石英微天平

仪器信息网石英微天平专题为您提供2024年最新石英微天平价格报价、厂家品牌的相关信息, 包括石英微天平参数、型号等,不管是国产,还是进口品牌的石英微天平您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石英微天平相关的耗材配件、试剂标物,还有石英微天平相关的最新资讯、资料,以及石英微天平相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

石英微天平相关的厂商

  • 400-659-9826
    梅特勒托利多是历史悠久的精密仪器及衡器制造商与服务提供商,产品应用于实验室、制造商和零售服务业。我们提供贯穿客户价值链的称重、分析和产品检测解决方案,帮助客户简化流程、提高生产率、确保产品符合法律法规要求以及优化成本。我们在全球范围内拥有40家分公司和销售机构,并在瑞士、德国、美国和中国等国家拥有生产基地。我们在中国的上海、常州和成都都设有运营中心、制造基地及研发中心,并拥有遍布全国的销售及服务网络。
    留言咨询
  • 沭阳晶通石英科技有限公司,成立于2015年,创始团队成员拥有十数年石英行业从业经验,主要生产加工各种光学石英玻璃,同时兼营其他石英制品,产品包括:光学石英玻璃超薄片,载玻片盖玻片,石英片,石英管,实验室石英玻璃器皿类和其他石英玻璃深加工。公司同中科院生物物理研究所,中科大,国防科大等全国著名高校和科研单位保持长期合作关系。
    留言咨询
  • 东海县浩远石英制品有限公司是2010年4月创建的科技型民营企业,是一家集科研、生产、销售为一体的硅资源深加工企业。公司技术力量雄厚,产品规格齐全,质量稳定,在国内石英玻璃生产及新产品的研发领域独树一帜。 公司高度专注于石英玻璃及石英玻璃深加工的研发生产,原材料进口美国unimin高纯石英砂、挪威高纯石英砂、国产高纯石英砂,sio2纯度达99.92%-99.99%,主要产品有各种规格透明石英管、乳白石英管、低羟基石英管、无臭氧石英管、滤紫外石英管、石英棒、石英片、水晶条、石英视窗、石英隔热罩、扩散炉管、石英护套管、石英消解池、石英双层套管、石英缸、石英加热器、石英硫酸蒸发器、石英舟、石英坩埚、石英烧杯、石英三口烧瓶、石英试剂瓶、石英容量瓶等各种耐高温石英器皿。 东海县浩远石英制品有限公司拥有有经验的技术人才,的技术团队,先进的生产设备,准确的检测仪器和高等的配套服务,运用先进的管理模式,为客户生产各种规格的准确石英制品,并可以为客户来图来料加工。 竭诚欢迎海内外宾朋光临,谋求共同发展!
    留言咨询

