光合叶绿定仪

仪器信息网光合叶绿定仪专题为您提供2024年最新光合叶绿定仪价格报价、厂家品牌的相关信息, 包括光合叶绿定仪参数、型号等,不管是国产,还是进口品牌的光合叶绿定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光合叶绿定仪相关的耗材配件、试剂标物,还有光合叶绿定仪相关的最新资讯、资料,以及光合叶绿定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光合叶绿定仪相关的厂商

  • 广州绿歌环保科技有限公司成立于2011年,致力于利用先进的声光电技术为客户提供高效的解决方案。我们主要业务领域涵盖生态环境保护,新能源和安防等。目前公司开发生产的产品包括激光和定向声波驱鸟器,激光和强声驱离产品。我公司生产的激光驱鸟器,是按欧洲标准设计和生产的,产品通过CE认证,大量出口欧美澳洲等发达市场,获得国内外客户的一致认可。
    留言咨询
  • 江苏绿叶环保科技仪器有限公司,江苏省民营科技企业,江苏省质量信得过和质量服务诚信三A企业,是专业从事环境水质检测仪器、环保设备、专用试剂的研究开发、生产销售、工程承接施工,以及环境水质在线自动监测仪器的运营管理等多项服务为一体的综合性企业。公司生产条件优良,技术力量强;在包含多学科的环保技术领域,尤其在化学分析、自动控制、仪器仪表等方面具有相当的实力,拥有一批具有丰富实践经验的中青年科技、生产、管理骨干队伍和高素质的生产员工;是早期获得《环境保护产品认证证书》和《环境污染治理设施运营资质证书》(正式)证书的单位。其生产的JHC-IIIA型COD自动检测仪、JHN型氨氮自动检测仪、总磷和高锰酸盐指数、重金属水质自动分析仪等多种仪器,均具有鲜明的特色和自主知识产权。其中JHC-IIIA型COD自动检测仪以其独有的特点解决了我国高氮废水和复杂水质在线监测的难题,为采用海水冷却、清洗以及其他含高氮废水企业的在线监测开辟了一条新的途径。“探索高新技术,追求卓越品质”是我们的目标,公司全体员工始终坚持,不懈努力,做到技术与科技发展同步,产品生产和工程施工中以用户需求为主,力争在国内同行业中处于领先地位。公司已在南至广东、云南,西至甘肃、新疆,北至内蒙古、黑龙江的全国广大地区建立了广泛的客户关系,并以质量优良的产品和良好完善的售后服务赢得了客户的一致好评。我们愿和国内外热心和从事环保事业的同仁们一起,为国家实行总量控制、实现节能减排目标作出应有贡献;为提高环保产业水平,赢得国际国内市场的肯定而精诚努力。
    留言咨询
  • 济南鼎律医疗器械有限公司是一家集安全防护、消毒灭菌、箱体仪器的制造商,主营微生物生化培养箱、鼓风干燥箱、二氧化碳培养箱、电热恒温培养箱、电热恒温干燥箱、霉菌培养箱、药品稳定性试验箱、马弗炉、纯水机、高压蒸汽灭菌器、水分测定仪、电子天平等实验室仪器设备。不但有自己的生产工厂、专业的研发团队还与国内外多家著名供应商建立了长期稳定的合作关系,这代表着其可以满足绝大部分客户的产品需求,让客户拿到性价比高的产品。 我公司还有着庞大的技术支持团队,技术人员都经过专业的培训且服务周到,可提供完善的技术方面的咨询及服务。此外,我公司还有庞大的物流体系及遍布全国各地的服务人员,这就保障了它可以为全国各地的客户提供服务,无论你在哪都可以享受到它便捷的在线购货,最快的到货速度、最优质的售后服务。公司地址:山东省济南市高新区工业南路51号联系电话:0531-68629709 13046015552传真:0531-68629559
    留言咨询

