荧光光谱法分析

仪器信息网荧光光谱法分析专题为您提供2024年最新荧光光谱法分析价格报价、厂家品牌的相关信息, 包括荧光光谱法分析参数、型号等,不管是国产,还是进口品牌的荧光光谱法分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光光谱法分析相关的耗材配件、试剂标物,还有荧光光谱法分析相关的最新资讯、资料,以及荧光光谱法分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

荧光光谱法分析相关的厂商

  • 企业简介武汉上谱分析成立于2013年1月,拥有CMA资质认证,GeoPT、G-Probe国际盲样分析检验水平全球领先,是专业的地球化学分析综合测试平台,提供微区原位分析(U-Pb同位素定年、原位Rb-Sr等时线定年、主微量元素分析、S-Sr-Nd-Pb-Hf-B同位素分析)、全岩主微量元素分析、Sr-Nd-Pb-Hf-Ca-Fe-Cu-Zn-Li-Mg同位素分析、电子探针分析、样品前处理等测试服务。累计服务国际SCl论文超2800篇,包括NC、PNAS、EPSL、GCA等。发展历程2013年,上谱成立,初建50平米千级超净实验室,引进第一套质谱分析设备,可完成锆石制靶、微量元素检测,初步形成地化分析能力。2014年,取得CMA认证,参加GeoPT国际盲样比拼,测试结果处于国际一流水平。2015年,引进第一台激光分析设备,可提供U-Pb同位素定年和微区主微量元素分析。2016年,建成形貌分析实验室,引进IT100扫描电镜和第二套质谱,检测效率进一步提升。2017年,主量实验室成立,引进X荧光光谱仪和第二套激光、第三套质谱,正式开展全岩Sr、Nd、Pb、Hf同位素前处理,形成微区原位、全岩主微量两大分析板块。2018年,乔迁2000平实验楼,建成220平米千级超净实验室,引入第一套MC(NeptunePlus)和第三套激光,开启同位素分析时代,开展微区Sr、Nd、Pb、Hf、S同位素分析。2019年,建成电子探针实验室,引进JAX-8230探针和IT300电镜,丰富地学测试项目。2020年,建立前沿同位素方法,第二套MC(NeptuneXT),建立Ca、Fe、Cu、Zn等前沿方法。2021年,成立上谱地质开展制片、岩矿鉴定、矿物分选、无污染碎样等,引进第四套激光和质谱,打造一站式地学综合分析平台。2022年,地学分析综合测试平台,新建200平超净仪器房,300平实验室,进一步提升测试能力,健全地学分析项目服务国际SCI文章超过1500篇。2023年 走向世界 服务全球测试项目上谱分析测试项目包括激光微区原位分析、电子探针分析、全岩主微量元素分析、同位素分析以及地质样品前处理等,样品类型涵盖岩石、矿物、土壤、水、珠宝、材料、生物样品以及高纯物质等。全心服务上谱分析始终坚持“专业、快速、贴心”的服务理念,依托标准化的实验硬件设施、规范化的样品管理制度、精细化的优质服务体系,为广大科研工作者提供地学样品一站式服务,实现“上门取样→样品前处理→分析测试→数据处理”全流程一站解决!
    留言咨询
  • 青岛佳鼎分析仪器有限公司创建于2011年,公司主营实验室分析检测仪器设备,以实验室整体建设为发展方向。公司目前涉及电子电器、医药生物、石油化工、食品、机械、新材料、环境、科研高校等诸多领域。联合山东医药化工设计院,美国安捷伦、美国热电、日本岛津、江苏天瑞等众多品牌及多个重点实验室从实验室布局设计出图、基础设施建设、仪器设备供应、方法开发建立、后期运营管理,形成完整的专业实验室建设体系,达到一站式服务,为众多行业客户提供更为完善的整体解决方案。公司主营产品分为四大类,光谱仪、色谱仪、质谱仪和环境在线检测。能量色散X荧光光谱仪(EDX)、波长色散X荧光光谱仪(WDX)、等离子体发射光谱仪(ICP)、光电直读光谱仪(OES)、原子吸收分光光度计(AAS)、原子荧光光谱仪(AFS)、拉曼光谱仪(Raman)、碳硫分析仪(CS)、红外光谱仪、矿浆载流分析仪(OSA)、气相色谱仪(GC)、液相色谱仪(LC)、气相色谱-质谱联用仪(GC-MS)、液相色谱-质谱联用仪(LC-MS)、电感耦合等离子体质谱仪(ICP-MS)、水质在线分析仪(WAOL);
    留言咨询
  • 我们是一家全球性的日立公司,通过互联材料分析解决方案帮助我们的客户变得更加成功和可持续,这些解决方案使生产和开发过程更加高效、自动化和绿色,以确保产品质量、安全性和合规性。我们提供实验室级和强大高性能现场检测设备如光电直读光谱仪、X射线荧光光谱(XRF)、X荧光测厚仪(镀层测厚仪)、激光诱导击穿光谱仪(LIBS)、热分析仪、锂电池异物分析仪、油品分析仪、土壤分析仪等。
    留言咨询