石英微天平相关的仪器

  • 可配置天平满足您的需求Cubis II 超高分辨率系列天平可确保日常条件下每次测量均达到极高精确度水平。 其先进的工程设计可消除由常见因素(例如气流和振动)引起的性能误差。这些天平配备有创新的清洁 QApp,可在天平上显示分步说明,并提供满足合规需求的审计追踪,从而改变了日常清洁工作。值得注意的是,Cubis II 超高分辨率系列天平可提供出色的灵活性,支持将来进行软件和硬件升级,而无需购买新天平,从而确保了投资安全。 Cubis II 超高分辨率系列天平将适应性、清洁简化性和面向未来的可升级性相结合,旨在转变现代分析实验室中的合规工作流程。半微量天平和大量程微量天平功能比较表特色功能半微量天平功能大量程微量天平功能应用广泛用于所有称量和日常使用主要用于极低样品重量的标准品制备。适用于制药、生物制药、医疗器械、环境或化学等行业关键功能同类产品中稳定时间最短 极低的最小样品重量 - 在 226S 型同类产品中最低有效消除静电可适应实验室环境变化,如:温度、湿度、气流、气压最小样品重量在同类产品中最低 可适应实验室环境变化,例如:温度、湿度、静电荷和气流 - 对于低重量样品称量和稳定时间至关重要紧凑设计 ××量程最大称重量:120 g 或 220 g 可读精度:10 µ g 或 5 µ g最大称重量:32 g、61 g 或 111 g 可读精度:1 µ g 或 2 µ g清洁度 内置清洁 QApp 免工具组装 化学兼容性 可追溯性审计追踪 清洁套件××××××××作为附件提供×可升级性(集成除静电器、电动防风罩、气候控制、软件)××静电解决方案和预防 配备内置除静电器导电涂层(防止外部静电影响稳定中的漂移 - 赛多利斯 Cubis II 天平的特有功能)××100% 静电消除××数字数据管理××符合 CFR 第 11 部分合规性要求,直接通过 MCA 接口支持××Cubis II 超高分辨率系列天平的主要特点1. 经实验室验证的成熟性能全新的 Cubis II 超高分辨率系列天平采用创新设计,可在日常实验室条件下实现极快的稳定时间,新型 Cubis II 半微量和大量程微量天平的创新设计可有效应对环境挑战,例如温度、气压、湿度和静电荷的变化。现在,即使您无法完全控制环境,也可以相信您的测量始终准确无误。优势:- 加快结果生成并确保可重复性:第四代超级单体称重系统不仅提供了出众的性能指标,还能加速稳定过程,从而实现称量结果的高度可重复性。 - 智能适应环境变化:内置智能自适应系统,可有效应对温度、湿度和气压变化。这一先进功能通过减少环境波动的影响,确保稳定的天平性能。- 完全消除静电:得益于创新的电离技术和四个精心定位的除静电喷嘴,静电荷被 100% 消除,保证了稳定的读数和快速的稳定时间。2. 清洁操作简单Cubis II 超高分辨率系列天平带来全新的清洁体验,解决了清洁和维护方面的主要难题,让流程变得简单且不易出错。全新的清洁用 QApp 软件提供分步指导,并配有实用的视图参考,简化了常规和高级清洁程序,并提供可轻松与标准操作规程 (SOP) 集成的文档步骤。优势:- 引导式清洁流程:专用的清洁 QApp 会在日常清洁和高级清洁的每一步提供指导,将清洁工作无缝融入到审计追踪部分,并支持合规性标准。- 轻松组装:创新的设计实现了部件的免工具组装和拆卸,简化了难以触及区域的清洁过程。- 高化学耐受性:耐用且高度耐化学腐蚀的材料可保护仪器免受与标准清洁剂接触而造成的损坏或磨损。 - 内部系统完整性:大容量称重底板可在样品称重和基本清洁过程中保护内部系统。- 综合性清洁套件:清洁套件提供清洁天平所需的所有刷子。*购买大容量微量天平时包含在内,购买半微量天平时作为附件一起购买。3. 投资保障就灵活性而言,Cubis II 超高分辨率系列天平改变了游戏规则。其适应性设计支持在购买后轻松定制硬件和软件的不同选项。您现在可以根据需求自由购买,日后需要时,再为现有的天平添加自动外部和内部防风罩、内置除静电器、气候传感器和软件包。这种升级能力在市场上相当出众,为高级实验室天平的投资安全树立了新标准。优势:- 出众的硬件可升级性:购买带有 MCA 显示屏的天平后,您可以随时更新除静电器和自动内外防风罩。- 灵活的软件解决方案:根据不同的应用工作流程,选择适合您特定需求的软件包来定制天平。4. 确保合规性和连接性所有 Cubis II MCA 实验室天平均可以根据合规性和连接性进行定制,可满足现代实验室的多样化需求。这些仪器可直接整合到现有 ELN|LIMS 系统或使用 Ingenix Suite(一款独立的解决方案,旨在简化您的天平设备群组和称重数据管理),无缝支持 21 CFR 第 11 部分和 EU 附录 11 的所有相关要求。体验 Cubis II 实验室天平先进连接功能和数字数据管理带来的便利,无论是通过直接集成还是通过 Ingenix Suite,它都能为您的实验室需求提供无缝且经济高效的解决方案。优势:- 节约成本:保持连接和合规性,无需中间件服务和年费,为您的实验室提供经济高效的解决方案。- 全面的合规性控制:每台 Cubis II MCA 天平中都嵌入了实现 21 CFR 第 11 部分合规性所需的所有技术控制。这确保了合规性,无需额外的软件投资或年费。- 许可证效率:Cubis II QApp 提供一次性许可证,可简化您的许可流程。