光合叶绿定仪相关的仪器

  • YZQ-100E多叶室动态光合仪YZQ-100E多叶室动态光合仪,是我公司“自主研发”。仪器设计新亮点在于自动开合叶室以及人工控温和人工控光测量光合,自动开合呼吸室测量土壤呼吸,四叶室类同步监测,这样您可以进行同步对比实验设计,梯度实验设计。人工夹放叶片一次,仪器自动连续监测,人为误差低;无人值守测量,劳动力强度小,24小时连续测量;数据连续性、动态性好。从动态数据中您可以拿到日变化曲线,从日变化曲线中您可以拿到光响应曲线,从动态数据中您还可以拿到瞬时数据,您还可以拿到累积和的数据。单叶室便携测量已经成为历史,创新改变应用,效果是4台便携式光合仪无法比拟的。一次测量可以拿到动态光合数据、动态蒸腾数据、蒸腾耗水数据、胞间CO2浓度数据、气孔导度数、叶片温度与叶室温度差数据。性价比是其他仪器做不到的,本土的服务更是别人望尘莫及的!已经有很多专家在玉米、毛白杨、水稻、小麦等大宗植物上面应用!第一大特色4个叶室24小时无人值守可自动开合叶室同步连续测量动态光合数据、动态呼吸数据、动态蒸腾数据、动态蒸腾耗水状况、动态胞间CO2浓度数据、动态气孔导度、动态叶片温度。第二大特色是4个叶室人工环境同步控制配合相关参数测量:温度-光合调控测量、光-光合调控测量。第三大特色为自动开合连续监测测量模式,可获得纯自然状态下的光合、蒸腾等相关参数。数据以EXCEL格式数据输出。16G(SD卡)存储空间,可存储65528组数据(约连续工作1个月数据量)。中文菜单显示,操作简单。1.6特点:主要元器件原装进口(CO2双分析器、流量计、光量子传感器、叶温传感器、湿度传感器、气泵、电磁阀、荧光传感器等),软件界面和操作方法国产化。主要标准配置:主机1台、4个标配控温控光自动开合圆形叶室、圆形灯头4个、叶室支架4个
    留言咨询
  • YZQ-100C 荧光-光合仪一 概述YZQ-100C 荧光-光合仪,是我公司“自主研发”光合系列产品之一。仪器设计新亮点在于集成了控温、控光自动开合叶室和荧光叶室于一身,可完成控温、控光、动态日变化光合速率、控温快速荧光动力学曲线测量等指标测量。既是一台光合仪又是一台荧光仪,佩戴超便携暗适应夹可在野外进行快速大量样本的荧光动力学测量。仪器升级为双分析器,参考和样本同时采样,大大缩短了光合测量时长。国产超便携,重量仅有3KG,体积只有45CM*12CM*8CM,并搭载高能锂电池,控温模式下可连续工作2小时,控光模式可连续工作10小时以上,非控光模式可以工作20小时以上。16G大容量存储,可以存储1个月以上连续监测数据。仪器便携、数据稳定、操作简单、性价比高,是一款科研级别的植物生理生态研究利器。二 功能与特点1、★光合三种测量模式:日变化动态光合测量,控光光合测量、控温光合测量。2、★步进电机控制自动开合叶室来完成自然模式日变化动态光合测量曲线。3、★自带植物光谱控光光源,精准控光程序,可做光—光合响应曲线,光源有阶跃变化光源和模拟自然变化光源,阶跃变化光源可以设定时间段来进行测量。4、★自带控温叶室,精准控温程序,可做温度—光合响应曲线。5、★温度胁迫下荧光参数测量:最大光化学效率、O-J-I-P荧光动力学曲线等40多个参数。6、自动计算结果,自动存储,SD卡16G存储,二氧化碳浓度、相对湿度、光合有效辐射、温度、光合蒸腾等数据均以EXCEL格式数据输出。7、可测定光合速率、蒸腾速率、水分利用效率、气孔导度和细胞间二氧化碳浓度等五项指标。8、暗适应下完成荧光动力学曲线等荧光参数测量后即刻光适应下完成光合等参数测量。
    留言咨询
  • 目前二氧化碳、甲烷、氧化亚氮等温室气体的排放, 是造成以全球变暖为主要特征的气候变化的主要原因。 2015 年达成的《巴黎气候协定》 改变了此前《联合国 气候变化框架公约》《京都议定书》确立的“自上而下” 的治理模式,构建了基于“国家自主贡献方案”的“自 下而上”的治理模式,由此形成了人类历史上参与范 围最广 的全球减排协议 。我国领土南北跨越的纬度近 50 度 ,不同纬度地区森林 、草原 、海洋 、湖泊等分 布不均,该类地区也是碳汇的主要地区,碳经济已经越 来越受关注,因此评估区域性碳汇碳源问题至关重要。 CO2 CH4 N2O CO H2O 分析仪可以同步监测 CO2 CH4 N2O CO 等温室气体指标, 高质量仪器精度可以达 到 ppb 级,该系统可以连接 1 -16 个叶室进行土壤通量 长期自动监测 。群落光合叶室采用步进电机方式进行 多角度开合设置,无需电动推杆,因此大大降低故障率, 确保叶室在高原及低温环境条件下稳定运行。技术指标
    留言咨询