荧光光谱法分析相关的仪器

  • 前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。 二、激光诱导荧光(LIF or TALIF)LIF在等离子体上的应用诊断开始于1975年左右,首先是由R.Stern和J.Johnson提出的利用LIF装置可以测量中性基团和离子的相对速度、速度分布函数等。90年代后,LIF被陆续应用到了ECR、ICR、磁控管、螺旋波HELIX、ICP以及微波驱动CVD等等离子体源中。2.1、 等离子体 LIF诊断的基本模型处于基态或亚稳态的粒子吸收具有一定能量的光子后被激发,再从激发态衰变为自旋多重度相同的基态或低能态时,就会发出荧光辐射。而荧光光强与粒子数成正比,因此,通过测量荧光光强,可以确定处于基态或亚稳态的粒子密度。由于这种荧光发射的时间长度低于微妙量级,必须采用脉冲宽度在纳秒量级的激光来激发荧光,这种诊断方法因此被称作激光诱导荧光(LIF)。图1. LIF基本原理图图1[1]为LIF的基本原理图,在一个三能级系统中:离子处于亚稳态时,当照射激光能量等于跃迁激发的能量,离子被泵浦到激发态。由于激发态不稳定,离子又会迅速退激到基态并辐射出荧光。在激发态上停留时间很短暂(一般只有几纳秒宽度)。由于离子不是静止的,根据多普勒效应可知,在激光传输方向上存在一个速度选择,只有在激光传输方向上满足一定速度的离子才能被特定频率的激光诱导激发:窄带激光束(ωlaser,κlaser)入射,在入射方向上,只有离子速度 和激光频率满足关系式 时,才能通过相应的激光激发被泵浦到激发态。对入射激光频率进行扫描变换,测量相应的荧光光强变化,就能得到亚稳态离子速度分布函数在入射激光方向上的投影。如果假定亚稳态离子温度和主体基态离子温度一致,离子速度分布函数等动力学参数即可获得。2.2、 典型LIF实验架构与世界上的LIF架构参考如图2所示,为典型的等离子体装置LIF诊断实验架构图。图2 典型的等离子体LIF诊断架构图因为基团和粒子的激发波长不同,因此我们选择了波长可调谐的纳秒脉宽染料激光器,通过添加不同的染料,输出不同的波长对被测试的粒子和基团进行激发,从而得到激光诱导的荧光衰减与光谱信号,这些信号经由相关的搜集光路被捕获到光谱仪与ICCD探测器组成的光谱探测系统中,从而得到光谱、强度与时间尺度的三维荧光光谱,让研究人员进行相关的分析。图中所用的DG535/645作为整个实验系统的时序控制装置。图3到图4为世界上比较典型的不同等离子体装置的LIF诊断情况。图3. University of Greifswald LIF诊断系统(H原子)图4. IHP LIF诊断系统2.3、典型的LIF波长选择举例对Ar等离子体和He等离子体放电,常用的激光器波长可调谐范围不需要太宽要测H(氢)等离子体,激光波长需要205nm测CF等离子体 需要261nm同时测 Ar等离子体的LIF,因为观测另一条谱线,所用的激光波长又是611nm的所以LIF的波长范围应该根据要观测的等离子体放电的气体种类及观测那条谱线来决定2.4、硬件配置推荐 根据用户需求,一般推荐的配置如下:1、染料可调激光器:可选配置从200-4500nm 宽范围调谐2、 光谱仪:Ø Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750I光谱仪搭配1200l/mm和1800l/mm的全息光栅Ø 207或者205高光通量光谱仪,搭配110*110mm 的大尺寸1200l/mm光栅和1800l/mm光栅2、 探测器: ICCD, 18mm 增强器,13*13mm 探测面;DG645:用于系统触发控制的时序单元其他光学平台及光路设计等 光电倍增管PMT/锁相放大器/ Boxcar 模块 等请咨询卓立汉光销售人员!参考文献[1] 赵岩, 柏洋, 金成刚, 等.激光诱导荧光在低温等离子体诊断中的应用[J]. 激光与红外, 2012, 4(42): 365-371.
    留言咨询