    留言咨询
  • 石英晶体微天平 400-860-5168转6094
    QCM-D石英晶体微天平 对AT切型剪切振动石英晶振进行快速阻抗频谱测量,频谱测量可获得诸多信息,可在响应幅值最大处获得谐振频率,峰高、半峰宽也可作为特征参数用来表征压电石英体表面粗糙度、膜粘弹性变化情况。本仪器通过快速频谱扫描技术,获得压电石英体的谐振频率(F) 和耗散因子 D (定义为石英晶体品质因子 Q的倒数,通过半高峰宽近似求得)。 JSK-T(I)型石英晶体微天平是本公司独自开发的多功能一体化QCM-D型质量传感检测仪器,工作频率可达200MHz,精确测量纳克级物质质量的传感技术。QCM仪器价格便宜,操作简单,可实现电化学、光化学、光电化学的现场联用动态监测分析。可广泛用于电活性聚合物表征、电池储能材料如Li+ 嵌入材料、金属腐蚀、自组装单层、光电材料、生物传感器、免疫检测、 蛋白质的相互作用 、膜表面的吸附/解析 、细胞黏附行为、靶向药物筛选、高分子材料的生物相容性等。仪器特点 QCM-D石英晶体微天平基于快速阻抗频率谱测定技术,能够测定谐振频率、振幅、相位等参数,可用于常见压电石英晶体,例如基频5MHz、6MHz、8MHz、10MHz的石英晶体; 可进行奇数倍频测量,频率上限最高可达200MHz,优于目前常见QCM设备。可实现频率、相移、耗散因子等参数测量。根据需要预设参数、个性化定制。仪器模块化结构、数据显示储存一体、无需外接电脑、抗干扰能力强。l 石英晶体基频 5MHz,6MHz,8MHz,10MHz,33MHz,100MHz可任选。可3、5、7、9、11倍频激励,扫频范围200MHz以内。l 提供两套检测池、满足不同实验需求。可配置注射泵或蠕动泵、PID自动控制温度。技术参数l 本仪器使用商用镀金8MHzAT切石英晶体,稳定状态下液相中频率测定相邻数值波动可控制在±0.1Hz。l 3.5英寸触屏彩色液晶显示,U盘储存数据,无需外接电脑。l 仪器常规石英晶片直径14 mm,能够非常灵敏地检测非常薄的吸附层的质量、耗散、分子的结构(构象)变化。并可计算其他参数,如:厚度、粘度、弹性模量,同时可以进行分子间反应的动力学分析。l 仪器检测的耗散灵敏度可达10-7, 质量灵敏度为4ng Hz-1 cm-2(基频10MHz) 0.4 pg Hz-1 mm-2(基频100MHz) 频率测定模式数据采集0.2s一组数据 ;(可定制相移角测定模式,数据采集速度可达10微秒,可用于快速瞬态测定)。
    留言咨询
  • 本公司研发团队开展石英晶体微天平化学生物传感分析研究已有三十余年,具有丰富的QCM应用研究经验,可根据客户需求提供个性化服务,解决客户QCM使用中出现的技术问题。该仪器融合多家著名高校相关领域研究成果,仪器模块化结构、便携式设计,可与电化学仪器光学仪器联用。仪器价格优惠、使用简单、性能稳定、检测结果可靠。石英晶体微天平(Quartz Crystal Microbalance,QCM)是一种非常灵敏的质量检测仪器。在一定条件下,石英晶体上沉积的质量变化和振动频率移动之间关系呈线性关系(Sauerbrey公式),其测量灵敏度可达纳克级,可以测到单原子层的质量变化。本仪器采用10 MHz石英晶体,每Hz的频率变化相当于0.85 ng/cm2。石英晶体微天平作为纳克质量传感器具有结构简单、成本低、灵敏度高的优点,被广泛应用于化学、物理、生物、医学和表面科学等领域中,可实现电化学、光化学、光电化学的现场动态监测分析。可广泛用以进行气体、液体成分分析以及微质量的测量、薄膜厚度、液体粘度(血凝)检测等。例如:电活性聚合物表征、Li+ 嵌入材料、金属腐蚀、自组装单层、生物传感器、免疫检测、 蛋白质的相互作用 、膜表面的吸附/解析 、DNA的杂交 、 细胞吸附 、靶向药物筛选、高分子材料的生物相容性等。 仪器特点l 仪器接触溶液的激励电极做工作电极与电化学仪器联用可构成EQCM测量技术。 l 仪器便携式设计、操作简单、方法选择、操作过程、步步提示。l 锂离子电池可作为电源、抗干扰能力强。l 仪器智能化模块化设计、结构可靠,可适应现场使用。l SD卡储存数据,方便后续数据处理。l 数据同时通过蓝牙无线传输到手机,可在手机上同步进行显示和储存。l 仪器可与其他分析仪器联用,如电化学仪器、光学仪器联用实现现场多信息传感分析。根据科研需要可进一步开发应用。 技术参数 l 使用晶体频率范围5MHz-20MHz,本仪器使用商用镀金10MHz AT切石英晶体。l 频率稳定性,空气中+1Hz/小时,液相中精确控制实验条件可达到相近的信号稳定性。l 3.5英寸触屏彩色液晶显示。l 提供2G SD卡储存数据,每隔2秒储存一组实验数据。l 便携式QCM 配备直流供电电压范围9V-18V,建议使用12V,2A 直流稳压源。l 可配备12V 5400mAh 锂离子电池(12.6V,1A 充电器)。l 便携式仪器尺寸:150*97*40mm;仪器重量:500 g。
    留言咨询

