染色体基因芯片检测

仪器信息网染色体基因芯片检测专题为您提供2024年最新染色体基因芯片检测价格报价、厂家品牌的相关信息, 包括染色体基因芯片检测参数、型号等,不管是国产,还是进口品牌的染色体基因芯片检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合染色体基因芯片检测相关的耗材配件、试剂标物,还有染色体基因芯片检测相关的最新资讯、资料,以及染色体基因芯片检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

染色体基因芯片检测相关的厂商

  • 广州吉妮欧生物科技有限公司致力于生物医药领域的技术研发与生物试剂的销售,专业提供实验所需的各类细胞,因子,抗体,胎牛血清及培养基等多种生物试剂。细胞主要来源ATCC,ECACC,ScienCell,ACC, Invitrogen等,同时提供各种技术服务 整体课题 论文(SCI)服务等。 整体课题外包和整体实验服务1、动物模型:糖尿病模型、帕金森动物模型、脑中风动物模型、脊髓损伤动物模型、肝损伤动物模型、裸鼠成瘤模型、腹腔注射、灌胃、尾静脉注射等。2、细胞功能检测:慢病毒、腺病毒、合成试剂或RNAi类产生的基因过表达或基因沉默、细胞迁移和侵袭检测、细胞凋亡检测(tunel和流式检测)、细胞周期检测(流式方法、Brdu)、细胞克隆形成、淋巴细胞分离、原代细胞分离培养、耐药细胞株建立、稳转株的构建等。3、分子生物学实验:RT-PCR、QPCR、载体构建、基因芯片等4、蛋白检测:免疫组化、westerblot、ELISA、蛋白芯片等。5、病理检测:HE染色、病理分析等。【地址】广州高新技术产业开发区科学城科丰路31号G5栋407室 【联系】18520130139 Q3162285861
    留言咨询
  • 苏州汶颢芯片科技有限公司是一家留学人员回国创业的高新科技企业,集研发、生产、销售为一体,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司建立了完备的微流控芯片研发与生产中心,配置了三条微流控芯片生产线,包括数控CNC微加工仪器,软刻蚀有机芯片加工系统,光刻-掩模无机芯片加工系统,可以加工生产所有材质的芯片,如玻璃、石英、硅、PDMS和PMMA等。产品涵盖集成式通用医疗诊断芯片、集成式通用环境保护分析监测芯片、集成式通用食品安全分析检测芯片和基于微流控芯片的新能源体系四大系列数十个品种,以及各类科研类芯片,并在生物芯片和化学芯片领域一直保持技术和研发的领先地位,拥有81项知识产权,其中:已申请发明**65件、实用新型**7件,注册商标2件,登记软件著作权7件。
    留言咨询
  • 浙江扬清芯片技术有限公司(YoungChip)是一家专注于微流控芯片实验室整体解决方案的企业,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司可提供整套微流控芯片生产线, 包括CNC 数控微加工仪器、精密激光加工系统、光刻加工系统、塑料芯片注塑系统和微流控芯片热压键合系统, 可以加工生产所有材质的芯片, 如玻璃、石英、硅、PDMS 和PMMA 等。主营产品包括: ① 微流控芯片的设计、开发与加工服务; ②微流控芯片实验室组建及芯片技术培训; ③ 微流控芯片的耗材、配件及相关设备; ④ 模块化的芯片温度控制系统、流体操控系统和检测系统; ⑤ 基于微流控技术平台的POCT 快速检测系统。产品涵盖医疗生化诊断、环境监测、食品安全分析检测、化学合成等几大应用领域。目前,扬清芯片(YoungChip)已和中科院大连化学物理研究所、中国科学院苏州纳米技术与纳米仿生研究所、生物芯片北京国家工程研究中心(博奥生物有限公司)、中国石油勘探开发研究院、浙江省检验检疫局、广东产品质量监督检验研究院、深圳出入境检验检疫局、广州迪澳生物科技有限公司等多家单位建立了长期紧密的项目合作。
    留言咨询