  • 荧光光谱分析仪Flex One性能特点:● 一体化的光学调校——整机设计,结构稳固,光路稳定,确保高效性和易用性● 简单易用的双样品光路设计——可随意在水平和垂直光路上进行切换,适用于各种常见的样品夹具● 超宽光谱范围**——200nm-2500nm● 视频监视光路 ——通过监视器,查找微米级样品,可供精确调整,定位测试样品点● 多种激发波长可选**——266nm,325nm,405nm,442nm,473nm,532nm,633nm,785nm等● 自动mapping功能可选*——50mm×50mm标准测量区间,可定制特殊规格,步进精度1μm特殊规格● 电致发光(EL)功能可选*——扩展选项● 显微拉曼光谱测量功能可选*——扩展选项● 超低温测量附件可选*——可配置多种低温样品台*选配项,请详细咨询; **需根据实际需要进行配置确定荧光光谱分析仪Flex One产品简介: 光致发光(photoluminescence) 即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光,在半导体材料的发光特性测量应用中通常是用激光(波长如325nm、532nm、785nm 等)激发材料(如GaN、ZnO、GaAs 等)产生荧光,通过对其荧光光谱(即PL 谱)的测量,分析该材料的光学特性,如禁带宽度等。光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、高灵敏度的分析方法,因而在物理学、材料科学、化学及分子生物学等相关领域被广泛应用。 传统的显微光致发光光谱仪都是采用标准的显微镜与荧光光谱仪的结合,但是传统的显微镜在材料的PL 谱测量中,存在很大的局限性,比如无法灵活的选择实验所需的激光器(特别对于UV 波段的激光器,没有足够适用的配件),无法方便的与超低温制冷机配合使用,采用光纤作为光收集装置时耦合效率太低等等问题,都是采用标准显微镜难以回避的问题。 北京卓立汉光仪器有限公司结合了公司十余年荧光光谱仪和光谱系统的设计经验和普遍用户的实际需求,推出了“Flex One( 微光)”系列显微光致发光光谱仪,有效的解决了上述问题,是目前市场上高性价比的的显微PL 光谱测量的解决方案。荧光光谱分析仪Flex One系统组成● 激发光源部分:紫外-近红外波段各种波长激光器● 显微光路部分:优化设计的专用型显微光路● 光谱采集部分:影像校正光谱和高灵敏型科学级CCD或单点探测器和数据采集器● 样品台支架部分:xyz三维可调样品台(手动或自动)、超低温样品台荧光光谱分析仪Flex One参数规格表:主型号Flex One光谱范围300-2200nm光谱分辨率0.1nm激发光可选波长266nm,325nm,405nm,442nm,473nm,532nm,633nm,785nm等探测器类型单点Si单点PMT单点InGaAs制冷型CCD2000×256制冷型InGaAs阵列512×1制冷型InGaAs阵列512×1有效范围200-1100nm200-870nm800-2500nm300-1000nm800-1700nm800nm-2200nm空间分辨率50μm注*:以上为参考规格,详细规格依据不同配置的选择会有差异,详情请咨询!
    留言咨询
  • S4 TStar — TXRF全反射X射线荧光光谱仪 数十年来,X 射线荧光(XRF)光谱法在多个行业中被广泛用于对固体和石油化工样品进行元素分析,检测限值低于PPb 量级。TXRF 扩展了XRF 的应用范围,可以分析液体样品、悬浮液和膜片中的超微量元素。优异的样品通用性S4 TStar 是一种通用性很强的工具,可以分析不同反射载体上的多种类型的样品。ICP 只能分析完全溶解的液体样品。图一:30 毫米石英片:对液体、固体和悬浮液进行元素分析图二:2 英寸晶片:污染分析、深度剖析和材料科学研究图三:显微镜载玻片:临床和生物学样品,直接分析细胞培养物、涂片和切片图四:矩形载体:尺寸小于54 毫米,用于膜片、滤片、纳米颗粒层 定制的反射介质 行业应用: 药品检测活性药物成分中的催化元素:液体或丸粒中的铅含量小于0.1 / 0.5ppm 食品粮农组织和世卫组织的食品标准:大米中的砷含量小于10 / 40ppb。 环境监测环境监测:地表水,废水、污泥和核废液中的污染物含量小于1 / 10ppb。
    留言咨询