石英微天平相关的资讯

  • 《石英晶体微天平-原理与应用》 一书出版
    由华南理工大学 张广照教授和中国科学技术大学刘光明教授合著的“石英晶体微天平-原理与应用”一书,近日由科学出版社出版。该书从石英晶体微天平的原理入手,深入浅出,详细介绍了使用石英晶体微天平在界面接枝高分子构象行为、高分子表面接枝动力学、聚电解质多层膜、磷脂膜、抗蛋白吸附以及纳米气泡表面清洁技术中的应用。本书在介绍石英晶体微天平基本原理的基础上,重点向读者展示了如何利用石英晶体微天平作为一项表征技术去研究界面上的一些重要科学成果。为了便于回答有关疑问,本书的应用例子均选自作者实验室的研究成果。
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) JohnWiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28
  • 讲座预告 | 石英晶体微天平(QCM-D)技术在分离分析化学中的应用
    报告亮点阐述: 高纯度生物样品的获取是生物学功能研究的前提和基础,同时生物分离过程是生物技术产业化的必经之路。特别是“精准医疗”计划的提出为靶向富集和分离材料的开发,提出了更高的要求,迫切需要开发新一代对开发目标生物分子具有高亲和力,特异性识别的富集和分离材料。然而这类材料的开发非常具有挑战性,这是因为生物样品种类繁多,结构各异,高度复杂,同时有价值的生物样品在血液或组织液中的含量极低。蛋白等物质在细胞中分布还具有动态不均一性,在不同人种,年龄,性别,病理阶段具有非常显著的差异性。通过学习和模仿生物分子间特异性相互作用,结合智能聚合物构象转变,开发出的生物分子响应性聚合物很好地切合了这一需求,能够实现对目标生物分子的精准捕获,将在生物分离和分析领域,获得广泛的应用。这一方向融合了智能聚合物、主客体化学、微纳米器件构筑、精准测量和生物医学,是目前新兴涌现的一个学科方向,具有鲜明的开创性和广阔的应用前景。研究生物分子在材料表面的吸附动力学行为,对于揭示材料对目标分子的选择性吸附能力,以及材料吸附生物分子后,表面所发生的显著变化,是一项非常有趣的工作。报告将讲解石英晶体微天平(QCM-D)技术在分离分析化学中的应用,帮助研究人员更好地去理解生物界面行为,揭示吸附背后的精彩故事。 报告人简介:卿光焱,博士,中国科学院大连化学物理研究所研究员、博士生导师。长期从事生物分离材料与器件方面的基础研究,已在包括Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Chem. Sci.等化学和材料领域权威刊发表SCI论文100余篇,相关技术获得中国发明专利授权20项。主持国家自然科学基金优秀青年科学基金,面上项目4项等。目前担任《色谱》青年编委,Chin. Chem. Lett.编委,Chemical Synthesis青年编委等。 报告时间:2022年7月7日(周四) 上午10点报告地点:腾讯会议(会议号报名后另行通知)报名方式:复制下方报名链接至微信搜索框,点击“访问网页”在线填写https://doc.weixin.qq.com/forms/AHUAGgcQAAkACwA1AbmAHUKesSVrfzTHfQSense技术简介: 具有耗散因子检测功能的石英晶体微天平(QSense)是瑞典百欧林科技有限公司的专利技术,可提供多个频率和耗散因子数据,用于测定非常薄层的吸附层的质量,并同步提供粘弹性等结构信息。 该技术可对多种不同类型表面的分子相互作用和分子、纳米颗粒及细胞吸附进行研究,同时可以检测分子的结构变化以及吸附与解析的动态过程。 该仪器应用范围包括生物技术和医疗器械、蛋白质、核酸、多糖等生物分子和细胞/细菌、生物传感器、食品、高分子聚合物、环境膜处理、纳米颗粒、石墨烯、自组装材料、锂电池/超级电容器等,从纳米到微米尺度的物质与界面之间的相互作用及物质的环境响应。 既往相关讲座:Ÿ 马春风教授 华南理工大学报告题目:石英晶体微天平(QCM-D)技术如何解决海洋防污中面临的难题Ÿ 宋君龙教授 南京林业大学报告题目:石英晶体微天平(QCM-D)技术及其在木质纤维素利用中的应用Ÿ 郑靖研究员 西南交通大学报告题目:石英晶体微天平(QCM-D)技术在唾液润滑研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:QSense 耗散型石英晶体微天平技术(QCM-D)原理及应用Ÿ 申涛工程师 瑞典百欧林报告题目:QSense耗散型石英晶体微天平(QCM-D)在生物和食品领域的应用Ÿ 张洪斌教授 上海交通大学报告题目:石英晶体微天平(QCM-D)技术在乳状液界面膜粘弹性与物理稳定性研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:耗散型石英晶体微天平(QCM-D)在锂离子电池研究领域的新应用Ÿ 姜威教授 山东大学报告题目:石英晶体微天平技术探究颗粒污染物的环境界面过程Ÿ 杨晓泉教授 华南理工大学报告题目:Langmuir膜分析仪及石英晶体微天平(QCM-D)在食品科学研究的应用Ÿ 杨哲博士 香港大学报告题目:石英晶体微天平(QCM-D)技术及其在环境膜材料领域中的应用Ÿ 苗瑞副教授 西安建筑科技大学报告题目:QSense耗散型石英晶体微天平技术在超滤膜污染机理领域的应用研究Ÿ Netanel Shpigel博士 以色列巴伊兰大学/美国德雷塞尔大学报告题目:QSense耗散型电化学石英晶体微天平在电池及超级电容实时研究中的应用Ÿ 罗日方副研究员 四川大学报告题目:石英晶体微天平(QCM-D)技术在血液接触材料表面改性领域的应用 如需相关讲座视频请联系百欧林索要,联系电话: 400 860 5169 分机号1902

