室外型红外探测器

仪器信息网室外型红外探测器专题为您提供2024年最新室外型红外探测器价格报价、厂家品牌的相关信息, 包括室外型红外探测器参数、型号等,不管是国产,还是进口品牌的室外型红外探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合室外型红外探测器相关的耗材配件、试剂标物,还有室外型红外探测器相关的最新资讯、资料,以及室外型红外探测器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

室外型红外探测器相关的厂商

  • 深圳市汇成探测科技有限公司始建于2007年是一家专业从事金属探测器研发、生产、销售为一体的企业。公司严格依照ISO9001国际质量标准体系的要求,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和保证体系。目前公司主营品种齐全有地下可视成像仪、可视地下金属探测器、远程地下金属探测器、探盘式地下金属探测器、手持金属探测器。品质彰显价值,服务缔造信誉。为广大客户提供更优质的服务,公司以“专业、信誉、质量第一、用户至上”为经营宗旨,以高品质的产品与服务满足客户的梦想。追求卓越是我公司致力追求的目标。我们更坚信:有了您的支持和我们不断的努力,我们与社会各界同仁携手并进,开拓创新,共创美好未来。
    留言咨询
  • 东莞市嘉乐仕金属探测设备有限公司是一家专业金属探测器,金属探测仪,金属检测仪,金属检测器,食品金属探测器,金属分离器,x光机,x射线异物检测仪的集研发、生产、销售于一体的民营高科技企业.经过多年的经营发展和科技上的不断创新,已成为中国最大的金属探测器生产厂家之一,嘉乐仕凭借优质的产品,卓越的技术和完善的服务,产品遍及祖国各地,并远销美洲,欧洲,非洲,中东,东南亚等国际市场。   东莞市嘉乐仕金属探测设备有限公司以“诚信是我风格,质量是我生命“ 为宗旨,视用户为“上帝”,一贯秉承“质量第一、顾客满意,持续改进,争创一流”的方针,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和质量保证体系,且采取有效的市场保护措施,确保为每个用户提供最优质的产品和最完善的服务。   展望未来,嘉乐仕将一如继往的秉承”敬业,诚信,融合,创新“的企业精神,研制出更好的产品,提供更好的服务,树立更好的形象,愿与各界新老朋友进行更广泛的合作,共创辉煌!   嘉乐仕热忱欢迎企事业单位前来参观考察,洽商合作,愿与您携手共创更辉煌的明天! 联系人:卢生15907693763(微信同号)QQ:2777469253 欢迎来电咨询!官网:www.jls668.net
    留言咨询
  • 武汉搏盛科技有限公司是以传感、测控、自动化技术为主要发展方向的高科技公司,是为OEM厂商和自动化领域经销商提供产品销售和技术支持的公司。产品涵盖了光学、电学、力学、热学、磁学、声学传感器领域里的元件、模块和变送器,以及二次仪表和自动化控制设备,广泛应用于机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等各领域。 本公司产品主要两大类: 一、应用于精密分析、环保监测、生物光子、生命科学、药物研究、临床应用诊断、工业测控、激光加工、高能物理、宇宙研究、地矿探测等诸多领域的光电半导体。产品包括光电池/硅光电二极管(紫外增强近红外型、蓝光增强近红外型、可见光红外抑制型、可见光抑制近红外型)、进口PIN光电二极管、进口APD雪崩光电二极管、四象限探测器、PSD位置传感器……特点:响应快,暗电流低。特殊规格、参数可接受订制。 二、应用于塑胶、轻工、鞋业、纺织、化工、石油、烟草、食品、治金、电力等各种工业机械设备及自动化流水线上,作限位、定位检测、自动计数、测速、自动保护、信号传送、保护、隔离等功能的传感器。产品包括红外光电传感器、光纤放大器、光纤管、接近开关、磁性开关、光幕传感器、激光传感器、压力传感器、电量隔离传感器、导轨开关电源…… 目前,为配合广大客户的货期需求,公司常规产品均备有库存,并配备专业的产品应用工程师配合销售工程师参与客户的项目现场为客户提供技术支持、产品安装及售后服务,将“快速、创新,服务、团队,分享、价值”的经营理念落实到实处,本公司依托中部掘起政策,已成为华中乃至西部地区自动化领域首选供货商,销售业绩蒸蒸日上,值此佳机,更坚定了我们实现“传感、测控、自动化专家”的使命。 武汉搏盛科技有限公司人本着诚信引领未来、拼搏造就昌盛的宗旨为实现客户的理想锲而不舍,不懈努力。 企业宗旨:诚信引领未来,拼搏造就昌盛 经营理念:快速 创新 服务 团队 分享 价值 服务优势:产品建议服务 产品配套服务 产品一站服务
    留言咨询