荧光光谱法分析相关的资讯

  • 便捷测镉新方法-火焰原子荧光光谱法
    近日,旨在引导大家安全储粮的“全国粮食安全宣传周”活动正式开启,可见国家对粮食安全高度重视。而据相关检测数据表明,镉超标已经成为影响我国粮食安全的重要因素。检测粮食中镉的方法有很多,包括石墨炉原子吸收光谱法、ICP-MS法以及火焰原子荧光光谱法。其中《谷物中镉的测定 烯酸提取 火焰原子荧光光谱法》是金索坤和国家粮食局科学研究院共同起草发布的测镉新方法,新方法最突出的特点是前处理简单。首先火焰原子荧光光谱法检测粮食中的镉的处理过程为:称取0.1 g~ 0.5 g试样,置于离心管中,加1%硝酸定容至20 mL,摇匀,离心5 min后取上清液测试。相比之下,其他测粮食中镉的方法比较复杂,例如《GB 5009.15-2014》提到的石墨炉原子吸收光谱法的前处理简述为:称取试样于微波消解罐中,加入硝酸和过氧化氢溶液。调节微波消解仪参数进行消解。消解完成,待溶液冷却后加热赶酸,移入容量瓶。整个前处理不仅需要微波消解仪等装置,还需要硝酸和过氧化氢等试剂,整个前处理需要2个小时左右。再比如《GB 5009.268-2016》中ICP-MS法,检测前同样进行前处理,样品微波消解完成后,需要超声或控温电热板加热半小时,不但耗时长而且步骤多。与火焰原子荧光光谱法相比,ICP-MS法需要增加微波消解仪、控温加热板等装置,步骤繁琐。通过上面三种测镉方法的对比可发现火焰原子荧光光谱法测镉更便捷,特别适合储粮时期,短时间内大量样品的检测。民以食为天,粮食安全是关系国计民生的大事,专注于原子荧光技术发展的金索坤除了和国家粮食局科学院共同起草团体标准《谷物中镉的测定 烯酸提取 火焰原子荧光光谱法》之外,还推出SK-典越 火焰原子荧光光谱仪(高灵敏度测隔仪)等火焰原子荧光产品助力粮食检测。金索坤会不断地推陈出新,用更加优质的原子荧光产品服务广大客户。金索坤SK-典越 火焰原子荧光光谱仪/光度计
  • 关注|原子荧光光谱法及其联用技术将写入《中国药典》
    近日,国家药典委官网发布了《关于做好2023年度国家药品标准提高工作的通知》。根据通知,本次标准提高工作,共有159个药品品种标准、80个通用技术要求标准列入项目课题。详情请见:这些仪器方法有望进入《中国药典》。其中,2322 汞、砷形态及价态测定法的修订课题已经成功立项。根据相关课题说明,本次修订拟在现有砷、汞形态及价态测定法基础上进一步开发更优化色谱条件,细化色谱参数,为提高汞、砷形态及价态分析的耐用性和准确性提供参考。虽然在研究目的中没有体现,但是在具体的研究内容中:1. 汞元素形态及价态分析的优化研究;2. 砷元素形态及价态分析的优化研究;3. 通过典型海洋、动物类药材中汞、砷形态及价态的分析方法和形态分布规律研究,提出相应品种的合理安全性评价方法和标准;4. 研究液相色谱-原子荧光光谱联用法测定中药材中汞、砷形态及价态的含量,考察其分离效果、检测灵敏度、抗干扰性和稳定性;5. 优化液相色谱-电感耦合等离子体质谱联用法的色谱条件,提高方法的耐用性和准确性;6. 对比与液相色谱-电感耦合等离子体质谱联用法检测结果准确性;包含了研究液相色谱-原子荧光联用技术(LC-AFS)应用于汞、砷形态及价态的含量的内容。元素形态分析目前已经成为分析科学领域的一个重要分支。元素形态分析,传统化学法用的比较少,使用较多的是仪器联机分析方法,其实质是分离技术与检测技术的联用。其中,国内外比较认可LC-ICP-MS联用方法。ICP-MS方法灵敏度高、选择性强、检出限佳、可以同时测定多种元素,是元素形态分析的有力检测工具。在目前现行的《中国药典》四部2322 汞、砷形态及价态测定法中,就采用了LC-ICP-MS联用法作为检测手段。但是,也存在着ICP-MS仪器主要依靠进口、成本高、运行费用也高等问题。实际上,在分析测试领域,还有一种联用技术常用于测定汞、砷形态及价态——LC-AFS联用法。