光合叶绿定仪相关的资讯

  • OPTON微观世界|第34期 从荷叶效应到超疏水表面——从自然到人工合成
    前 言在盛夏时节安静的池塘边,正是观赏荷花的好时候。在红花绿叶的点缀下,夏日仿佛多了一丝清凉舒缓。每当提到荷花(莲花),总能想起周敦颐在《爱莲说》中 “予独爱莲之出淤泥而不染,濯清涟而不妖”的诗句。荷花历来被佛教尊为神圣净洁之花,并且极力宣传并倡导学习荷花这种清白、圣洁的精神。另外,李白的诗句“清水出芙蓉,天然去雕饰”,也表明荷花具有天然之美。荷花即青莲,青莲与“清廉”谐音,因此荷花也被用以比喻为官清正,不与人同流合污,这主要是指在仕途中。比如,有一幅由青莲和白鹭组成的名为“一路清廉”的图画,就被很多文人置于自己的书房中。可是,莲为什么可以出淤泥而不染呢?这就要讲到莲花的“自清洁”和“不沾湿”特性了。荷叶效应如果留心观察莲花的叶子,你就会发现荷叶上总是干干净净的,好似不留一点灰尘。这是因为荷叶表面的特殊结构有自我清洁的功能,即荷叶的“自清洁”特性。此外,我们经常会看到这样的场景:当水滴在荷叶上时,水并没有完全铺展开,而是以水珠的形式停留在荷叶上,而且只要叶面稍微倾斜,水珠就会滚离叶面。这就是荷叶的“不沾湿”特性。荷叶的“自清洁”和“不沾湿”特性被统称为“荷叶效应”。这一概念最早是由德国波恩大学的植物学家巴特洛特提出的。图1荷叶效应超疏水特性其实,荷叶的“不沾湿”特性也被称为“超疏水”特性。那么,如何界定“超疏水”这一概念呢?在明确“超疏水”这一概念前,我们要先了解表面化学中的一个概念——接触角。如下图所示,接触角指的是“液-固”界面的水平线与“气-液”界面切线之间通过液体内部的夹角θ。有了这一概念,我们可以很方便地表示液体对固体的润湿情况。当夹角θ小于90°时,我们称该液体可以湿润固体。当θ大于90°时,该液体不能湿润固体。当θ大于150°时,该固体表面具有超疏水特性。通俗地讲,我们可以认为这种固体表面有很强的排斥水的能力。图2 浸润与不浸润的特征在自然界中,奇异的性质往往是其独特的结构决定的。那么,你肯定会问:“荷叶的特性是否与它的结构有关呢?”答案是肯定的。扫描电子显微镜的发展给我们的科学研究带来了更多的可能,也使得我们能够观察到荷叶的微观结构。通过电子显微镜的成像结果,我们可以清晰地看到荷叶表面有许多突起的“小山包”(这类结构被称为“乳突”如图3(a))。这些乳突的尺寸通常在6微米左右,这些乳突的平均间距在12微米左右。而这些乳突是由许多直径在100纳米左右的纳米蜡质晶体组成。由此可见,荷叶表面存在复杂的“微米-纳米”双重结构,正是这些结构使得荷叶产生了“超疏水”和“自清洁”的双重特性。图3 荷花叶片的sem图像 (a)低倍图像(b) “乳突”高倍图像(c)叶片底部高倍图像(d)“乳突”尺寸对应的接触角曲线分布由荷叶到仿生技术自然界的生物都经历了漫长的演化过程,在物竞天择下,生物自身的结构和功能都经过了长期的筛选、发展和优化,具有极高的效能。荷叶的“自清洁”性能,并不是简单的美观功效,清洁程度直接影响叶片的光合作用效率。那么不仅仅是荷叶,在自然界中具有自清洁功能的生物还有很多种,比如蝴蝶的翅膀具有的超疏水结构,保证蝴蝶翅膀不会粘连露水影响飞行。水黾的脚具有绒毛结构,确保了水黾在水面上能以每秒钟滑行100倍于自身长度的距离,这都由于水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。还有蚊子的复眼,它是由许多尺寸均一的微米半球组成,其表面还覆盖有无数精细的纳米乳突结构,这种纳米乳突结构的尖端与雾滴接触的面积无限小,具有理想的超疏水特性,从而确保了蚊子的复眼具有理想的超疏水防雾性能。图4 蝴蝶翅膀,水黾足,蚊子复眼的超疏水结构对自然界演化生成的超疏水结构,科学家们也做了进一步的研究,其超疏水表面的制备方法有多种:溶胶-凝胶法、相分离法、模板法、蚀刻法、化学气相沉积法、自组装法等等,下图为具有独特形状的表面微米阵列(如图5)纳米阵列(如图6),使得它们具有很好的疏水特性。图5不同形态的人工合成的超疏水结构图6 超疏水结构碳纳米管阵列经过先进结构材料的表面改性,我们常见的水也可以变得很有趣,比如我们可以用手切割水珠(图7),利用涂有超疏水材料的刀片对水滴进行切割(图8)。日常生活上,通过先进疏水材料的应用我们可以使得衣物不再被水或者油污污染,减少洗涤衣物的麻烦。在军事上,由于疏水材料的使用使得水的阻力明显下降,有效地提升了舰载的行驶速度。
  • 近红外研究在日本的前世、今生与未来——访日本近红外研究会会长河野澄夫教授