石英微天平相关的方案

石英微天平相关的资料

石英微天平相关的论坛

  • 石英晶体微天平的特征及应用

    石英晶体微天平最基本的原理是利用了石英晶体的压电效应,主要构造由石英晶体传感器、信号检测和数据处理等部分组成。石英晶体为天平在探头电极上修饰具有生物活性的特异选择功能膜,即作了压电晶体生物传感器。石英晶体为天平因其对质量变化的高敏感性,传感器具有特异性好、灵敏度高、成本低廉和操作简便等优点。 石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。石英晶体微天平是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍。 石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用,一般附属结构还包括振荡线路、频率计数器、计算机系统等。石英晶体微天平广泛应用于分子生物学、病理学、医学诊断学、细菌学等研究领域,在研究和检测蛋白质、微生物、核酸、酶、细胞等方面都发挥了重要的作用。

  • 【讨论】谁说天平没有技术含量:我们有石英晶体微天平

    【讨论】谁说天平没有技术含量:我们有石英晶体微天平

    长期以来,很多人认为天平没有什么技术含量,今天让你们看看,我们也有高科技的一面:石英晶体微天平石英晶体微天平(Quartz Crystal Microbalance-QCM)的发展始于上世纪60年代初期,它是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍,理论上可以测到的质量变化相当于单分子层或原子层的几分之一。石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。http://ng1.17img.cn/bbsfiles/images/2011/03/201103301559_286072_2197752_3.jpg