AFS是中国具有自主知识产权的分析仪器,具有分析灵敏度高、线性范围宽、光谱干扰及化学干扰少、仪器结构简单、成本低廉、易于维护等优点。LC-AFS其最大特点在于对含有特定元素的化合物具有高度的专一性和较高的灵敏度,具有与ICP-MS相似的分析性能(检出限、精密度和灵敏度),特别是在As、Hg、Se、Sb四种元素的形态和价态方面有很好的应用。与ICP-MS相比较,LC-AFS在采购成本、使用成本上具有极大优势,并且具有操作简单、容易上手的特点。目前,LC-AFS技术应用领域与行业越来越广泛,涵盖了食品卫生检测、环境样品检测、地质冶金样品检测、水样品检测、农产品检测、临床检验、教育及科研等领域。但是,相关标准的缺失一直限制该技术的发展。2015年,2322 汞、砷形态及价态测定法第一次增订进入《中国药典》时,原子荧光形态分析技术就未能被引入。虽然药典标准中同样指出,只要分析方法经过验证,检出限低于标准的限量,该方法即可应用。从仪器条件与系统适用性试验可以看出,高效液相色谱法-原子荧光光谱法完全符合2015年中国药典相关要求,满足其测试条件。但是由于药典中原子荧光光谱法测量砷元素和汞元素的方法未能写入其中,如想把其价态测定的方法写入药典,就需要先把原子荧光法测量砷汞的方法写入药典。让原子荧光及相关联用技术进入药典的工作一直在努力进行中。2022年,药典委发布的年度国家药品标准提高工作的通知中,就包含了原子荧光光谱法的建立课题。该课题拟选取典型药品品种,开展原子荧光光谱法测定汞、砷元素含量等的研究,研究制定《中国药典》四部原子荧光光谱法,包括原子荧光光度计的一般要求、测定方法和方法学验证要求等。具体内容,包括1.确定方法的适用范围。 2.调研市场上不同品牌的原子荧光光度计参数及其特点,制定原子荧光光度计的一般要求,包括激发光源、单色器、原子化器、检测系统等。 3.制定测定方法要求:根据原子荧光光谱法测定汞、砷元素的技术原理及特点,考察前处理条件、氢化反应条件、仪器参数、校正方法,建立合理的测定方法。 4.制定方法学验证要求:收集不同类型的药品,充分考察方法学特点,对比不同品牌仪器的灵敏度、专属性、准确度、耐用性等因素,以及仪器之间的 重现性,制定可行的方法学验证要求。原子荧光进入《中国药典》不远了。
  • 《谷物中镉的测定 稀酸提取 火焰原子荧光光谱法》CAIA标准正式发布
    p   2018年7月27日,由中国分析测试协会标准化委员会提出,国家粮食局科学院研究员和北京金索坤技术开发有限公司共同起草的《谷物中镉的测定 稀酸提取 火焰原子荧光光谱法》CAIA标准正式发布,并将于2018年9月1日起正式实施。 /p p   据悉,该标准于2018年4月17日由中国分析测试协会标准化委员会“筛检技术标准化工作组”组织有关专家进行预审,并经过了中国分析测试协会标准化委员会每一个委员的审议,最终修改方案通过了中国分析测试协会标准化委员会主任委员张玉奎院士的审批。经张玉奎院士审查同意后,现将该项CAIA标准正式发布。 /p p & nbsp & nbsp & nbsp & nbsp 具体内容请见附件: br/ /p p & nbsp & nbsp & nbsp & nbsp img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201807/ueattachment/16597e95-c4f8-457d-b9d9-c0b5a9433955.pdf" 《谷物中镉的测定 烯酸提取 火焰原子荧光光谱法》CAIA标准发布.pdf /a /p p & nbsp & nbsp & nbsp & nbsp img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201807/ueattachment/9ece17d0-74f6-4e2e-a72d-a246e7edad9a.pdf" 谷物中镉的测定 稀酸提取-火焰原子荧光光谱法-标准文本.pdf /a /p