    近红外光谱(NIR)分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析&ldquo 巨人&rdquo ,它的出现可以说带来了又一次分析技术的革命。日本近红外技术发展早于我国,日本近红外技术的发展历程以及现状如何呢?日本近红外技术的发展过程对我国近红外技术的发展有何可借鉴的经验呢?中日两国在近红外领域可有哪些合作呢?带着这些问题,近日,仪器信息网采访了日本近红外研究会会长、亚洲近红外协会主席河野澄夫教授,中国农业大学韩东海教授采访时在座。   日本近红外技术起源于美国   说起日本近红外技术的起源,河野教授侃侃而谈:&ldquo 上世纪80年代初期,日本近红外技术的开创者岩本睦夫在美国近红外鼻祖Karl Norris的实验室学习了一年,回国后开启了日本近红外技术的研究工作。岩本教授是日本食品综合研究所非破坏检测研究室(注:我国称无损研究室)的第一任主任,因此非破坏检测研究室也是日本近红外技术的发祥地。为了便于日本近红外技术的交流与传播,岩本教授于1985年创建了一个论坛&mdash &mdash &lsquo 无损检测技术论坛&rsquo ,此论坛每年召开一次,至今已召开了将近30届了。&rdquo 岩本教授退休后,河野教授接替岩本教授成为无损检测研究室第二任主任,目前河野教授也已从此研究室退休,并有了新的接班人。   近红外技术是一种二次检测技术,这决定了大多数情况下近红外技术不太适合作为国家标准来实施,因此目前近红外技术多用于企业内部的质量控制。首先采用近红外技术对原材料、生产中间品、产品等做检测,如果检测结果符合要求,再按照国家标准取样进行检测。在日本,近红外技术应用最广的领域也是工厂的内部质量控制。河野教授提到,日本某酱油厂采用近红外技术测定酱油的全氮、盐分、乙醇等指标来控制酱油的品质。   &ldquo 与美国近红外技术应用从农业领域到食品领域的发展路径基本相同,日本近红外技术的应用也是先从农业开始,后来发展到食品行业,现在逐步扩展到化工、纤维等领域,将来制药可能成为日本近红外应用发展的一个重要方向。&rdquo 河野教授说。   基础研究是日本近红外技术研究热点   据河野教授介绍,与其他技术不同,近红外技术一开始就是一项应用型的技术,而随着近红外技术应用越来越广泛,很多研究者发现近红外技术的基础研究还很不足,因此有一些研究者开始对近红外技术进行基础研究。   &ldquo 我的前辈岩本教授现在开始研究水。农产品中大部分都是水,而且水对近红外吸收很强烈,因此水在近红外技术的基础研究中很重要。但是现在对水的了解还不是很清楚,因此很多近红外技术的基础研究者开始关注水在近红外技术中的作用&rdquo 。   还有一个问题是,现在很多近红外技术的研究是很好的,但是应用起来却很困难,主要原因在于精度不够,而精度不够的原因在于对精度的管理还没有形成一个系统。河野教授比喻说,就像我们的计算机有一个CPU,CPU有一个WINDOWS系统,WINDOWS系统就像一个大舞台,舞台上面搭建了office等很多的应用软件。而近红外技术的这个大舞台还没有搭建好,因此虽然可能已有很多实际应用,但有时候会显得薄弱,后续管理肯定会有些问题。总而言之,近红外技术的基础研究还不够扎实。   近红外技术的挑战是无创检测和仪器小型化   说起近红外技术目前最大的挑战,两位教授一致认为,医学上利用近红外技术进行无创检测是一个重要的课题。   &ldquo 近红外技术因其对人体伤害小而被认为是一项有优势的无创检测技术,尤其是对虚弱的个体如婴儿等和较敏感的人体部位如脑部等,如能应用近红外技术,则会大大提高医学检测的安全性&rdquo ,韩教授说到。但目前,近红外技术在人体健康检测方面的研究还处于一个比较前期的状态,虽然研究者很多,有些研究者甚至已开展研究十几年了,但是还不能形成定论。   &ldquo 主要难点在于检测成分含量低,样品差异性大。以血糖检测为例,首先人体血糖含量很低,而检测方法都有自己的检测限,这就对近红外检测方法提出很高的要求 其次,人体差异性很大,如皮肤厚度不同等,导致模型比较难建立,而且针对某个人建立的模型,对其他人同样指标的检测就不适用。&rdquo 河野教授解释说。   近红外技术的另一大发展需求是仪器小型化。河野教授举例说,利用近红外仪器检测水果的成熟度在日本应用是比较广泛的,但是现在的便携式仪器还是稍嫌笨重,使用不方便。如仪器能小到仅有一支钢笔的体积,则将大大提高此类仪器使用的便捷性,可方便的检测果树上水果的成熟度。   还有一个应用方向要求近红外仪器小型化。随着人们对自身了解需求的增加,一些小巧的科学仪器不断面市,进入人们的日常生活中。而皮肤老化原因的检测可能会受到大众的欢迎。皮肤老化主要是两个原因,一是皮肤的自然老化,一是紫外线对皮肤的伤害造成的皮肤老化。利用近红外技术可以判断皮肤老化是哪种原因造成的,而此类仪器要真正得到大众的接受,则需要近红外仪器足够小巧。   专注于模型建立   谈到自己的研究课题,河野教授说,&ldquo 除了前面提到的人体血糖检测,我目前主要研究的课题还包括如何快速去除温度对近红外结果的影响和建立通用型的模型。