室外型红外探测器相关的仪器

  • 仪器简介:■ 常温型铟镓砷探测器(InGaAs) ———常温型近红外探测器,波长范围:0.8-1.7μm ■ TE制冷型铟镓砷探测器(InGaAs) ——TE制冷型近红外探测器,波长范围:0.8-2.6μm TE制冷型铟镓砷探测器DInGaAs(x)-TE具有相同的外观设计,其中x-1700/ 1900/ 2200/ 2400/ 2600,均采用进口二级TE制冷铟镓砷探测元件。技术参数:■ 常温型铟镓砷探测器(InGaAs) ———常温型近红外探测器,波长范围:0.8-1.7μm 三种常温型铟镓砷探测器DInGaAs1600/ DInGaAs1650/ DInGaAs1700具有相同的外观设计,其中: ◆ DInGaAs1600型内装国产小面积InGaAs探测元件(光谱响应度曲线参考图1) ◆ DInGaAs1650型内装国产大面积InGaAs探测元件(光谱响应度曲线参考图2) ◆ DInGaAs1700型内装进口大面积InGaAs探测元件(光谱响应度曲线参考图3)主要特点:■ 常温型铟镓砷探测器(InGaAs) ———常温型近红外探测器,波长范围:0.8-1.7μm ■ TE制冷型铟镓砷探测器(InGaAs) ——TE制冷型近红外探测器,波长范围:0.8-2.6μm TE制冷型铟镓砷探测器DInGaAs(x)-TE具有相同的外观设计,其中x-1700/ 1900/ 2200/ 2400/ 2600,均采用进口二级TE制冷铟镓砷探测元件,光谱响应曲线参考图如下:铟镓砷探测器使用建议: ● DInGaAs系列和DInGaAs-TE系列铟镓砷探测器均为电流输出模式的光电探测器,在接入示波器、锁相放大器等要求电压输入的信号处理器前,建议采用I-V跨导放大器ZAMP(Page85)做为前级放大并转换为电压信号;标明可输入电流信号的信号处理器可直接接入信号,但仍建议增加前置放大器以提高探测灵敏度; ● DInGaAs系列和DInGaAs-TE系列铟镓砷探测器配合DCS103数据采集系统(Page95)使用时,建议采用I-V跨导放大器以提高探测灵敏度; ● DInGaAs系列和DInGaAs-TE系列铟镓砷探测器配合DCS300PA数据采集系统(Page95)使用时,由于DCS300PA双通道已集成信号放大器,故可不再需要另行选配前置放大器; ● 制冷型DInGaAs-TE系列铟镓砷探测,在制冷模式时须使用温控器(型号:ZTC)进行降温控制;
    留言咨询
  • 仪器简介:热释电探测器&mdash 常温型红外探测器,波长范围:0.5-22um技术参数:技术指标型号/参数 DPe22光敏面尺寸(mm) 0.5× 2窗口材料 ZnSe(标配)波长范围(nm) 0.5-22响应率R(500,12.5)(V/W) 2× 105D*(500,12.5,1(cm Hz1/2 W-1) 1× 109NEP(500,12.5,1))W/Hz 9× 1011允许最大入射功率(&mu W) 1最大输出电压(V) 4信号输出模式 电压输出信号极性 正(P)主要特点:&mdash &mdash &mdash 常温型红外探测器,波长范围:0.5-22um◆ DPe22为常温型热释电探测器,适合经济型的测量,集成前置放大器,由LATGS晶体制成,仿热电偶结构,专门用于红外波段的光谱测量热释电探测器使用建议:● DPe22热释电探测器为全波段响应的探测器,实际工作波长范围受到窗口材料限制,可根据实际需要来选择合适的窗口● DPe22热释电探测器使用时必须配合锁相放大器,推荐使用SR830或Model 420(Page97-98)● 热释电探测器的响应率与调制频率成反比,所以需工作在低频(70Hz左右)条件下
    留言咨询
  • 仪器简介:■ 硫化铅探测器(PbS)&mdash &mdash &mdash 常温型红外探测器,波长范围:0.8-3.2&mu m技术参数: DPbs2900 DPbs3200光敏面尺寸 mm 1× 5 6× 6波长范围 &mu m 0.8~2.9 0.8~3.2峰值波长 &mu m &ge 2.2 &ge 2.1响应Su V/W &ge 3× 104 &ge 300电阻Rd M&Omega 0.2-2 0.1-0.3D* cm(Hz) 1/2/W &ge 5× 108 &ge 1× 108时间常数 &mu s &le 200 &le 400放大倍数 × 1,× 10,× 100输入端失调电压 µ V <± 1前放输入端的漂移 µ V ± 1频率响应范围 Hz 100&mdash 1000 (推荐400Hz)信号输出模式 电压 电压输出信号极性 正(P) 正(P)主要特点:■ 硫化铅探测器(PbS)&mdash &mdash &mdash 常温型红外探测器,波长范围:0.8-3.2&mu mDPbS2900/3200两种型号,两种探测器室的外观相同(内带前置放大器),其中:◆ DPbS2900内装进口硫化铅探测器(光谱响应度曲线参考图1)◆ DPbS3200内装国产硫化铅探测器(光谱响应度曲线参考图2)硫化铅探测器使用建议:● DPbS2900和DPbS3200硫化铅探测器为光导型红外探测器,使用时必须配合锁相放大器,推荐使用SR830型(Page98)或Model 420型(Page97);● DPbS2900和DPbS3200硫化铅探测器集成了前置放大器,输出信号模式为电压模式,在与DCS103或DCS300PA数据采集系统(Page95)配合使用时,需要选择电压信号采样模式。
    留言咨询