荧光光谱法分析相关的方案

荧光光谱法分析相关的资料

荧光光谱法分析相关的试剂

荧光光谱法分析相关的论坛

  • 原子荧光光谱法的优点剖析

    采用原子荧光光谱法进行测定时具有如下优点:1 使用原子荧光光谱仪进行检测,有较低的检出限,灵敏度高。特别是对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng/cm?、Zn为0.04ng/cm?。现已有20多种元素低于原子吸收光谱法的检出限。由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。2 干扰较少,谱线比较简单,采用一些装置,可以制成非色散原子荧光光谱仪。这种仪器结构简单,价格相对便宜。3 谱线简单,分析校正曲线线性范围宽,可达3~5个数量级,特别是用激光做激发光源时更佳。4 由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。这些优点使得原子荧光光度计在冶金、地质、石油、农行、地球化学、材料科学、环境科学、高纯物质、水质监控、生物制品和医学分析等各个领域内获得了相当广泛的应用。

荧光光谱法分析相关的耗材

  • 高压消解罐-原子荧光光谱法测定大米中的汞
    NJ-ZH高压消解罐-原子荧光光谱法测定大米中的汞摘 要:本文采用高压消解-原子荧光光谱法测定大米中的重金属汞的含量,选定了大批样品的处理方法,并优化了测定条件。得到回归方程为:A=1055.323*C+0.355,相关系数为:0.9995;检出限为:0.415μg/kg,线性范围为:0~2 ng/mL;回收率为:95%~102% 相对标准偏差为1.0%-6.5%;结果满意。由于金属、类金属元素在粮油食品中与有机物结合成稳定而牢固的难溶、难离解的化合物,从而失去其原有的特性,一般不能直接进行测定。如需测定这些无机成分的含量,需要在测定前破坏有机结合体,释放出待测组分[1]。汞由于容易在人体脑内积蓄而引起神经中毒,而受到广泛的关注,各种样品中的汞研究不时见著于文献中[2~6]。大米样品的前处理方法有高压消解法、微波消解法[7~10]。两种方法各有利弊:前者单个样品消解所需时间较长,但配套成本较低,而且一次性可以大批样处理,适合各种大小实验室的配置要求;后者虽然单个样品消解时间较短,但配套成本较大,对于基层实验室来说,拿出几十万元人民币购置一台微波消解系统,有点不现实。本文基于这一点,特对高压消解条件进行了优化,结果满意。1实验部分1.1仪器与试剂1.1.1主要仪器钢衬四氟消解罐(正红仪器139 139 23002;025-8555 7400;130 1654 5846);AFS-2202E双道原子荧光光度计(北京科创海光仪器有限公司);汞空心阴极灯(北京有色金属研究总院);;可调电热板、电炉;101型电热鼓风干燥箱;纯化水机,AMF 1-20-P,艾科浦;所用玻璃仪器均用25%硝酸浸泡过夜,用去离子水冲净沥干备用。