&rdquo   温度对近红外测量结果有很大影响,而一般的处理方式是将温度作为一个变量来建立模型。河野教授介绍说,目前其研究团队正寻找一种快速去除温度对近红外结果影响的方法,即通过找到对温度比较敏感的波段,在模型建立时将此波段去除,从而快速去除温度对近红外结果的影响。   以水果为例,在近红外技术应用于水果检测时,一种水果需要一个模型,有时候同种水果的不同品种也需要不同的模型。有些水果的测量方式不同,如橘子一般用透射模式来测量,桃子一般用反射模式来测量,这样的水果很难建立通用型的模型。但是有些水果测量方式相同,如苹果、梨等都采用的是反射模式,如果能建立通用型的模型,则近红外技术应用将更加方便。目前,河野教授也正在致力于这方面的研究。   中国成为近红外仪器厂商布局亚洲的中心   提到近红外技术在亚洲的发展情况,河野教授说&ldquo 中国将是世界近红外生产厂商未来业务布局的中心&rdquo 。在亚洲地区,近红外技术发展较好的国家有日本、中国、韩国、泰国四国,有定期技术交流的是日本(每年一次技术交流会)、中国(两年一次技术交流会),而且亚洲近红外技术大会是在中国、韩国、日本、泰国轮流召开。近红外处于发展期,对仪器需求较大的国家有中国、泰国、马来西亚、菲律宾等。因此&ldquo 各个近红外厂家综合考虑技术发展和技术需求,在亚洲布局中均以中国为中心,然后开始向周边国家辐射。因此中国在亚洲近红外技术发展中占有重要位置&rdquo 。   采访合影(左二为河野澄夫教授,右二为韩东海教授)   采访后记:采访快要结束时,河野教授还热情地为我们介绍了下一届亚洲近红外光谱大会的情况。第五届亚洲近红外光谱大会将于2016年在日本召开,时间暂定11月份下旬,地点在日本鹿儿岛,预计规模将达到250人左右,大会期间计划安排到有特色的先进的水果分选现场进行参观。河野教授热烈欢迎广大中国学者和中国厂商到日本鹿儿岛参加大会,也欢迎大家同时参观日本的活火山等美景。 采访编辑:李学雷   附录:个人简历   河野澄夫,农业博士,1975年至1987年在Distribution Engineering Laboratory, National Food Research Institute工作,分别为研究员和高级研究员,1987年至2011年开始在Nondestructive Evaluation Laboratory, National Food Research Institute任主任,1997年至2011年在兼职筑波大学教授,2011年至今,在鹿儿岛大学任教授。现还任职《Journal of NIR Spectroscopy》亚洲编辑、亚洲近红外学会主席、日本近红外研究会会长。
  • Nature:发现不能进行光合作用但能产生叶绿素的生物---corallicolid
    顶复动物亚门(Apicomplexa)是一组专性细胞内寄生虫,包括疟疾和弓形虫病等人类疾病的致病因子。顶复动物亚门是由自由生活的光养性祖先进化而来的,但是人们对这种向寄生过渡的过程如何发生仍然是不清楚的。一个潜在的线索在于珊瑚礁,在那里,环境DNA调查已发现了未被描述的基底分支的顶复动物亚门的几个谱系。造礁珊瑚与具有光合作用的Symbiodiniaceae dinoflagellates存在良好的共生关系,但是鉴定珊瑚的其他的至为重要的微生物共生体经证实是具有挑战性的。corallicolid存在于全世界70%的珊瑚中在一项新的研究中,来自加拿大不列颠哥伦比亚大学的研究人员通过使用群落调查、基因组学和显微镜分析鉴定出顶复动物亚门的一个谱系,我们将它非正式地命名为corallicolid。我们发现corallicolid在所有主要珊瑚群中是普遍存在的(存在于80%以上的珊瑚样本和70%的珊瑚属中)。相关研究结果发表在2019年4月4日的Nature期刊上,论文标题为“A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes”。corallicolid是仅次于Symbiodiniaceae的第二丰富的珊瑚相关微真核生物(microeukaryote),因此是珊瑚微生物组的核心成员。原位荧光和电子显微镜实验证实,corallicolid生活在珊瑚胃腔组织的细胞内,并且它们具有顶复动物亚门的超微结构特征。这些研究人员对corallicolid质体进行基因组测序,发现它缺乏所有编码光系统蛋白的基因;这表明corallicolid很可能含有不能进行光合作用的质体(顶质体)。然而,corallicolid质体与所有其他已知的顶质体(apicoplast)不同,这是因为它保留了四个参与叶绿素生物合成的祖先基因。因此,corallicolid与它们的寄生性亲属和能够自由生活的亲属存在一些相同特征,这表明它们是进化中间体,并提示着在从光养性到寄生性的过渡期间存在着一种独特的生化机制。

