推荐厂家
暂无
暂无
煤层气主要以吸附状态存在于煤孔隙中,正确认识煤的孔隙结构及分布特征,是研究煤储层孔隙性、空间结构、渗流特征以及煤层气可采性的重要依据。目前,岩石孔隙结构和孔径分布特征主要通过压汞法分析获得的毛细管压力曲线和低温 氮吸附脱附实验得到吸附脱附曲线来进行评价和分析。鉴于,煤储层与常规储层相比,具有易碎、易压缩、孔隙结构复杂性和高度非均质性等特 征,这使得两种方法在煤储层应用方面存在较多不足。如低温氮吸附脱附实验方法对样品孔径的测试范围在1. 7 ~ 300 nm,能较好地反映微小孔 及中孔的分布情况,而无法反映大孔及裂隙的分布情况,测试范围具有局限性; 压汞法对样品有损坏,且无法重复利用低场核磁共振技术测试原理与上述两种方法不同,主要通过测量煤岩孔隙中流体的T2弛豫时间来获取煤样孔隙系统中微小孔、中孔、大孔及裂隙的分 布情况、连通性以及煤岩的各种物性参数。该方法具有快速、无损、信息量丰富等优点低场核磁共振实验结果通过低场核磁共振实验,得到煤样的T2弛豫时间谱( 图3)。根据样品T2谱的形态特征可得,样品按照孔隙大小主要分为两类: 一类微小孔为主,中孔、大孔及裂隙对不发育,如高煤阶 样品; 另一类样品微小孔、大孔或裂隙发育为主,中孔相对不发育,如中煤阶样品。http://pic.yupoo.com/niumagqw1/FIyv44f0/uwWAO.png煤样液氮吸/脱附曲线特征与表面弛豫率关系http://pic.yupoo.com/niumagqw1/FIyv4a8R/13IJuA.png高煤阶煤表面弛豫率明显低于 中煤阶煤,其主要原因为: 高煤阶煤的微孔比例相对较高,孔隙结构较复杂,且多以“细颈瓶”型毛细孔为主。因此,表面弛豫率的大小,与样品孔隙结构的复杂性及孔隙类型具有较好的对应关系。
[size=18px][b][b]1. 引言[/b] [/b]在药物制剂的研发及生产过程中,往往都会涉及到相关的药物粉体。这些粉体及其片剂的理化性质会影响其混合均匀度、压缩成型过程,以及最终制剂的生物利用度和疗效等,因此,在粉碎、混合、压片、制粒等过程中需要对其相关物理特性进行调控以确保最终制剂质量。除了关注度较高的粒度粒形,比表面积,流动性等性质外,密度及孔隙度的表征也是药物质量的重要指标,并且在研发及生产的众多环节都有所涉及。因而在美国药典USP 、USP ,日本药典JP 3.03,欧洲药典Ph. Eur. 2.9.32、Ph. Eur. 2.2.42和2020年版《中国药典》通用技术0992中,都明确规定了药物粉体相关的密度、孔隙度测定方法。密度主要会影响粉体的流动性,均匀性,压缩性以及离析度、结晶度等等。由片料包裹密度除以骨架密度算得的片料固相分数(Solid Fraction)是辊压过程中的关键工艺参数,测定固相分数可了解药物中固体含量百分比等相关信息,从而提高辊压过程的有效性,并建立可控的辊压速度、辊压压力等工艺操作参数,对工艺过程的参数设置及优化制剂质量具有重要意义。此外,药物材料的骨架密度还可以作为其结晶状态以及二元混合物比例的标志。孔隙度(Porosity)会影响药物的辊压制粒、崩解等过程,以及片剂强度、压实度、含量均匀度及溶出度等性质,是药物崩解、溶出和生物利用度的一个关键质量属性。此外,孔隙度测量还可以预测评估压缩过程中颗粒的变形特性,测量辊压后片料的总孔体积和固相分数,以及评估药物包衣的完整性,帮助确定包衣过程中物料流的参数设置等。综上所述,掌握和控制药物制剂的密度及孔隙度对药物的最终疗效及生产稳定性非常重要。本文将介绍药物粉体密度及孔隙度的定义及测试原理,并举例说明相关测试结果。[b][b]2. 密度测试[/b][/b]密度是单位体积粉体的质量。由于粉体的颗粒内部和颗粒间会存在空隙,所以粉体所占有的体积会因测量方法不同而有所差异,并由此产生如骨架密度、包裹密度等不同的密度概念。(1)真密度和骨架密度(颗粒密度)真密度也称绝对密度,所对应的真体积是指不包含开孔和闭孔的体积。骨架密度(颗粒密度)对应的骨架体积是样品的真实体积与闭孔体积之和,即不包括与外界连通的开孔体积。骨架密度的测定方法一般采用基于阿基米德原理的气体置换法测定,该法是目前世界公认的测真密度、骨架密度可靠的技术之一,并为无损测量。图1所示为麦克仪器的AccuPyc II[b]全自动气体置换法真密度仪[/b],测试采用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,结合样品质量可算得骨架密度。