaim Explosives E1 和 E2 色谱柱专门设计用于通过 HPLC 解析“EPASW-846方法 8330:硝酸酯和硝胺”中列出的全部 14 种爆炸物。这些色谱柱采用的新式、独特化学键合相提供优异分离度,并具有互补选择性。Acclaim Explosives E1 推荐用于在初次分析中直接替代 ODS 色谱柱。AcclaimExplosives E2 可用作初次分析色谱柱或确认色谱柱。Acclaim Explosives E2 色谱柱独特的选择性和多功能性提供较广的应用范围,包括对美国 EPA 方法 8330(ISO22478) 中规定之外的爆炸物的分析。
  • 便携式爆炸物(毒品)检测仪
    技术参数: 采用技术:离子迁移谱技术 样品采集方式:固体颗粒物擦拭取样、液体擦拭取样、吸气取样 可检测爆炸物种类:梯恩梯、黑索今、太安、硝化甘油、硝铵类炸药、黑火药、特屈儿、奥克托今、C4炸药等、并能随时添加新样本 可检测毒品种类:可卡因、海洛因、吗啡、大麻、冰毒、摇头丸、氯胺酮(K粉)、五氯酚、杜冷丁、摇脚丸等、并能随时添加新样本 灵敏度:ng ~pg级 分析时间:2 ~8秒 预热时间:20分钟左右 供电方式:110/220VAC,50/60HZ 电池参数:22.4V锂离子充电电池,可持续工作四小时以上 报警形式:声音和可视报警,可显示发现物质种类 显示:3.5"彩色液晶触摸屏,中文(英文)界面 校准方式:内部自动校准 外形尺寸(长× 宽× 高)410× 140× 140 (mm) (16.2"× 5.2"× 5.2 ")
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制