光合叶绿定仪相关的方案

光合叶绿定仪相关的资料

光合叶绿定仪相关的试剂

光合叶绿定仪相关的论坛

  • 【资料】奇妙的荷叶效应!

    众所周知,水滴落在荷叶上,会变成了一个个自由滚动的水珠,而且,水珠在滚动中能带走荷叶表面尘土。荷叶的基本化学成分是叶绿素、纤维素、淀粉等多糖类的碳水化合物,有丰富的羟基(-OH)、(-NH)等极性基团,在自然环境中很容易吸附水分或污渍。而荷叶叶面都具有极强的疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的"荷叶自洁效应"。 为什么会有这种"荷叶效应",用传统的化学分子极性理论来解释,不仅解释不通,恰恰是相反。从机械学的光洁度(粗糙度)角度来解释也不行,因为它的表面光洁度根本达不到机械学意义上的光洁度(粗糙度),用手触摸就可以感到它的粗糙程度。 经过两位德国科学家的长期观察研究,即上世纪九十年代初终于揭开了荷叶叶面的奥妙。原来在荷叶叶面上存在着非常复杂的多重纳米和微米级的超微结构。在超高分辨率显微镜下可以清晰看到,荷叶表面上有许多微小的乳突乳突的平均大小约为10微米,平均间距约12微米。而每个乳突有许多直径为200纳米左右的突起组成的。在荷叶叶面上布满着一个挨一个隆起的"小山包",它上面长满绒毛,在"山包"顶又长出一个馒头状的"碉堡"凸顶。因此,在"山包"间的凹陷部份充满着空气,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上"山包"的凸顶形成几个点接触。雨点在自身的表面张力作用下形成球状,水球在滚动中吸附灰尘,并滚出叶面,这就是"荷叶效应"能自洁叶面的奥妙所在。 研究表明,这种具有自洁效应的表面超微纳米结构形貌,不仅存在于荷叶中,也普遍存在于其它植物中。某些动物的皮毛中也存在这种结构。其实植物叶面的这种复杂的超微纳米结构,不仅有利于自洁,还有利于防止对大量漂浮在大气中的各种有害的细菌和真菌对植物的侵害。另外,更重要的是,为了提高叶面吸收阳光的效率,进而提高叶面叶绿体的光合作用。