1.1.2主要试剂汞标准储备溶液,1000μg/mL,钢铁材料测试中心;硼氢化钾(≥96%),分析纯,天津市化学试剂研究所;氢氧化钠,分析纯,上海化学试剂有限公司;HNO₃ ,优级纯,上海振兴化工二厂有限公司;实验用水均为二次去离子水。1.1.2.1溶液配制15g/L硼氢化钾(KBH4)溶液:称取硼氢化钾15.0g溶于5g/L氢氧化钾溶液1000mL中,混匀,现用现配。100 ng/mL的汞标准使用液:将1000μg/mL的汞标准储备溶液用5%HNO₃ 逐级稀释为100 ng/mL。1.1.2.2标准系列配制取50 mL容量瓶6只,依次准确加入100 ng/mL的汞标准使用液0.025 mL、0.05 mL、0.10 mL、0.20mL、0.40 mL、1.00 mL(相当于含汞浓度0.05 ng/mL、0.10 ng/mL、0.20 ng/mL、0.40 ng/mL、0.80 ng/mL、2.00 ng/mL);用5%HNO₃ 定容,摇匀待测。1.2样品处理称取0.50 g大米于聚四氟乙烯内罐中,加7 mLHNO3浸泡过夜,再加3 mL H2O2,盖好内盖,旋紧不锈钢外套,放入恒温干燥箱内120℃保持2.5 h,在箱内自然冷却至室温,转移至25 mL比色管中,用5%HNO₃ 定容待测,同时做试剂空缺实验。
  • HAF 高性能原子荧光光谱分析用空心阴极灯
    HAF 高性能原子荧光光谱分析用空心阴极灯 规格:Φ50mm适用仪器:配套国内各厂家生产的原子荧光仪器 性能指标:高性能空心阴极灯用作原子吸收和原子荧光光源,具有谱线发射强度高、稳定性好的优点,使用高性能空心阴极灯可提高测定灵敏度、改善标准曲线的线性、降低检出限。可提供二十多种元素灯,寿命:5 Ah。订货信息:HAF 高性能原子荧光光谱分析用空心阴极灯 元素元素Ag银Mo钼Al铝Na钠As砷Nb铌Au金Nd钕B硼Ni镍Ba钡Os锇Be铍Pb铅Bi铋Pd钯Ca钙Pr镨Cd镉Pt铂Ce铈Rb铷Co钴Re铼Cr铬Rh铑Cs铯Ru钌Cu铜Sb锑Dy镝Sc钪Er铒Se硒Eu铕Si硅Fe铁Sm钐Ga镓Sn锡Gd钆Sr锶Ge锗Ta钽Hf铪Tb铽Ho钬Te碲Hg汞Ti钛In铟Tl铊Ir铱Tm铥K钾W钨La镧V钒Li锂Y钇Lu镥Yb镱Mg镁Zn锌Mn锰Zr锆Ca-MgFe-MgK-NaPb-CdAg-CdZn-CuSeSn/ SePbCuZnFeCaMg
  • 东西分析 AFS原子荧光光谱仪配件耗材 空心阴极灯
    重要提示:本产品网页标价为随机发布参数,产品具体准确价格请联系客服本店常年现货供应高性能原子荧光空心阴极灯,适用北京吉天 、北京海光、 北分瑞利、 普析通用 、博辉创新 、东西分析 、北京宝德 、 北京金索坤、 湖北汇瑞通 、上海美析、 北京锐光、 南京科捷、 北京卓信、 天津港东 、湖北特创、加拿大欧罗拉 等国内外各品牌原子荧光分光光度计。 批发零售,规格齐全、诚征分销。我们欢迎您的光临!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制