石英微天平相关的耗材

  • 万分之一电子天平
    产品说明 ??电子分析天平是集精确、稳定、多功能与自动化于一体的最先进电子天平,可以满足所有实验室质量分析要求。??产品特点外观新颖,轻巧,人性化手柄设计 超薄电磁力传感器 柔和背光液晶显示,清晰易读取 载/欠载报警显示功能 去皮功能。使用TARE键可在全量范围内去皮 克、盎司、克拉等8种国际常用称量单位换算 一般称重,计数,动物称重和百分比四种称重模式 下吊称量功能。供客户选择使用内装底钩称量装置可进行比重测量或用于称量磁性物体 智能化设计,能够自动零位跟踪可调,动态温度补偿等,以适应不同的场合需要 可选购RS-232C接口,用于与打印机、计算机等到外部设备相联,实现数据输出或打印 精度高、称量快、精确可靠、操作简单、功能齐全,可满足各种实验室质量分析之需求.
  • 微型数显电子天平 (0.1~500g)
    微型电子天平(手掌秤)产品编号:40111 适用范围:检测样品的快速准确称量。2 仪器特点:小巧、耐用、操作简单,便于携带。具有去皮、自动校正、过载指示功能。3 使用说明:3.1开机,选择称量单位,一般情况选择g。按清零键,如在称盘上放上称量器皿后,再按一次清零键为去皮清零,此时可向称量器皿中加入称量物质进行称量。注意:去皮清零后一次加入的物质量不要低于0.5g,否则不要采取去皮清零的方法。3.2仪器设有自动保护功能。不工作时可自动关机。3.3电池电压过低时,须更换电池,否则称量可能不准。3.4单位转换:1 ct (克拉) = 0.1999694g [MET.CARAT]1 Lb (磅) = 453.59237g [AVOIRDUPOIS POUND]1 oz (盎司) = 28.349523g [AVOIRDUPOIS OUNCE]1 ozt (金衡盎司) = 31.1034768g [TROY OUNCE] 1 dwt (英钱) = 1.55517384g [PENNYWEIGHT]
  • 赛多利斯电子天平【BSA223S】
    Sartorius赛多利斯精密天平BSA223S产品说明1、成就实验室工作。如果对比一些常用实验室天平的技术参数,您会发现它们看上去都一样,也就是说—看到一个型号,就能了解它们全部。但事实上,实验室天平仅仅考虑技术参数是远远不够的。赛多利斯最新BSA系列电子天平设计独特,能有效、可靠地进行实验室日常称量工作。而正是由于其强大的技术和明确的操作及功能,使其显得与众不同。2、最新技术。高分辨率的应用程序中集中了更多功能:1mg-620g和10mg-6200g。赛多利斯将尖端技术和合理成本合而为一,创造了最新的卓越等级。BSA系列拥有最新最强大的微处理器技术,缩短响应时间,得到更快速的结果。即使在环境条件不够完美的情况下,也始终能得到可靠的称量结果,全靠高度发达的数字补偿运算法则。3、操作简单。当您需要日复一日、快速可靠地重复进行繁重的称量工作时,那么您最不希望得到的就是一台操作复杂,经常会导致误操作,从而浪费您宝贵时间的天平。欢迎进入BSA舒适的操作空间:简单易懂的控制面板,分布合理的键盘,清晰易读的显示读数,BSA能完美、有效地适应您的实验室工作。用户友好操作:简单易懂的英文文本提示及指示符,指导您方便地设置天平参数,满足个人的具体要求。高对比度带背景光显示屏,让您得到卓越的读数(字符高度:15mm)。水平仪在显示屏旁边,对操作者而言,检查天平是否水平就变得非常方便。4、功能齐全。将赛多利斯BSA的所有功能列出来,就能发现只有真正的赛多利斯实验室天平才能提供给您所有这些优势,值得您为此付出。所有-CW型号都标配内置电机驱动的校准砝码。只需一键就能最大限度确保精度。如果要得到符合ISO/GLP标准的原始或校准/调整数据,只需连接YDP03-0CE数据打印机,然后按下打印键即可。其它标准内置应用程序:百分比称量、净重求和、动物称量/动态称重、单位转换、计算(乘、除)。产品特征1、高对比度带背景光显示屏,15mm字符高度;任何光照条件的房间里都简单易读2、最新操作理念:使用光标键,通过简短的、菜单驱动的文本指导提示(5种语言可选)和简单的导航进行配置,满足个人的具体要求。3、内置、电机驱动校准砝码:一键操作4、RS-232C双向接口;可选赛多利斯电缆连接天平和USB接口 5、整体操作方便。按键均为触感式操作。明确定义控制面板。技术参数称重能力220 g可读性1 mg校准外部的显示器液晶LCD防风罩操作手册计量认证无水平调整操作手册型号BSA 显示器液晶LCD符合ISO/GLP的打印输出是的,和可选的赛多利斯打印机或者电脑连接线性指示器否离子发生器外部的(可选)数据接口RS232C 双向接口秤盘尺寸Ø 115 mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制