染色体基因芯片检测相关的仪器

  • SureScan 基因芯片微阵列扫描仪是紧凑式的新型系统,适于灵敏而准确的芯片应用。这款新型 SureScan 芯片扫描仪是安捷伦完整芯片解决方案的基石,代表了安捷伦扫描仪科技创新的最新成果。它具有极佳的检测限,凭借其卓越的灵敏度和分辨率,无论是从单个数据点或一次实验,用户都可以从中获得尽可能多的生物学信息。连续式芯片加载能力,可消除分批加载的限制;集成式的特征数据提取软件,可实现图像的自动转换;紧凑式的设计,可优化台面空间的利用率。技术参数:动态范围:104(16 位数据格式),105(20 位数据格式),106(XDR 扫描)分辨率:2、3、5、10 微米动态自动聚焦:连续调节扫描仪焦距,始终保持对焦自动装片机:24 片装芯片盒,无需用户干预集成的条形码识别器:可识别 128 码、39 码、93 码以及 CODABAR兼容的染料:Cyanine 3 和 Cyanine 5,以及 Alexa 647、555、660激光器信息:- 绿色固相激光器,532 nm- 红色固相激光器,640 nm- 功率:在 532 nm 和 633 nm 下为 20 mW,均控制到 13 mW最大扫描窗口:71 mm x 21.6 mmPMT 调节:每次运行前自动校准 PMT 增益;允许将信号水平从 100%(默认)调至 1%检测限:每平方微米 0.01 个发色团像素位置误差:在 5 微米的分辨率下小于 1 个像素均一性:5% CV 整体非均一性,平均局部非均一性通常为 1%(基于 100 微米的特征)扫描时间:双色同步数据采集:16 分钟(3 微米扫描),24 分钟(2 微米扫描)(扫描范围 61 mm x 21.6 mm)数据工作站和操作系统:安装了 Windows 7(64 位)的计算机;数据分析软件 — 包括 2 份安捷伦特征数据提取软件的永久性许可扫描仪近似尺寸:高:16.5 英寸(42 cm),宽:17 英寸(43 cm),深:26 英寸(67 cm)重量:125 磅(56.8 kg)
    留言咨询
  • GenePix 4100A微阵列基因芯片扫描仪无需在烦躁情绪中继续等待中心实验室或相邻实验室正在工作中的基因芯片扫描仪。现在可以以更优惠价格马上获得一款高性能的微阵列基因芯片扫描仪。Molecular Devices公司推出的GenePix 4100A微阵列基因芯片扫描仪具有高端基因芯片扫描仪所有的特质:如超高灵敏性,可靠性和易操作性。实惠的价格和紧凑设计使得它更佳适合小实验室中使用。GenePix4100A基因芯片扫描仪支持用户在5-100μm范围内随意调节其分辨率来获取数据。可针对具体实验的需求优化图像分辨率和文件的大小。GenePix4100A基因芯片扫描仪具有自动调节PMT增益的功能,可简便、快速对信号强度和通道的平衡进行优化。 主要特点:1,一款简洁、易用、高性价比扫描仪2,出众的成像精度3,出色的重复性4,可灵活的支持各种荧光染料检测5,可整合GenePix Pro图像分析软件仪器优势:1,可自主研究不同染料:GenePix 4100A 微阵列扫描仪可支持多种不同的荧光染料分子, 其光学设计集成了用户可选的 6 种不同的发射滤光片。2,结果可靠:定期使用随机附带的校准玻片组来对微阵列扫描仪进行校正, 以确保长期使用时光电倍增管 (PMT) 的重复性能。此外, 在扫描过程中会动态监测激光功率变化, 以确保获得稳定的信号输出, 同时硬件诊断报告将持续的对扫描仪性能状况进行记录。利用这些功能, 可以立刻识别并纠正错误信息。3,优化动态设置:GenePixPro 自动绘制像素强度分布的柱状图。根据扫描进度动态更新图像和柱状图;并可在扫描时优化扫描仪设置。4,调整应用分辨率:使用 40 微米预览扫描可定位微阵列并优化硬件设置, 而数据扫描可以用于准确定量。GenePix 4100A 微阵列基因芯片扫描仪支持 5 至 100 微米分辨率的样品, 满足您的任何要求。5,较高的信噪比:本检测系统采用低噪声、高灵敏的 PMT 将光子转变成电信号, 然后使用优质的超低噪声数模转换器技术将其数字化。调节PMT增益和平均多线扫描, 以在低信号样品检测上获得更高的信噪比 (SNR)。6,样本追踪:GenePix Pro 采集和分析软件自动读取预览扫描、数据扫描和保存图像的条形码, 并将导出获得的数据。动态监测激光光源GenePix4100A基因芯片扫描仪光源强度可针对每个像素点进行相应变化,实时的动态监测,确保每个像素点均可获得稳定的、持续的信号。采用先进的激光器,配合了独特的强度校正系统,保证在图像中的所有像素点具有相等的曝光效率。内置所有激光器均具有自动校正功能,可以动态的监测激光器微小的波动,大大提高了信号噪声比。所有这些功能特征保证获取的数据具有高度重复性,避免了再一次费时、费力的重复相应实验。 8位滤光轮可大大提高荧光染料检测的灵活性GenePix4100A基因芯片扫描仪光路中设计有一个8位的发射滤光片转轮(如图一),标配有红色和绿色滤光片。根据需要还可以再装6个滤光片,提高了灵活性,以便于满足其它多种荧光染料的检测。作为质控程序的一部分,我们通过使用滤光片转轮中的空位置或中性密度滤光片, 也可以用扫描仪的635nm进行反射成像,允许用户检查未标记的DNA阵列点形态上变化。 采用非共聚焦光路采用非共聚焦光路的GenePix 4100A基因芯片扫描仪可用于微阵列芯片成像分析。其它类型基因芯片扫描仪大多利用共聚焦技术对厚样品的进行薄切片分层式成像,如组织样本,证实其并不适合进行微阵列扫描成像。微阵列芯片上大多数背景信号来源于非特异性的杂交反应,它们与样品位于同样的焦平面上(如图二)。此外,绝大多数微阵列基因芯片表面为非均一平面,由于共聚焦成像系统具有非常窄的景深,会受到各种不同基质载体的焦平面的变化而产生波动。GenePix基因芯片扫描仪具有大景深检测能力,可以在各种微阵列芯片表面收集更多的光学信号,同时也能够避免附近杂散光的干扰。 软件和硬件的高度结合所有GenePix4100A基因芯片扫描仪家族成员在设计之初就被要求能与GenePix Pro微阵列分析软件完美整合在一起。(如图三)扫描仪和软件之间这种无缝式的通信方式确保了其科高效的获取和分析相应实验数据,也能够实时检测扫描仪工作状态。可选的Acuity微阵列信息分析软件,具有数据库储存能力、群集算法、高级统计学能力和可视化界面。 仪器应用: 1,基因组学:针对基因组序列本身, 微阵列可用于识别全新基因、转录因子的结合位点、DNA 拷贝数变化、基础基因序列变异(如新发现病原体菌株或人类致病基因的复杂突变)。2,转录组学: 使用高密度微阵列芯片, 给复杂疾病转录水平的研究检测带来影响。通过目前最新微阵列检测技术的发展, 现在可以总体上定量分析转录水平, 并将这些数据与疾病相关信息进行整合。