  • 便携式光合仪如何同化CO2的叶片面积

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  便携式光合仪如何同化CO2的叶片面积,便携式光合仪在测定同化CO?的叶片面积时,主要是通过测量植物光合速率,并结合叶片面积来估算的。以下是一个清晰的步骤说明和归纳:  步骤说明  植物光合速率的测定:  使用便携式光合仪,在精确控制环境因子的条件下,通过红外线气体分析仪检测二氧化碳的消耗速率来测定植物的光合速率。  这个过程基于红外光被二氧化碳分子吸收的原理,通过测量透射光能量的减少来推算二氧化碳的消耗速率。  叶片面积的测量:  可以使用标准方格纸或其他测量工具来测量叶片的实际面积。对于大于或等于半格的部分算作一格,小于半格的部分可以舍去。  例如,如果使用边长为1厘米的透明方格纸来测量,可以计算出叶片的近似面积。  同化CO?的叶片面积估算:  根据测定的光合速率和叶片面积,可以估算出同化CO?的叶片面积。这通常是一个相对值,表示在给定的时间和条件下,叶片同化CO?的能力。  需要注意的是,这个估算值受到多种因素的影响,如光照、温度、水分等环境因子以及植物本身的生理状态等。  归纳  便携式光合仪通过测量植物的光合速率和叶片面积,可以估算出同化CO?的叶片面积。这个过程结合了光合作用的基本原理和叶片面积的测量方法,提供了一种方便、快捷的方式来评估植物的光合作用效率。然而,需要注意的是,这个估算值受到多种因素的影响,因此在实际应用中需要结合具体情况进行综合考虑。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405301144376028_9059_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 便携式光合测定仪准确率多少

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  便携式光合测定仪准确率多少,便携式光合测定仪的准确率主要取决于其技术指标和测量方式。以下是关于便携式光合测定仪准确率的详细说明:  一、技术指标  CO?分析器:  类型:绝对开路式非色散红外分析器  量程:0~3100 μmol/mol  准确度:最大误差为±5 μmol/mol(在0~1500 μmol/mol范围内) ±10 μmol/mol(在1500~3100 μmol/mol范围内)  H?O分析器:  类型:绝对开路式非色散红外分析器  量程:0~75 mmol/mol,或40℃露点  准确度:最大误差为±1.0 mmol/mol  二、测量方式与准确率  便携式光合测定仪采用闭路测量方法,这种方法通过创建一个封闭的测量环境,使得气体CO?浓度、空气温湿度、植物叶片温度、光强以及气体流量等要素在测量过程中保持稳定和可控,从而确保测量结果的准确性。  具体来说,便携式光合测定仪可以准确测定以下要素:  气体CO?浓度:通过内置的CO?分析仪来测量环境中的CO?浓度,这是评估植物光合作用效率的关键参数之一。  空气温湿度:仪器配备温湿度传感器,以实时监测和记录环境空气的温度和湿度,这些参数对植物的光合作用和蒸腾作用都有显著影响。  植物叶片温度:通过红外测温技术或其他温度测量手段,便携式光合测定仪可以准确测定植物叶片的表面温度,这有助于了解植物叶片对环境的热响应。  光强:仪器配备光强传感器来测量不同波长的光强,从而了解植物对不同光谱的响应。  气体流量:通过气体流量计,仪器可以测量通过植物叶片的气体流量,这有助于计算光合速率和蒸腾速率等参数。  三、总结  便携式光合测定仪的准确率主要取决于其技术指标和闭路测量方法。通过高精度的传感器和精确的测量技术,它能够准确、快速地测定多种与植物光合作用相关的参数,并为植物生理学、生态学、农业生产和环境科学等领域的研究提供有力的工具。然而,由于测量环境、操作方式等因素的影响,实际测量中可能存在一定的误差,因此在使用时需要注意操作规范和数据解读的准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406071117138857_8471_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