室外型红外探测器相关的资讯

  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and BetterDetectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 美开发出新型量子点红外探测器
    美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。   由美国空军科研局资助的这一项目,通过在传统量子点红外探测器元件上增加金纳米薄膜和小孔结构的方式,可将现有量子点红外探测器的灵敏度提高两倍。   研究人员称,红外探测器的灵敏程度从根本上取决于在去除干扰后所能接收到的光线的多寡。目前大多数红外探测器都以碲镉汞技术(MCT)为基础。该元件对红外辐射极为敏感,可获得较强信号,但同时也面临着无法长时间使用的缺憾(信号强度会逐步降低)。   在这项新研究中,研究人员使用了一个厚度为50纳米、具有延展性的金薄膜,在其上设置了大量直径1.6微米、深1微米的小孔,并在孔内填充了具有独特光学性能的半导体材料以形成量子点。纳米尺度上的金薄膜可将光线“挤进”小孔并聚焦到嵌入的量子点上。这种结构强化了探测器捕获光线的能力,同时也提高了量子点的光电转换效率。实验结果表明,在不增加重量和干扰的情况下,通过该设备所获得的信号强度比传统量子点红外探测器增强了两倍。下一步,他们计划通过扩大表面小孔直径和改良量子点透镜方法对设备加以改进。研究人员预计,该设备在灵敏度上至少还有20倍的提升空间。   负责此项研究的伦斯勒理工学院物理学教授林善瑜(音译)称,这一实验为新型量子点红外光电探测器的发展树立了一个新路标。这是近10年来首次在不增加干扰信号的情况下成功使红外探测器的灵敏度得到提升,极有可能推动红外探测技术进入新的发展阶段。   红外传感及探测设备在卫星遥感、气象及环境监测、医学成像以及夜视仪器研发上均有着广泛的应用价值。林善瑜在2008年时曾开发出一种纳米涂层,将其覆盖在太阳能电池板上,可使后者的阳光吸收率提高到96%以上。