基于微阵列的转录组学可利用受影响和未受影响的个体绘制出某一疾病的关键基因区域, 然后通过识别关键区域中的差异表达基因来确定致病基因。3,蛋白质组:尽管尚未实现全蛋白质组分析, 微阵列芯片仍然促进了蛋白质组学领域取得长足进展。蛋白质组学展现出广泛动态复杂性;哺乳动物中不同蛋白质的数量一定超过基因数量, 因而需要合适的技术以进行相应分析。GenePix 微阵列基因芯片扫描仪具有很高的灵活性, 尤其是整合GenePix SL50 自动芯片装入系统后, 可大大提高检测通量, 可为研究人员提供优质的工具。4,表观遗传学:基因是承载着遗传信息的基本单位, 但这些信息仅在由表观基因组适当编码时才产生影响。DNA 甲基化模式是细胞类型特异性的, 与染色质结构相关。DNA 微阵列基因芯片可用于识别甲基化模式, 而且 GenePix 微阵列基因芯片扫描仪自动化解决方案使研究人员能够更快认识这些模式。5,新应用:微阵列研究的创造性和广泛适用性是没有限制的。各种应用微阵列进行大批量的定量分析强调了这一点。GenePix 微阵列基因芯片扫描仪可提供较灵活的研究解决方案和更大的自由度。
    留言咨询
  • 微阵列基因芯片扫描仪 GenePix 4300A&4400AMolecular Devices公司推出的微阵列基因芯片扫描仪GenePix 4300A和GenePix 4400A,此平台可通过优化辨率以获取较高成像质量。配有5μm/pixel或2.5 μm/pixel的较大扫描分辨率检测器,至多可选四色激光器,16位发射滤光片。使得此芯片扫描仪可针对更多种荧光染料分子进行检测。此外,结合了微阵列基因芯片扫描仪GenePix Pro微阵列芯片图像分析软件和Acuity微阵列信息数据分析软件,微阵列基因芯片扫描仪GenePix 系统提供了强大、灵活和易于使用全套方案,便于更好的获取和分析不同类型的数据,例如包括核苷酸、蛋白、组织和细胞。 主要特点:1,高分辨率成像2,兼容各种样品类型3,四色激光器4,16位发射滤光片转轮5,先进的GenePix pro图像分析软件 仪器优势:1,未来可升级:微阵列基因芯片扫描仪 GenePix 4300A 拥有 5μm/像素的较大分辨率, 并可随时升级至 2.5μm/像素。因此, 可根据研究需要优化扫描仪至较佳分辨率。2,完全自主选择染料:此扫描仪虽然内置多达 4 个固态二极管和气体激光器, 但仍是一台结构紧凑的台式仪器。激光光源的灵活性很高, 多达 12 个可供用户选择的发射滤光片位置, 可方便您随意选择任何荧光染料进行检测(CyTM3 和 CyTM5 染料、荧光素、GFP、Texas Red、Alexa Fluor 染料或量子点等)。3,值得信赖的微阵列信号:微阵列基因芯片扫描仪 GenePix 4300 与 4400 拥有卓越的定位性能和均一性, 您可运行需要的应用, 如目前最新一代的 NimbleGen 阵列或阵列 CGH 试验。经过测试的指定 +/- 2% 平场均一性, 这些扫描仪可分辨 200 对线/毫米 (LPPM) 的空间频率, 并在较高分辨率时拥有至少 50% 的对比度 (CTF)。4,数据噪音减少: 具有优质的信噪比 (SNR) 表现。GenePix 微阵列基因芯片扫描仪会选择原件, 如低噪声数模转换器和光电倍增管 (PMT)、较高质量的滤光片和传感器, 以降低散射光的干扰。结合这些改进, 可使噪声降至较低水平, 并大大增加灵敏度。较高的灵敏度仅需使用较低功率的激光强度, 这样可显著降低您的荧光染料的降解。5,易碎组件减少:您的微阵列在我们的扫描仪上是安全的。凭借其全新设计的 6-点玻片支架, 我们通过依靠高精度加工技术可避免由于使用动态自动对焦时造成部件可靠性降低的风险。6,高占空比设计:经改进的高占空比电机确保尽量延长转移和对焦电机的使用寿命。正在申请专利的新型音圈目的是尽量减少振动和优化散热。7,微阵列基因芯片扫描仪 GenePix 4400A :能够支持用户根据实际需求在 2.5 和 100 微米/像素之间的分辨率中进行扫描, 从而使您能够轻松应对市面上较高密度微阵列芯片的要求。 可采集高分辨率图像,自动PMT平衡:微阵列基因芯片扫描仪 GenePix 4400A支持用户在2.5μm/pixel和100 μm/pixel分辨率情况下获取数据,可针对具体实验的需求优化图像分辨率和文件的大小。具有5 μm分辨率的4300A系统可根据用户需要随时升级至具有更高分辨率的4400A系统。此外,两种型号的扫描仪均具有自动调节PMT增益的功能,可简便、快速对信号强度和通道的平衡进行优化。 出色的灵活性满足各种荧光染料的检测:微阵列基因芯片扫描仪 4300A和4400A 内置四色激光光源,支持更多种不同类型荧光染料的检测,16位滤光片转轮可方便用户根据需要随时增加新的发射滤光片,大大提高系统的灵活性。(见图一)根据需求随时增加激光光源。 极强的样品兼容性:微阵列基因芯片扫描仪 4300A和4400A除了可以灵活的支持各种不同的荧光染料检测,也可通过调节聚焦位置和激光器强度兼容更多不同类型样品。焦距可调满足用户使用凹凸不平的芯片载体,如膜包被芯片或嵌入式芯片,可以获取更高的图像质量。激光器能量可调节,步进仅1%可以提供强大成像的控制能力,无论是强大稳定的信号或微弱不稳定的信号均可以完美呈现。内置所有激光器均具有自动校正功能,可以动态的监测激光器微小的波动,确保每个像素点均可获得稳定的、持续的信号。此外,由于所有GenePix系统可直接对微阵列序列表面进行成像分析,无论您使用何种微阵列基片,甚至此基片为非通明物质。 采用非共聚焦光路:采用非共聚焦光路的微阵列基因芯片扫描仪 GenePix 4300A和4400A可用于微阵列芯片成像分析。共聚焦技术较早用于较厚样品的组织进行薄层扫描成像,然后采用3-D重构的方式。(如图二)然而,微阵列芯片上大多数背景信号来源于非特异性的杂交反应,它们与样品位于同样的焦平面上,此外,绝大多数微阵列基因芯片表面为非均一平面。由于共聚焦成像系统具有非常窄的景深,会受到各种不同基质载体的较佳焦平面的变化而产生波动。我们的GenePix基因芯片扫描仪设计要求能够在各种微阵列芯片表面收集更多的光学信号同时还能够避免附近杂散光的干扰。 优质的高信噪比:微阵列基因芯片扫描仪 4300A和4400A 结合了优质的低噪音数字化技术和超灵敏的PMT检测器,与传统白光CCD系统比较而言提高5至10倍信噪比。 软件和硬件的高度结合:所有GenePix基因芯片扫描仪家族成员在设计之初就被要求能与GenePix Pro微阵列分析软件完美整合在一起。(如图三)扫描仪和软件之间这种无缝式的通信方式确保了其科高效的获取和分析相应实验数据,也能够实时检测扫描仪工作状态。可选的Acuity微阵列信息分析软件,具有数据库储存能力、群集算法、高级统计学能力和可视化界面。
    留言咨询