光合叶绿定仪相关的耗材

  • 保偏红绿光合束器 非保偏 RG635(R)/532(G)
    保偏红绿光合束器 非保偏红绿光合束器 RG, RB, GB Combiner 635(R)/532(G)Polarization Maintaining Fused RG Combiner型号:PMWDM Series 可以被用作偏振光合束器(来自两根保偏光纤的偏振光束合波到一根单模光纤输出),或者偏振光分束器(把光束分成两个正交的偏振态输出到两根保偏光纤中).PBC最普遍的用途即是用于分布式FRA中进行泵浦增强与消除偏振依赖性,也多见于对需要增强泵浦功率而普通波分复用器又不能实现的同波长或不同波长泵浦源进行组合。 保偏熔融RG合束器是采用先进技术和保偏光纤使红绿灯合束制造。它们具有低损耗、小体积、高消光比、高损耗和良好的环境稳定性。规格参数:参数单位数值中心波长(λc)nm635(R)/532(G)典型插入损耗, λcdB1.0最大插入损耗, λcdB1.5最小消光比dB18 (Grade P), 15 (Grade A)热稳定性dB/℃≤ 0.005 over -5 to +70 °C最小回波损耗dB50Min. DirectivitydB50最大光功率mW300光纤类型 Nufern PM 460-HP fiber工作温度℃-5 to +70储存温度℃-40 to +85*IL is 1.5 dB higher, RL is 5 dB lower, and ER is 2 dB lower for each connector added. Connector keyis aligned to slow axis.*The Optical Power is 50 mW only for connector added.封装尺寸:订单信息: PMWDM-①-②②-③-④-⑤-⑥①: Configuration②②: Wavelength④: Connector Type1 - 1 × 2RG - 635 & 532 nm1 - FC/UPC 2 - FC/APC 3 - SC/UPC ⑤: Fiber Jacket⑥: Fiber LengthB - 250 μm bare fiberH - 0.5 m L - 900 μm loose tubeQ - 0.75 m S - Specify
  • SQ光合有效辐射传感器
    用途:SQ光合有效辐射传感器用于长期安装在户外或放入水中进行测量波段在400~700nm的光照辐射数值。测量单位为光量子通量密度(μmol m-2 s-1)。绿色植物进行光合作用过程中,吸收的太阳辐射中使叶绿素分子呈激发状态的那部分光谱能量即为光合有效辐射,光合有效辐射是植物生命活动、有机物质合成和产量形成的能量来源。广泛应用于农业气象、农作物生长的等领域的研究。技术规格:测量范围0~2000 μmol m-2 s-1(全日光)余弦响应45°天顶角:±1%,75°天顶角:±5%,绝对精度±5%重复性±1%输出信号标准400mV,可选2.5V、5V校准模式标准日光校准,可选灯光校准材质阳极电镀铝带铸造丙烯酸镜头工作环境温度-25~+55℃,相对湿度0~100%,长期漂移每年小于3%电缆长度标准5米,可选10米、15米和20米尺寸直径2.4厘米×高度2.75厘米重量约70克(含3米裸线电缆)产地:美国
  • 光合有效辐射传感器 ZRX-26852
    光合有效辐射传感器 型号:ZRX-26852 光合有效辐射传感器 产品概述:  光合有效辐射传感器主要用于测量陆地环境中400-700nm波长范围内太阳光的光合有效辐射,具有测量准确、使用简单、稳定性好、免维护等特点。并通过个400-700nm的光学滤光器,来测量波长在400-700nm范围内的光合有效辐射。  光合有效辐射传感器 术参数:  .测量单位:μmol m2 s s-1  .量程:0-2500μmol m2 s-1  .反应时间:10μs  .电源电压:DC5v分辨率:1μmol m m2 s-1  .响应光谱:400-700nm  .输出电压:DC2.5v或5v  .线性度:大偏移1%  .稳定性:年内变化±2%  .作环境:-30℃-75℃  光合有效辐射传感器 适用范围:  广泛用于农业气象和农作物生长的研究等域。该传感器采用响应非常灵敏硅光探测器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制