推荐厂家
暂无
暂无
智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。 能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS1620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。 2.3总线技术的标准化与规范化 目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、I2C总线、SMBus总线和spI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。 2.4可靠性及安全性设计 传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器(例如TMP03/04、LM74、LM83)普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。 为了避免在温控系统受到噪声干扰时产生误动作,在AD7416/7417/7817、LM75/76、MAX6625/6626等智能温度传感器的内部,都设置了一个可编程的“故障排队(fAultqueue)”计数器,专用于设定允许被测温度值超过上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1~4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这意味着假定n=3时,那么偶然受到一次或两次噪声干扰,都不会影响温控系统的正常工作。 LM76型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合ACPI(AdvAnced ConfigurAtion And Power InterfAce,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU及主电路的温度。微处理器最高可承受的工作温度规定为tH,台式计算机一般为75°C,高档笔记本电脑的专用CPU可达100°C。一旦CPU或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU的极限温度时,严重超温报警输出端(T_CRIT_A)也能直接关断主电源,并且该端还可通过独立的硬件关断电路来切断主电源,以防主电源控制失灵。上述三重安全性保护措施已成为国际上设计温控系统的新观念。 为防止因人体静电放电(ESD)而损坏芯片。一些智能温度传感器还增加了ESD保护电路,一般可承受1000~4000V的静电放电电压。通常是将人体等效于由100PF电容和1.2K欧姆电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压。LM83型智能温度传感器则可承受4000V的静电放电电压。 最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(PArAsitic ResistAnce CAncellAtion,英文缩写为prc)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100欧姆,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。 2.5虚拟温度传感器和网络温度传感器 (1)虚拟传感器 虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,美国B&K公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。 (2)网络温度传感器 网络温度传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。数字传感器首先将被测温度转换成数字量,再送给微控制器作数据处理。最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用(Plug&PlAy)”,这样就极大地方便了用户。 2.6单片测温系统 单片系统(
[font=Verdana] 据上海《天天新报》报道 通过网络进行视频聊天,如今已非常普遍。日前从上海水表厂获悉,技术人员利用了这一原理,成功研制出了“摄像直读远程抄表系统”,利用这一系统,抄表员可以远程操作,从而使抄水表更便捷,减少了上门给居民带来的麻烦。[/font][font=Verdana] 据上海水表厂研制人员介绍,这套系统通过摄像机取得表具图像信号,再选用适当的信号传输方式,将图像信息导入到自来水公司或相关管理部门的远程计算机终端。这样一来,抄表者不仅可以看到表具数据的图像,而且每个表具存储的都是带有时间、日期等完整的信息图片数据,如发生水费纠纷,就具有法律效力。这种远程抄表管理系统所使用的是普通表具,以后换水表时只调换水表而不必更换摄像传感器,目前部分房产开发商正在与水表厂沟通,有望尽快在中心城区居民区试点安装这种远程抄表管理系统。[/font]
温度传感器的标定和大多数其它传感器的标定一样,最普遍的方法就是将传感器放置在一个可精确测定的、已知温度的环境中一段时间,然后记录检查传感器的输出是否与已知的环境温度一致,并计算出传感器的误差。那么接下来我们具体的看看温度变送器的标定方法吧。 由于自然环境下温度始终是一个缓变的物理量,所以一般情况下对温度传感器的检定是属于静态的,这也能满足绝大部分温度传感器的实际需要。动态的检定极少,能实现温度动态检测的设备也极少。 由于静态温度传感器检定的方法和原理极其简单,所以这类资料或标准反而少见。对温度传感器动态标定一般都是采用激光的方法。改善温度传感器的动态特性最好的方法就是选用反应敏感的感温材料和减少传感器感温部分的质量,降低其热惯性。 温度传感器的标定过程实际上也是确定温度传感器的各参数指标,尤其是精度问题,所以这个过程所用测量设备的精度通常要比待标定传感器的精度高一个数量级,这样通过标定确定购温度传感器性能指标才是可靠的,所确定的精度才是可信的。