染色体基因芯片检测相关的资讯

  • Y染色体检测助白银案告破 基因技术千亿级市场待开启
    很多人认为,“白银案”告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用  位列“中国四大谜案”之首的一桩陈年悬案告破,受害人家属得到欣慰的同时,传统的DNA技术以及新一代基因测序技术也都跟着走红了。  公安部刑侦局8月27日发布消息,1988~2002年间强奸、杀害多名女性的犯罪嫌疑人高承勇在甘肃省白银市落网。高承勇对犯罪事实供认不讳,甘蒙“805”系列强奸杀人残害女性案(白银案)成功告破。  由于帮助办案人员找到犯罪嫌疑人的是一种叫作Y-DNA遗传标记的技术,有人将该案的最终告破归因于基因技术的进步。事实上,Y-DNA遗传标记技术已有30多年历史,是一项十分成熟的技术,警方也并非第一次使用。  相比Y-DNA遗传标记技术,新一代基因测序技术更为先进,基于新技术,寻人(寻亲)或许将不再是一件难事。未来,在医疗健康等领域,基因技术将开启一个新的千亿级市场。  Y染色体检测技术立功  提及司法侦破中的基因技术,很多人都会觉得“酷炫”,因为侦查人员可以仅凭现场的血迹、精液、指纹等身体特征线索,就能在茫茫人海中锁定犯罪嫌疑人。  事实上,从线索到锁定嫌犯,中间还要跨越巨大的数据库鸿沟。  甘肃省白银市在1988~2002年先后发生了9起女性惨遭入室杀害的案件。其间,内蒙古自治区包头市昆都仑区也发生过两起类似案件。  虽然历次罪案现场都留下了数量不等的血迹、精液、指纹、足印等线索,但因为上世纪90年代西部地区的街头几乎没有监控探头,案发前后也几乎没有目击者和间接证人,警方一直未能查出凶手的身份。  直到近期,与案犯同姓氏的远房堂叔因为在甘肃省武威市民勤县犯了罪被监视居住,白银警方采集到了他的血样,经Y-DNA检验分析后发现,结果与“805”大案嫌犯的Y-DNA信息相符合。这一初步检测的结果表明,案犯与此人有相同的Y染色体遗传,是同一家族的男性成员。  警方随后启动家系排查,对其家族上下直系男性逐一筛排分析,尤其是警方已经掌握的嫌犯的大致年龄,最后确定此人的远房侄子高承勇具备作案条件。  高承勇归案后,其本人指纹和DNA与案发现场的指纹和DNA相同。经审讯,案犯对犯罪事实供认不讳。  30多年的老技术  很多人认为,白银案最终告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用这一技术。  Y染色体鉴定为基础的姓氏检测,是一项生物技术,最早来源于亲子鉴定技术。DNA中有一种特异性的碱基序列称短串联重复顺序(Short Tandem Repeat, STR),Y染色体上的STR称Y-STR,具有家族特异性。  目前已在Y染色体上发现30个左右的STR标记物,通常选取其中6~10个标记物即可满足姓氏检测鉴定的基本要求。另有数据显示,如果把中国12.5亿的汉族人口按照Y-DNA的家系来区分,中国大约有100万个姓氏家系。  华大司法研究人员张博士告诉记者,2006年8月告破的陕西汉阴邱兴华案也用到了这一技术。  在山阴道观铁瓦殿杀害了10名道观管理人员和香客后,邱兴华逃离现场。公安人员从他抽过的烟蒂携带的脱落细胞上,进行了Y-染色体DNA检测,加上相关证人的描述,确定了邱兴华是犯罪嫌疑人并对他进行了抓捕。  Y-DNA遗传标记技术出现了30多年,公安应用也较为广泛,只是普通人并不常接触。当然,这一技术的应用对于数据库内的DNA样本量也有一定要求。  在业内人士看来,DNA技术用于司法破案的震慑作用比实际作用更大,只要在案发现场发现任何蛛丝马迹,公安人员就能通过一定的科技手段找到犯罪嫌疑人。  千亿级市场待开启  随着新一代基因测序仪的出现,新一代基因测序技术也将更多在司法领域“大显神威”。  张博士告诉本报记者,比如新技术可以进行“基因画像”,和传统的画像方式相比,基因画像更加逼真。同时,对于一些复杂的犯罪现场,犯罪嫌疑人的DNA非常微量,可能还混杂了细菌、微生物等,用传统的技术无法检测,新一代基因测序技术都可以解决。  新一代基因测序技术虽然更高效,但在司法鉴定中的推广比较慢,原因之一是成本高。新一代基因测序技术的成本与之前的技术相比,实现了“超摩尔定律”的降低速度,个人全基因组数据从最初的30亿美元,降低到目前的1000~1300美元左右,如果这一成本在几年内有望降低到100美元甚至更低,那普通人都可以到专业的基因机构存储自己的DNA信息。  除了抓捕犯人,让走失的老人或儿童回家,也是DNA信息的重要作用。如果一名孩子或老人录入过DNA信息,一旦走失,被公安人员发现后,便可通过DNA信息比对,迅速找到失散的家人。  基于寻人(寻亲)目的而存储的DNA信息不需要存储个人全基因组数据。张博士表示,只需要存储一些中立DNA,就能在茫茫几十亿人中确定并找到唯一的个人,也不会涉及这个人的功能基因和疾病信息。  尽管市场上也有一些基因检测公司推出瞄准儿童走失的“基因ID”产品,但是,国内像华大司法一样具备司法部核准的第三方鉴定机构且掌握新一代基因技术的机构并不多。  有些走失了孩子的家庭,父母并不知道可以通过孩子用过的牙刷、鞋袜提取到DNA信息,存储下来,未来如果孩子再有机会录入DNA信息,就能通过比对找到父母。  华大司法近期推出的公益项目,就是免费帮助丢失儿童的家庭建立DNA档案,但是至今只有三个家庭主动向华大司法求助。  “存储DNA的目的是为了让我们无论在哪儿都能找到家人。”张博士说。  除了寻人,新一代基因测序技术还能用于亲子鉴定。