水泥新国标实施,科普来了-XRD直接测试熟料矿物相
导读水泥行业新国标《GB/T 40407-2021 硅酸盐水泥熟料矿相X射线衍射分析方法》今年3月1号正式实施。新国标的最大意义在于国内首次引进了X射线衍射仪(XRD)直接测试水泥熟料中的矿物相含量,来控制水泥质量。岛津公司作为该国标的起草单位之一,这里为您科普该国标的技术背景,传统水泥分析方法的缺陷,XRD分析熟料矿物相的挑战,并展示岛津XRD在水泥熟料测试中的应用。 水泥的主要矿物相组成硅酸盐水泥,即国外通称的波特兰水泥,是全世界广泛使用的最普通的水泥,使用普硅水泥制造的混凝土是世界上用途最广泛的建筑材料之一。水泥的质量主要取决于熟料的矿物组成和结构。水泥熟料主要矿物相是硅酸盐,还有一些微量的矿物相如游离CaO或硫酸盐等,有时出现一些反应不完全的残留相,如石英SiO2,还有一些添加的用于改善水泥质量与性能的石膏等。 表1 熟料的常见矿物相前四种物相含量的差别是水泥标号的指标[1]。在水泥工业中,快速、稳定和准确地测出水泥熟料矿物组成对于及时调整熟料生产方案,优化水泥熟料矿物组成,有效监控水泥质量等方面有重大意义[2]。 传统的水泥分析方法及其缺陷国内水泥厂,对于熟料中矿物组成的监控,传统方法采用化学分析方法测定各氧化物的成分,测试速度慢;现在大多是通过波长色散荧光(WDXRF)来完成氧化物成分的测试,然后通过Bogue公式[3]计算C3S、C2S、C3A、C4AF含量。 然而,WDXRF只是以元素氧化物的形式换算出含量,其结果并不是水泥中真实的矿物形态。举例来说,使用WDXRF分析水泥,肯定会得到CaO、SiO2等成分。但CaO赋存状态是什么呢?水泥中的C3S、C2S、游离CaO以及石膏,这几种物质都是XRF结果中CaO的来源,也就是说,仅仅得到CaO的总含量是不够的,前述的这几种物质的不同组成都会影响水泥的性能,XRF的结果无法解决这个问题。 Bogue公式 Bogue公式计算出来的物相含量与实际含量相比可能会有很大的差异[4],如Bogue公式计算C3S含量偏低10%以上是经常出现的问题,因为Bogue公式假设熟料中的四种矿物C3S、C2S、C3A、C4AF是理想的纯化合物、是在热平衡条件下形成的。而热平衡条件在实际的水泥生产过程中并不存在。并且Bogue公式忽略了其它因素的影响,如镁、硫、钾、钠等微量元素的作用、原料的粒度、窑炉气氛及加热过程等等。 一个更合适的例子来自于文献[5],文章作者将商业熟料在1500℃再次加热一小时,同样元素组成的熟料样品,加热前后衍射图中C3A的衍射峰强度明显不同,这意味着C3A的含量改变了。很显然,Bogue公式无法处理这一状况。 图3 水泥熟料1500℃加热前后C3A衍射峰强度增加[5] XRD直接测试水泥矿物相的挑战国际上大约在1990年前后,开始着手研究使用XRD直接测试水泥的矿物相含量来控制水泥质量。在XRD衍射谱图中,每种物相都有自己特定的衍射花样,实际观察到的谱图是样品中各物相谱图的机械叠加,衍射峰强度和物相含量等因素有关。 不过由于水泥熟料结构和组成复杂,体系内存在同质多晶现象,如C3S存在7种可能的晶型,C2S存在5种可能的晶型,C3A有3种可能的晶型[5],而且不同矿物的衍射峰在26-40°(2Theta,Cu靶)范围内重叠严重,如C2S主要谱峰均与C3S重叠(图4);这里为了简要说明问题,图4仅仅只列出了C3S和C2S的各一种晶型,并只画出了较强的衍射峰位置,仅beta-C2S在图4角度范围内就多达134个衍射峰,如果C3S存在多晶型,这个谱图的复杂性可想而知。对于这种严重重叠的谱图,常规的物相定量方法统统无效,必须要使用Rietveld精修来完成水泥熟料的物相定量。图4 水泥熟料中,各物相衍射峰重叠严重 困难解决方法——Rietveld精修H.M.Rietveld于1967年在粉末中子衍射结构分析中,提出了粉末衍射全谱最小二乘拟合结构修正法[6]。1977年,Rietveld方法被引入多晶粉末X射线衍射分析中,开拓了对粉末X射线衍射数据处理根本变革的时代。与传统方法相比,Rietveld方法充分利用了衍射谱图的全部信息,即所谓的“全谱拟合”。经过几十年的发展,Rietveld方法不仅用于结构参数的精修,更拓展到无标样物相定量以及从头解晶体结构等领域。 由于Rietveld精修是利用全谱拟合,远比传统XRD定量方法只利用单个峰来的精确的多,常规XRD方法中分析水泥所遇到的诸多问题,如衍射峰重叠、择优取向、微吸收及纯标样制备难等问题可得到有效的解决。 水泥熟料Rietveld精修结果案例分享这里给出某熟料样品的Rietveld精修结果作为示例,Rietveld精修完成后,由精修软件可以直接读出C3S、C2S、C4AF、C3A等物相的含量。 图5是精修开始前的情况,黑色线是实测谱,红色线是计算谱。Rietveld精修是在假设的晶体结构模型和结构参数的基础上,结合某种峰形函数来计算多晶体衍射的理论谱,逐步调整这些结构参数与峰形参数,使得计算的理论谱与实测谱逐步接近,从而获得结构参数与峰形参数的方法。 图5 Rietveld精修开始前谱图 精修完成后(图6),可以看出,拟合良好,误差线较为平直。 图6 Rietveld精修后谱图 精修完成后,直接从软件中读出各物相含量,根据测得的结果,可知这是高贝利特水泥熟料样品。 表2 水泥熟料中各矿物相的含量结 语使用XRD直接定量测试硅酸盐水泥熟料的矿物相,从而可以进一步建立强度和矿物含量的关系,提升水泥质量的控制水平。准确的测定矿物的组成,不仅可以深入了解原料的性质对熟料形成的影响,还可以确定窑炉气氛以及加热的过程对熟料形成过程的影响。可以预期,随着GB/T 40407-2021的实施,XRD在水泥生产中会发挥越来越重要的作用。 撰稿人:章斌、崔会杰 参考文献[1] 李家驹. Rietveld方法X射线粉末衍射分析报告之一[J]. 现代科学仪器, 2007, No.111(1): 107-108.[2] 王培铭等. 基于Rietveld精修法的水泥熟料物相定量分析[J]. 建筑材料学报, 2015, 18(4): 692-698.[3] Bogue R H. Calculation of the compounds in Portland cement[J]. Industrial & Engineering Chemistry Analytical Edition, 1929, 1(4): 192-197.[4] Stutzman P, et al. Uncertainty in Bogue-calculated phase composition of hydraulic cements[J]. Cement and concrete research, 2014, 61: 40-48.[5] Aranda M A G, et.al. Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products[J]. Reviews in Mineralogy and Geochemistry, 2012, 74(1): 169-209.[6] Rietveld H.M. A profile refinement method for nuclear and magnetic structures [J]. International Union of Crystallography, 1969, 2(Pt 2): 65-71. *本文内容非商业广告,仅供专业人士参考。