室外型红外探测器相关的方案

室外型红外探测器相关的资料

室外型红外探测器相关的试剂

室外型红外探测器相关的论坛

  • 主动红外探测器的应用特点

    主动红外探测器由红外发射机、红外接收机和报警控制器组成。分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。主动式红外探测器遇到小动物、树叶、沙尘、雨、雪、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。由于光束较窄,收发端安装要牢固可靠,不应受地面震动影响,而发生位移引起误报,光学系统要保持清洁,注意维护保养。因此主动式探测器所探测的是点到点,而不是一个面的范围。其特点是探测可靠性非常高。但若对一个空间进行布防,则需有多个主动式探测器,价格昂贵。主动式探测器常用于博物馆中单体贵重文物展品的布防以及工厂仓库的门窗封锁、购物中心的通道封锁、停车场的出口封锁、家居的阳台封锁等等。

  • 【求助】求红外探测器

    小弟想要一个能检测波长为3.3um的热释电红外探测器,但在网上查了很久,发现都是些检测波长在5-14um的探测器。哪位大侠知道哪种型号的探测器能满足我的需求啊?劳烦告诉我型号啊,感激不尽哦!

  • 安防新设备被动红外探测器

    被动红外探测器:采用被动红外方式,已达到安保报警功能的探测器。被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。 被动红外探测器越来越多的被应用于安防领域,能够探测到当前区域内有没有移动的人等目标。 与其他红外探测器不同的时,被动红外探测器采取被动的方式,即自身不附加红外辐射光源,本身也不发射任何能量。目标在探测渔区内移动,会引起某一个立体防范空间内的热辐射的变化,而红外热辐射能量的变化能够灵敏的被被动红外探测器感应到,从而发出报警。 被动红外探测器一般由光学系统、红外传感器、报警控制器等构成。被动红外探测器安装好后,某一区域内的热辐射量量对于探测器来说基本上是不变的。尽管背景物体(如墙、家具等)也会散发出红外辐射能量,但由于能量很小不会触发报警。可当有人等移动目标进入该区域后,红外热辐射值会产生显著的变化。红外传感器的探测波长范围是8~14m,包括人体的红外辐射波长。探测器接收到这些信号后,将信号处理并送往报警控制器,最终触发报警,达到安防的目的。

室外型红外探测器相关的耗材

  • 激光传感器组件 红外探测器
    液氮制冷红外探测器具有灵敏度高、空间分辨率好、动态范围大、抗干扰能力强以及能在恶劣气候下昼夜工作等特点。液氮制冷红外探测器经过制冷,设备可以缩短响应时间,提高探测灵敏度。液氮制冷红外探测器的信号带宽最高可以达到50MHz ,波长响应范围2~14μm,光敏面积典型值为1×1mm2,也可以按照需求进行定制,窗片材质可选ZnSe或CaF2,可以应对不同波长和使用环境的需求,如有特殊需求欢迎来电咨询。液氮制冷红外探测器各种杜瓦设计可供选择,提供楔形窗以消除干涉的影响。 液氮制冷红外探测器的优点:? 液氮制冷的制冷方式可以达到更低的温度,更稳定,极大地降低了热噪声;? 响应波长范围广,对2~14μm的中红外光谱波段光波敏感;? 高性价比,我们可以提供高速频率带宽定制服务。液氮制冷红外探测器工作原理:液氮制冷红外探测器参数指标:响应波长范围2~14μm峰值响应度典型值100~100000V/W光敏面积典型值1×1mm2(定制可选)信号带宽最高50MHz输出阻抗20~100ΩD*(cmHz1/2W-1)≥2.0E+10,最高≥1.0E+11窗片材质ZnSe或CaF2供电电压±5VDC(探测器模块);220VAC(电源模块) 各种杜瓦设计可供选择,提供楔形窗以消除干涉的影响。
  • RAEGuard 点型红外火焰探测器 FFM-1002&1003
    RAEGuard 点型红外火焰探测器 FFM-1002&1003产品参数:RAEGuard 点型红外火焰探测器 FFM-1002&1003
  • FFM-1002&1003 RAEGuard 点型红外火焰探测器
    FFM-1002&1003 RAEGuard 点型红外火焰探测器产品参数:FFM-1002&1003 RAEGuard 点型红外火焰探测器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制