张博士表示,传统的DNA分型技术只能在孩子出生以后或通过羊水穿刺这种有创方式来进行取样,确定孩子和父母之间的血缘关系。而利用新一代基因测序技术,仅通过抽取怀孕妈妈的外周血,就能尽早知道亲子信息。  事实上,新一代基因测序技术除了司法领域的应用外,在临床医疗领域,很多基因测序公司已经研发出贯穿整个生命周期的产品,个体化医疗的时代正在被基因技术开启。  比如,怀孕前可以做夫妇双方的遗传病基因检测,针对一些有经常性流产史的人也可以对流产组织进行基因检测辅助诊断,新生儿出生后可以做遗传代谢病、遗传性耳聋等儿童期高发遗传病检测,做到防患于未然。  针对肿瘤基因检测,可以通过抽取外周血检测与肿瘤相关的508个基因,可以指导个体化用药,以及预测家族遗传性肿瘤的风险,在一些癌症治疗中,基因检测也可起到常规用药指导的作用。  业内人士表示,如果这些检测产品能够经过监管部门审批,和医疗机构合作,进入临床使用,基因技术打开的将是一个千亿级的市场,而现在正处于市场看到光明前的黑暗期。
  • 基因芯片,百姓受益的检测技术
    复杂的医学诊断可以再快些、精准些、费用再低些吗?基因芯片的出现及广泛应用或将解决这个问题。   去年11月,昆明寰基生物芯片开发有限公司基因芯片医学检测中心在云南国家级经济技术开发区海归创业园落成。这是我省首个专业基因芯片医学检测中心,也是国内唯一以基因芯片技术为核心的第三方医学检验机构,设计检测规模达到每年70万份临床标本。这是继去年云南省第一人民医院临床基础医学研究所“基因芯片诊断技术”获卫生部临床应用能力资格认证后,我省第二家计划利用基因芯片进行疾病诊断的机构。   和普通医疗诊断技术相比,基因芯片诊疗技术究竟高明在哪里?它的出现及推广应用对老百姓来说又意味着什么?带着问题,记者走访了昆明寰基生物芯片开发有限公司。   疾病检测   新技术带来的新革命   虽说生物芯片早在20世纪末就成功问世,并应用于药物筛选和实验室研究,但普通人对它还是知之甚少。基因芯片,又被称为DNA芯片或DNA微阵列,是DNA分子杂交技术与基因扩增标记等技术相结合的结晶。简单的说,基因芯片就是在一块特制玻璃片或其他支撑介质上有序的固定许多生物分子探针,然后由一种仪器收集探针捕获的待测样本信号,用计算机分析数据结果。也就是说,原来要在很多个试管中发生的反应,现在被移至一张芯片上同时完成了。和传统的医学检测手段相比,基因芯片的优点也就由此体现。据公司负责人介绍,基因芯片技术具有高通量、高灵敏性和特异性等基本特征,在感染性疾病、遗传性疾病、重症传染病和恶性肿瘤等疾病的临床诊断方面具有独特的优势。因此,基因芯片临床检测试剂盒就具有了检测准确率高、快速且比较稳定等特点。   据介绍,生物芯片的研究始于20世纪80年代中期,自从1996年美国Affymetrix公司成功地制作出世界上首批用于药物筛选和实验室试验用的生物芯片,并开发出了配套的芯片检测系统,此后世界各国在芯片研究方面快速前进,不断有新的突破。中国是世界上较早批准生物芯片进入临床应用的国家之一,到目前为止,国内已有多款基因芯片产品获得不同形式的医疗器械证书。   临床应用   产业化制约的慢发展   进医院,病人最焦虑的莫过于检查或等待检测结果。正常情况下,一项普通检查需时30分钟至1个小时,一项复杂检查结果则需等待一周或半月。而生物芯片呢?因为它对样品的需要量非常少,且一次检测能够对多种病原体感染情况作出判断,因此患者不必多次重复检测 同时,由于基因芯片检测主要是依靠先进的激光扫描读取信号,计算机分析检测结果,整个检测过程仅需花时5小时,大大减少了患者的等待时间。正因如此,其临床应用将以实现节约医疗资源支出、提高临床诊疗水平的目的。   2010年,云南省第一人民医院临床基础医学研究所“基因芯片诊断   术”获卫生部临床应用能力资格认证,成为当时国内第二家、云南省唯一具备“基因芯片诊断技术”临床应用能力的机构。这既标志着基因芯片检测技术能在有效地质量保证体系和监督管理机制下,服务于临床,为遗传病诊断、感染性疾病诊断、个性化治疗方案制定等提供快速、准确的辅助诊疗。也意味着基因芯片从技术到产品再到临床,有着极艰难的推广应用之路。在昆明寰基,记者了解到,虽然基因芯片因其在疾病诊断方面独有的特性,被专家誉为行业的终极产品。但由于一是目前许多传统的检测手段已运用较为成熟,二是基因芯片因产业化进程缓慢难以形成规模导致单价过高。那基因芯片何时才能真正造福于普通人的疾病诊断呢?   合力推进   新思路拓宽的新天地   据统计,目前我国生物芯片企业不少于50家,但获得国家有关部门认证的只有极少数。目前,70%—80%的生物芯片还只是用于科学研究领域,离完全产业化还有一段不短的距离。由于研发成本高,其产品价格也较高。   尽管生物芯片的未来发展之路不平坦,但是有关专家在展望生物芯片的前景时却认为,生物芯片在基因表达谱分析、基因诊断、药物筛选及序列分析等诸多领域已呈现出广阔的应用前景。昆明寰基生物芯片开发有限公司总经理滕仕喜认为,一个基于第三方的医学检测服务体系或将实现造福百姓这一目的。作为国内较早从事生物芯片开发的科技公司,昆明寰基从零起步,在省市两级科技项目经费支撑下,与省内相关科研单位合作,于2006年成功研发出了首个泌尿生殖系统基因检测芯片,到今年6月,公司将推出系列基因检测芯片新产品,并将逐步应用于临床检测。去年1月,公司在经开区投资兴建了基因芯片检测中心和基因芯片生产基地,已成功形成从生物芯片技术理论研究到产品研发再到应用的完整产业链。作为参与国家药监局起草《生物芯片技术标准》的生物芯片研发生产企业,昆明寰基对基因芯片的平民化运用很有信心。   在滕仕喜的设想中,第三方的医学检测服务体系不仅可以最大限度地降低成本,还会最大可能地造福患者。因为具备自有技术支撑的第三方医学检测,服务范围较大医院而言拓宽了很多。通过在各地开设的检测取样点,它的服务触角可延伸至缺乏检测技术和手段的中小医院,既减少了检测费,综合检测费用只需原有的30%。又提高了检测效率及精确度。基于此理念,不久前刚刚成立的昆明寰基生物芯片开发有限公司基因芯片检测中心正在按这个思路开展工作。在不久的将来,患者或将普遍受益于这项新技术和新模式。