[/size][align=center][size=18px][img]http://img72.chem17.com/9/20200731/637318055225383925887.png[/img][/size][/align][size=18px][/size][align=center][size=18px]图1 AccuPyc II[/size][/align][size=18px][b]全自动气体置换法真密度仪[/b](2)包裹密度包裹密度所对应的包裹体积包含颗粒的骨架体积和开孔、闭孔体积,以及颗粒外表面的一些粗糙空隙。图2所示为麦克仪器的GeoPyc 1365[b]全自动包裹密度分析仪[/b]。包裹密度的测试原理是使用一种独特的替代测试技术,通常采用一种具备高流动性的微小刚性球状准流体介质作为替代介质将样品包裹起来。这种替代介质的颗粒很小,在混合过程中可与样品表面紧密贴合,但不会进入样品的孔隙中。[/size][align=center][size=18px][img]http://img75.chem17.com/9/20200731/637318055440362564765.png[/img][/size][/align][size=18px][/size][align=center][size=18px]图2 GeoPyc 1365[/size][/align][size=18px][b]全自动包裹密度分析仪[b]3. 孔隙度测试[/b] [/b]孔隙度指的是颗粒内的孔隙以及样品间隙所占体积与粉体体积之比,通常可通过压汞法和密度计算法等获得。孔隙度越高则表明药物中的总孔体积越大,对应的固体分数就越低。(1)压汞法压汞法是测量药物孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力。汞压入的孔半径与所受外压成反比,根据Washburn方程可算出汞压入的孔半径与所受外力的对应关系。图3所示为麦克仪器的AutoPore V全自动压汞仪,其分析技术就是在[color=red]精确[/color]控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。压汞法具有快速、高分辨率及分析范围广等优点,除了可测得孔隙度外,该表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。[/size][align=center][size=18px][img]http://img73.chem17.com/9/20200731/637318055737357739692.png[/img][/size][/align][align=center][size=18px]图3 AutoPore V[/size][/align][align=center][b][size=18px]全自动压汞仪[/size][/b][/align][size=18px](2)密度计算法除了压汞法外,通过将气体置换法真密度仪与包裹密度分析仪联用,结合材料的骨架密度和包裹密度,由式①也可直接计算出孔隙度。同时,由式②还可以算出片料的固体分数。[/size][align=center][size=18px][img]http://img74.chem17.com/9/20200731/637318055914530037790.jpg[/img][/size][/align][size=18px][/size][align=center][size=18px][img]http://img74.chem17.com/9/20200731/637318056110665447694.png[/img][/size][/align][size=18px]图4 AccuPyc II[b]全自动气体置换法真密度仪[/b]及GeoPyc 1365[b]全自动包裹密度分析仪[b]4. 密度及孔隙度测试举例[/b] [/b](1)药物辅料硬脂酸镁的骨架密度测定硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器的AccuPyc II全自动气体置换法真密度仪对其进行骨架密度测试,结果表明,仪器在约16分钟内完成了10个测试循环,该硬脂酸镁样品的密度平均值为1.5157 g/cm3,标准偏差仅为0.0006 g/cm3,密度结果均围绕其平均值波动,结果非常稳定,实现了药物材料快速、高精度的体积测量和密度计算。