  • Nat Genetics | 染色体碎裂驱动癌基因扩增
    2019年,BioArt曾解读Nature Reviews Cancer上的一篇观点文章(这篇观点文章是3月发表),讲述了染色体外DNA的(Extrachromosomal DNA,ecDNA)过去和未来(详见BioArt报道:特别推荐丨环状DNA的过去和未来),详细介绍了癌基因在ecDNA上扩增的重新发现的过程,强调ecDNA在肿瘤发病机制和加速癌症进化中的重要性。然而ecDNA的结构如何呢?同年11月21日,美国加州大学圣迭戈分校的Paul Mischel教授团队(注:Mischel正是Nature Reviews Cancer的通讯作者之一另外在2017年,Mischel团队曾发表一篇Nature文章揭示了染色体外癌基因扩增与肿瘤的关系)发表了Nature文章对ecDNA进行了详细解析,利用各种技术手段证明了ecDNA的存在形式是—环状,即ecDNA变成了eccDNA(详见BioArt报道:Nature亮点 | 吴思涵等首次解析肿瘤染色体外DNA的环状结构与功能)。功能上,eccDNA在癌症中扮演了重要的角色,尤其是原癌基因(详见BioArt报道:Nat Genet 丨ecDNA:在癌症基因组图谱上画出浓墨重彩的一笔);来源上,eccDNA不仅来自于染色体,甚至可以整回到染色体中(详见BioArt报道:再一篇!Nat Genetics报道染色体外环状DNA新功能:驱动神经母细胞瘤基因组重排),那么,还有一个问题,eccDNA是否有序列或位置特异性,表观遗传学领域大佬哈佛医学院张毅教授于今年10月20日在Nature上给出了否定的回答,并提到eccDNA可能是基因组DNA随机断裂产生片段的环化产物(详见BioArt报道:专家点评Nature | 突破!张毅团队揭秘染色体之外环状DNA的前世今生)。再回到癌症,基因扩增对于癌症的发展“功不可没”,其扩增可以分为染色体外扩增(如双微体,double minutes,DM)和染色体内扩增(如均匀染色区,homogeneously staining regions,HSR)。除了DM和HSR,还有一种是巨型标记染色体(giant marker chromosomes)或者新染色体(neochromosomes)。这些概念也说明了癌症基因扩增中演化的复杂性。尽管扩增演化中的部分形式的机制已经相对比较明确了,比如串联重复等,但大部分还是不甚清楚。2021年11月15日,德国科隆大学儿童医院Matthias Fischer在Nature Genetics上发表了文章Chromothripsis followed by circular recombination drives oncogene amplification in human cancer,利用小儿神经母细胞瘤的全基因组测序发现一种新型扩增,并命名为“地震扩增”(seismic amplification,注:这一术语原本属于地质学或者地震相关学科),这一扩增的特点为多重重排和不连续的拷贝数,并且在38种不同类型肿瘤的发生率为9.9%(在38种不同类型肿瘤共计2756例病人中,出现例数为274,占9.9%)。机制上,地震扩增起始于染色体碎裂,产生染色体外环状DNA,之后是环状重组,由此导致原癌基因拷贝数增加、表达升高,从而促进癌症的发生。首先,研究人员检测了79例神经母细胞瘤样本的全基因组数据,对其基因扩增进行了详细分析,并将经历过14次及以上内部重排的扩增子定义为“地震扩增”。根据这一定义,神经母细胞瘤中228个扩增子中有20个属于“地震扩增”,并且影响了79例样本中的19例。其热点区域主要有两个,2p24(内部有MYCN)和12q13/12q15(内部有CDK4和MDM2)。除了神经母细胞瘤,研究人员进一步分析了TCGA上37种不同类型癌症的2677个肿瘤样本,对其“地震扩增”进行了描述。由于染色体碎裂可产生大规模的基因重组,研究人员比对了染色体碎裂和“地震扩增”的区域,发现77.6%的地震扩增子与染色体碎裂区域至少部分重合,其中34.9%是完全重合。同时研究人员排除了断裂—愈合—染色体桥循环(breakage-fusion-bridge cycles)是地震扩增起始事件的可能性。之后,研究人员对重排和扩增事件进行了分析,描述了“地震扩增”的过程模型:1)一个或多个染色体区域发生染色体碎裂;2)将随机片段整合为环状DNA;3)发生环状重组事件(这些环状重组事件与肿瘤细胞高频突变有关);4)扩增区域或保留在双微体中、或以均匀染色区形式整合进染色体中、或形成新染色体。重要的是,“地震扩增”在肿瘤细胞中是稳定的,而非变化的。总之,该研究定义了一种复杂的基因扩增形式——“地震突变”,并描述了其扩增过程,为理解癌症基因组演化包括染色体外环状DNA提供了新的解读。原文链接:https://doi.org/10.1038/s41588-021-00951-7

染色体基因芯片检测相关的方案

  • 通过释放基因改良的酵母细胞来获得蛋白质在使用人类染色体组方法解码人类DNA中的应用
    自从Cellera公司通过人类染色体组方法解码人类DNA后,人们开始广泛的从事基因方面的研究。 德国Fritsch公司也为这项新颖而有意义的课题提供了更多的广泛性参考价值。本文着重介绍了德国Fritsch公司与位于德国海德尔堡的Cellzome AG公司开展的协作实验。使用德国Fritsch公司的 ”pulverisette 5” 四罐行星式高能球磨机和 ”pulverisette 6” 单罐行星式高能球磨机,通过释放基因改良的酵母细胞来获得蛋白质。 德国Fritsch公司的行星式高能球磨仅仅运行了3-4分钟,通过显微镜的观测,就可以获得酵母细胞已经充分破碎的结论。 具体的研磨粉碎实验方法及相关实验数据,欢迎您来电话与北京飞驰科学仪器有限公司取得联系。
  • 人抗染色体抗体(anti-chromosome Ab)检测试剂盒
    人抗染色体抗体(anti-chromosome Ab)检测试剂盒人抗染色体抗体(anti-chromosome Ab)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗染色体抗体(anti-chromosome Ab)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗染色体抗体(anti-chromosome Ab)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗染色体抗体(anti-chromosome Ab)抗原、生物素化的人抗染色体抗体(anti-chromosome Ab)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗染色体抗体(anti-chromosome Ab)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 植物有丝分裂染色体压片实验
    实验方法原理:细胞的有丝分裂是一个连续动态的变化过程,但可以通过它的形态变化,特别是细胞核中的染色体行为,人为地划分阶段,并进行比较研究。在自然状态下,一大群处于各个分裂期的细胞混杂在一起。必须仔细观察,寻找有丝分裂过程各期典型形态特征的细胞,从而建立起细胞周期的概念。植物的分生组织(如根尖分生区、茎尖生长点等)细胞,能够通过有丝分裂增加其数目。依据植物细胞分裂周期中各个时期细胞中染色质或染色体的形态、数目、位置变化,确定该细胞所处的时期。为了看清染色体或染色质,要用碱性染料将其染色。

染色体基因芯片检测相关的资料

染色体基因芯片检测相关的试剂

染色体基因芯片检测相关的论坛

  • 染色体芯片技术大幅提高试管婴儿成功率

    目前,我国试管婴儿技术的成功率平均仅为50%多,最大瓶颈就在于产前染色体异常的筛查。记者昨日获悉,今年3月成立的染色体芯片产前诊断联合实验室(CMA),利用针对中国人群定制的染色体芯片,能够检测出在常规染色体检测中显微镜下无法识别的基因缺陷,可筛查出200多种已知的染色体微缺失或微重复引起的疾病。这一技术不仅可通过产前诊断达到优生目的、降低流产率,而且将会使试管婴儿的成功率整体提高两成达70%,尤其是将会使高龄女性做试管婴儿的成功率提高五成。http://www.ibioo.com/data/attachment/portal/201308/25/094237zntmsn8tmz7tzmit.jpg技术:染色体芯片技术可查缺陷基因据广州医科大学附属第三医院广东省产科重大疾病重点实验室主任、广州妇产科研究所副所长孙筱放教授介绍,随着强制婚检的取消,近年来新生儿出生缺陷率明显升高。目前已知的出生时严重出生缺陷婴儿染色体异常的比率只有10%。而国外学者通过高通量、高分辨率的染色体芯片技术研究发现,大量以前无法确定遗传改变的出生缺陷,实际上都是由常规染色体检查显微镜下无法识别的基因组微缺失和微重复引起的。“正是这个原因,我们与香港中文大学成立了染色体芯片产前诊断联合实验室。”她说,“我们现在已经可以检测出200多种已知的染色体微缺失或微重复引起的各种疾病。我们还可以结合DNA测序技术对已知各种单基因疾病进行诊断。这项技术在全国范围内都属于领先的。”故事1:十次试管婴儿都失败来自湖北的阿丹和阿强(均为化名)结婚十年来一直没有怀上孩子,两人为此焦虑不已。近年来,求子心切的他们居然连续做了十次试管婴儿,但都以失败而告终。每次将胚胎植入之后,他们都满怀希望地等待,但无一例外,没有一次能够怀到“瓜熟蒂落”。漫长的求子之路,让他们身心俱疲。尤其是阿丹,经历了十次“煎熬”之后,精神“几近崩溃”,身体也经受了太多的损伤。他们为什么总不成功?他们还有希望吗?他们抱着最后一线希望来到广医三院。专家解读:植入前做检测 妊娠率可达80%“对于做试管婴儿的夫妻来说,压力之大非外人所能想象,尤其是做了几次不成功的夫妻。”广州医科大学附属第三医院生殖医学中心主任刘见桥教授介绍,“在传统的技术中,胚胎植入前遗传学诊断只能检测少数几条染色体是否异常。但事实上,每一条染色体都有可能发现异常,只是以前很多其他的染色体异常没有筛查出来,所以即使不健康的胚胎也会被植入。”刘见桥说,目前,该院与美国休斯敦生殖医学中心合作,率先开展了利用染色体芯片技术对植入前胚胎筛查,可以检测全部染色体组的异常数目。“通过这种筛选的胚胎,妊娠率可提高到80%。”“目前我们可以做到的是,在胚胎植入前就可以对全部染色体组进行检测,然后进行筛查,再把健康的胚胎植入体内。”刘见桥说,无论是什么年龄阶段的女性,最后的成功率都可达70%,这就大大减少对女性身心的伤害,也为患者免去了许多不必要的经济损失,尤其是对于高龄女性而言,成功率更提高了五成。故事2:孕妈担心再生先心娃今年30岁的周洁(化名)怀孕20周了,然而,新生命并未给她带来多少喜悦,相反,更多的是忐忑和纠结。原因就是她曾经生育过一个患有一种先天性心脏畸形而且面部发育也不正常的女儿。第二个孩子会不会也出现畸形呢?这个胎儿究竟是去还是留呢?周洁来到广医三院的生殖医学中心,医生抽了她患病的女儿外周血和腹中胎儿的羊水分别进行染色体芯片检查。结果发现她女儿的3号染色体有一段较长的微重复,正是这一重复区域,导致了她的先天性疾病。而她腹中胎儿的染色体芯片结果并没有跟她女儿相同的变异区域,说明胎儿再患这种先天性心脏畸形的概率较低。目前,她腹中的胎儿的确也发育良好,未见明显畸形。她终于可以放心地把孩子怀下去了。专家解读:可对比染色体差异并作去留判断“在常规的染色体检测中,一般只是显微镜下识别基因缺陷,有很多缺陷是无法识别的。”广医三院妇产科研究所实验部副主任、CMA实验室负责人范勇介绍,而使用该院正在使用的染色体芯片,不仅能够检测和比较患儿和胎儿的染色体差异,更重要的是,通过结果分析,可能对胎儿的去留作出准确的判断,消除了妊娠者及其家属的顾虑。“染色体芯片技术与传统染色体分析技术相比,具有集高通量和高分辨率的优势,目前已被加拿大遗传学会、欧洲遗传学会和美国遗传学会推荐作为遗传学诊断的首选手段。”范勇说,染色体芯片分析还可以进一步地检测患者双亲,以明确某一类的先天性缺陷的致病变异来源。“这对于指导患者再次怀孕具有很重大的临床意义。”范勇说,实验室成立三个月以来,已为230多名孕妇进行了该项技术检查,确诊十余例染色体结构异常胎儿。