(2)药物的压汞法孔隙度测定使用麦克仪器公司的AutoPore V [b]全自动压汞仪[/b]对某药物进行压汞测试。其堆积密度为1.1639 g/ml,骨架密度为1.5382 g/ml,由此计算得到的孔隙度为24.3332%。(3)药物片料的密度计算法孔隙度及固相分数测定使用麦克仪器的GeoPyc 1365[b]全自动包裹密度分析仪[/b]对辊压后得到的某药物片料进行孔隙度测试。测得该药物的包裹密度为1.3409 g/cm3,其标准偏差为0.0007 g/cm3,结合由AccuPyc II全自动气体置换法真密度仪测得的骨架密度1.4630 g/cm3,最后算得孔隙率为8.35 %。根据上文公式②,由骨架密度除以包裹密度可算得其固相分数为91.65 %。[b][b]5. 总结[/b][/b][/size][size=18px]药物粉体及相关制剂的密度及孔隙度表征对其处方设计、制备、质量控制等都具有重要指导意义。密度和孔隙度不仅是辊压和压片等过程的关键工艺参数,也是硬度、崩解度、溶出度、生物利用度等的关键质量属性,会直接影响和制约药物的性质及疗效。因而研究和掌握药物粉体及制剂的密度、孔隙度对获得高质量的药物至关重要。采用气体置换法真密度仪和包裹密度分析仪可分别获得药物粉体的骨架密度和包裹密度,通过压汞法或者结合两种密度仪的密度计算法可测得药物的孔隙度及片料的固体分数。借助这些性质表征有助于掌握及预测原料药及辅料在配方中的特性,评估药物制剂的批次变化及药物相关性能,从而优化制造过程和提升产品质量。[/size][size=18px][/size][size=18px][font=arial, helvetica, sans-serif][size=16px]关于麦克仪器公司[/size][/font][font=arial, helvetica, sans-serif][size=16px]麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将Micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问: [/size][/font][url=http://www.micromeritics.com.cn/][color=#0000ff][font=arial, helvetica, sans-serif]www.micromeritics.com.cn [/font][/color][/url][/size]
应用背景岩样中所有孔隙空间体积之和与该岩样体积的比值,称为该岩石(岩心)的总孔隙度,以百分数表示。储集层的总孔隙度越大,说明岩石(岩心)中孔隙空间越大。从实用出发,只有那些互相连通的孔隙才有实际意义,因为它们不仅能储存油气,而且可以允许油气在其中渗滤。因此在生产实践中,提出看了有效孔隙度的概念。有效孔隙度是指那些互相连通的,在一般压力条件下,允许流体在其中流动的孔隙体积之和与岩样总体积的比值,以百分数表示。显然,同一岩石(岩心)有效孔隙度小于其总孔隙度。孔隙度是储层评价的重要参数之一.核磁共振(NMR)可检测到岩心内孔隙流体的信号,且具有无损快速准确等特点,在确定地层孔隙度方面具有其他测井方法无法比拟的优势,因此,在石油勘探和开发领域,核磁共振(NMR)技术在岩心分析 、地球化学和地球物理测井等方面的应用日益引人注目。核磁共振在石油岩心领域的功能 :1)常规岩心孔隙结构,孔径分布及流体饱和度;2) 非常规岩心(致密岩心,泥岩,页岩)孔隙结构,孔径分布及流体饱和度;3) 岩心样品含油含水分布、油水含量测试;应用举例一:玻璃珠孔隙模型测试(不同饱和度下T2弛豫图谱分析)http://i1292.photobucket.com/albums/b570/niumagnmr/niumagnmr/ball.jpg应用举例二:常规岩心孔渗饱测试http://pic.yupoo.com/niumagnmr_v/EqwZXDb3/KysOx.jpg图2.砂岩T2谱及累积T2谱样品的微分谱中可以看出来,饱锰样中加入锰使水的弛豫时间变短,采集不到水的信号,只能采集到油的信号。从饱水样的弛豫谱中可以得到孔隙度,束缚流体饱和度、自由流体饱和度,结合原始样和饱锰样弛豫谱可以得到含油饱和度和含水饱和度。