  • Y染色体数据分析研究取得进展

    中科院昆明动物所在张亚平院士带领下,该所彭旻晟、贺军栋、樊隆等人开发出针对DNA芯片数据中Y染色体单核苷酸多态性位点的分析策略。相关研究11月27日在线发表于《欧洲人类遗传学》。 随着全基因组关联分析广泛应用于人类遗传学工作之中,相关的DNA芯片(微阵列)也不断得到发展。许多Y染色体单核苷酸多态性位点(Y-SNPs)已被整合在DNA芯片中。然而,这些Y-SNPs数据在全基因组关联分析中都被弃之不顾,没有进行任何评估分析。  为此,研究人员运用开发的分析策略对来自114个缅甸人和3个尼日利亚人共117份男性样本DNA芯片数据中的2041个Y-SNPs进行了评估分析。基于数据过滤后提取出的369个Y-SNPs,研究人员构建了Y染色体单倍型类群树,解析出缅甸人群的父系遗传结构。  该结果得到基因分型实验和Y染色体重测序数据的支持,表明该策略切实可行。研究人员对分析中的数据格式转换、过滤和注释处理后发现,DNA芯片对Y-SNPs的检测灵敏度和准确性依旧有待提高,例如:芯片厂商可依据Y染色体重测序数据重新选择合适的Y-SNPs并设计相关探针。

  • 【转帖】基因芯片技术进展!

    基因芯片技术进展及应用 作者:刘炎 [关键词] 基因芯片;核酸探针序列;杂交 1 基因芯片概述  随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功能及基因的多样性倾斜[1,2]。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。  基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析[3,4]。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。  基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法[5],即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。  芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列[6],然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法[7~10]:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程[11],对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱[12,13],常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息[14]。  基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。

染色体基因芯片检测相关的耗材

  • 人类基因组芯片配件
    人类基因组芯片配件是全球第一个完全基于人类基因组顺序的基因芯片微阵列,这种基因芯片的设计和制造使用了完整注解的25 509组人类基因。 这种新一代人类基因组芯片配件相对于其它产品有重要优势,其它产品往往从来源源注释不清的基因数据库组成ESTs序列。 这 种ArrayIt人类基因组芯片H25K/BT是一种多用途微阵列,含有26304长的寡核苷酸,设计用来优化在一个单一的生化反应中的对整个人类基因组 的研究。用户可以利用从基因组DNA,mRNA和蛋白质中的样品。可以研究许多问题,从核型分析和基因表达分析,到以染色质结构和蛋白质-DNA相互作用 的问题都可以研究。基因表达的革命性的学说是,一个位点上基因的单个杂交反应中可以定量测量超过300 000个基因转录。研究人员可能在H25K/ BT芯片买到一个或多个寡核苷酸。 关于生物信息学,寡核苷酸生产的最先进的技术,芯片印刷和表面化学带来前所未有的特异性和敏感性,从而优化结果的分析和利用。 编号 名称 H25K:BT 人类整个基因组(25 509 基因 - 26 304 长寡核苷酸)
  • 人类基因组芯片
    人类基因组是全球第一个完全基于人类基因组顺序的基因芯片微阵列,这种基因芯片的设计和制造使用了完整注解的25 509组人类基因。 这种新一代人类基因组芯片相对于其它产品有重要优势,其它产品往往从来源源注释不清的基因数据库组成ESTs序列。 这 种ArrayIt人类基因组芯片H25K/BT是一种多用途微阵列,含有26304长的寡核苷酸,设计用来优化在一个单一的生化反应中的对整个人类基因组 的研究。用户可以利用从基因组DNA,mRNA和蛋白质中的样品。可以研究许多问题,从核型分析和基因表达分析,到以染色质结构和蛋白质-DNA相互作用 的问题都可以研究。基因表达的革命性的学说是,一个位点上基因的单个杂交反应中可以定量测量超过300 000个基因转录。研究人员可能在H25K/ BT芯片买到一个或多个寡核苷酸。 关于生物信息学,寡核苷酸生产的最先进的技术,芯片印刷和表面化学带来前所未有的特异性和敏感性,从而优化结果的分析和利用。 编号 名称 H25K:BT 人类整个基因组(25 509 基因 - 26 304 长寡核苷酸)
  • 比较基因组杂交CGH芯片微阵列
    比较基因组杂交CGH芯片微阵列是一种建立在发现基因组失衡和染色体畸变(异常从几百碱基到几兆碱基)基础上的技术。这种技术允许对基因组异常进行定量分析,分辨率比Constitutional 染色体组型高50?100倍。 Constitutional Chips4.0是在细胞遗传学领域的一个创新,用于分子诊断和研究的持续发展。该CGH芯片应用于许多领域和研究领域,如新生儿和产前诊断,肿瘤细胞和干细胞领域。 CGH芯片特色 Constitutional Chips4.0的一些特征 杂交前,DNA样本不需要放大。该芯片提供整个基因组的高分辨率视图,没有缺陷基因的预选,不像FISH(荧光原位杂交) 提供临床显著基因位点的全面覆盖。 不要求细胞培养,不像Constitutional核型分析的技术。 使用该技术,可以在2天内获得的结果。 编号 名称 4060-0010 Constitutional Chips 4.0 (10 芯片) 4040-0020 标签试剂(适合 10芯片) 4050-0010 杂交试剂 (10 芯片)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制