钠通道

仪器信息网钠通道专题为您整合钠通道相关的最新文章,在钠通道专题,您不仅可以免费浏览钠通道的资讯, 同时您还可以浏览钠通道的相关资料、解决方案,参与社区钠通道话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

钠通道相关的资讯

  • 颜宁组Science再发文 首次报道钠通道近原子分辨率结构
    p   2月10日,清华大学医学院颜宁研究组在《科学》(Science)在线发表题为《真核生物电压门控钠离子通道的近原子分辨率三维结构》(Structure of a eukaryotic voltage-gated sodium channel at near atomic resolution)的研究长文,在世界上首次报道了真核生物电压门控钠离子通道(以下简称“钠通道”)的3.8埃分辨率的冷冻电镜结构,为理解其作用机制和相关疾病致病机理奠定了基础。 /p p   清华大学生命学院五年级博士生申怀宗、医学院副研究员周强、医学院博士后潘孝敬、生命学院二年级博士生李张强和生命学院五年级博士生吴建平为该文章共同第一作者。通讯作者是清华大学医学院拜耳讲席教授以及霍华德休斯医学研究院国际青年科学家颜宁。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/cf1e15e9-bab0-49ad-9048-f7b30195c3a0.jpg" title=" untitled_副本.jpg" / /p p style=" text-align: center " 真核生物电压门控钠离子通道的拓扑图和三维电镜结构。 /p p    strong 重要性 /strong /p p   上世纪四五十年代,英国科学家霍奇金和赫胥黎发现了动作电位 之后发现电压门控钠离子通道(Nav通道)引发动作电位,而电压门控钾离子通道(Kv通道)则终结动作电位,恢复至静息状态。自此科学界展开了针对钠通道方方面面延续至今的系统研究 可以说,对钠通道的研究构成了过去60多年电生理研究的重要基石。 /p p   钠通道是所有动物中电信号的主要启动键,而电信号则是神经活动和肌肉收缩等一系列生理过程的控制基础。在人体中,一共有九种已知的电压门控钠离子通道亚型,在不同的器官和生理过程中发挥作用。钠通道的异常会导致一系列与神经、肌肉和心血管相关的疾病,特别是癫痫、心律失常和持续性疼痛或者无法感知痛觉等 迄今已经在人体的九种钠通道蛋白中发现了一千多个与已知疾病相关的点突变。此外,钠通道也是许多局部麻醉剂以及自然界中大量的神经毒素的直接靶点,许多蛇毒、蝎毒、蜘蛛毒素等,都是作用于钠离子通道而产生不良后果。 /p p   钠通道是诸多国际制药公司的研究靶点,有着巨大的制药前景。获取钠通道的精细三维结构对于理解其工作机理以及制药至关重要。 /p p    strong 技术难度 /strong /p p   除了作为膜蛋白通常具有的技术难度之外,对于真核钠通道高分辨率三维结构的解析还存在着几道额外的很难逾越的“路障”。 /p p   首先,获取蛋白样品难。真核生物钠离子通道蛋白全长包含约2000个氨基酸,很难对其像电压门控钾离子通道那样进行大量的体外重组表达 内源钠通道通常含量极低,很难像电压门控钙离子通道那样从生物组织直接纯化出足够的用于结构解析的高质量蛋白样品。 /p p   其次,钠通道是由一条肽链折叠而成,具有假四次对称特征。与同源四聚体的钾通道相比,钠通道很难结晶或者利用冷冻电镜技术获取结构 它们又不像钙通道那样与辅助亚基形成较大分子量的稳定复合体,从而增大了利用电镜技术解析结构的难度。 /p p   最后,真核钠通道包含有比较多的柔性区域,还存在着多种多样的翻译后修饰,这都对其结构解析构成很大挑战。 /p p   也因此,对于真核钠通道的结构生物学研究远远滞后于早在2003年即获得首个晶体结构的电压门控钾离子通道。包括欧美英日在内的全球数十个研究团队都在紧锣密鼓攻坚,力图获得首个真核钠通道的高分辨率结构。 /p p    strong 突破点 /strong /p p   在最新的《科学》论文中,颜宁研究组成功地克服了以上的层层瓶颈,获得了性质良好的蛋白样品,并利用单颗粒冷冻电镜的方法,重构出了可以清晰分辨绝大多数侧链的真核生物钠离子通道(命名为NavPaS)的三维结构。研究组利用电镜技术,同时反其道而行之,放弃了对于大分子量蛋白的追求,而利用序列分析选取长度最短的真核钠离子通道,成功利用重组技术获得了表达量较高、性质稳定均一的美洲蟑螂(电生理重要模式生物之一)的钠通道蛋白。该结构的解析为理解钠通道的离子选择性、电压依赖的激活与失活特性、配体抑制机理提供了重要的分子基础,为解释过去60多年的大量实验数据提供了结构模板,并为基于结构的分子配体开发奠定了基础。 /p p    strong 十年铸剑 /strong /p p   值得一提的是,颜宁自2007年在清华大学医学院建立实验室伊始即开始了针对电压门控钠离子和钙离子通道的结构生物学攻坚,并于2012年在《自然》报道了来自一种海洋细菌的钠离子通道NavRh处于失活状态的晶体结构。此后,课题组又在国际上首次报道了真核生物电压门控钙离子通道Cav1.1的高分辨率结构,为理解相关生理过程(包括但不限于肌肉收缩偶联过程)的分子机理打下了重要基础。历经十年,颜宁实验室解析了真核电压门控钠离子通道的结构。至此,所有经典的电压门控阳离子通道都有了三维结构模板,而其中由单链折叠而成的真核钙离子和钠离子通道结构都是颜宁实验室率先获得,奠定了其团队在该领域的国际领先地位。 /p p   本研究获得了清华大学冷冻电镜平台雷建林博士、李小梅和李晓敏的大力支持,数据采集于清华大学于2009年购置的Titan Krios冷冻电镜。国家蛋白质科学中心(北京)清华大学冷冻电镜平台和清华大学高性能计算平台分别为本研究的数据收集和数据处理提供了支持。科技部、基金委、生命科学联合中心-清华大学、生物膜与膜生物工程国家重点实验室为本研究提供了经费支持。本研究还获得了清华大学医学院和生命学院肖百龙、熊巍、陶庆华、塞西莉亚· 卡捏莎(Cecilia Canessa)等实验室的帮助。 /p p br/ /p
  • 核磁共振助力 中德联合发现钠钾离子通道选择性新机制
    p   记者从中国科学技术大学获悉,该校田长麟教授研究组与德国莱布尼茨分子药物所Adam Lange及孙涵课题组合作,应用固体核磁共振、单通道电生理及分子动力学模拟等方法揭示了NaK离子通道的离子选择性新机制。该研究成果已发表在《自然· 通讯》上。 /p p   离子通道是细胞膜上的一类特殊亲水性蛋白质微孔道,在细胞膜上形成动作电位和梯度电位,决定细胞的兴奋性和传导性。绝大多数离子通道对不同的离子有选择性的通透,但仍有一部分离子通道可以非选择性地通过几种离子。研究人员在KcsA钾离子通道结构基础上,提出了“钾离子通道通过选择过滤器中主链C=O形成水合离子配位方式实现离子选择性”的静态机制模型,获得了广泛认同。但是,近年来高分辨率X-射线晶体结构显示NaK离子通道在结合不同离子时其静态通道结构完全一致,这无法解释其如何识别和通透这些离子。 /p p   田长麟课题组以非选择性通道NaK为研究对象,将其重组装到磷脂双分子膜内(还原离子通道所存在的细胞膜环境),并与Adam Lange组合作,通过魔角旋转固体核磁方法获得高分辨固体NMR谱图,并获得了不同金属阳离子条件下谱峰归属。NMR谱图数据表明,NaK在生理环境下通道存在两种构象,钾离子选择结合其中一种,而钠离子选择另一种。双方进一步通过固体核磁对原子间距离测量勾画出了两种构象的结构差别,并用分子动力学模拟的方法验证了两种构象分别对K+和Na+有高度的选择性。 /p p   这一研究成果提出了离子通道选择性的新机制。 /p
  • 北大陈雷课题组发现钠漏通道复合物的冷冻电镜结构
    近日,北京大学未来技术学院分子医学研究所研员陈雷课题组发现了钠漏通道NALCN-FAM155A-UNC79-UNC80复合物的冷冻电镜结构及UNC79-UNC80调节NALCN-FAM155A的机制。这一研究于5月12日发表在《自然-通讯》上。  神经细胞的静息膜电位(Resting Membrane Potential, RMP)影响着神经细胞的可兴奋性,对于维持神经细胞正常的生理功能至关重要。钠漏通道NALCN(Sodium Leak Channel, Nonselective)介导了神经细胞的钠漏电流,能使静息膜电位更加去极化,从而提高神经细胞的可兴奋性。  NALCN在哺乳动物中高度保守,与电压门控钙离子通道(CaV)和电压门控钠离子通道(NaV)同源性较高。且参与了诸多与神经系统相关的重要的生物学过程,包括呼吸节律的调节、痛觉感知、生物钟的调节和快速动眼睡眠等。  “在人群中,NALCN的单点突变会引起多种严重的神经发育遗传疾病,包括精神运动发育迟缓和具有特征面相的小儿肌张力低下症及四肢和面部先天性挛缩、肌张力低下和发育迟缓症等。尽管NALCN通道有着如此重要的功能,但其工作机制仍不清楚。”陈雷告诉《中国科学报》。  在2020年,陈雷研究组曾解析NALCN-FAM155A亚复合体的高分辨率结构,阐明了NALCN的钠离子选择性、胞外钙离子阻塞和电压调节特性的结构基础,发现了在NALCN通道中独有的位于II-III linker上的CIH螺旋可以结合在其胞内结构域上。但是UNC79和UNC80的结构以及它们是如何激活NALCN的并不清楚。  先前的研究表明,UNC79和UNC80容易与NALCN-FAM155A亚复合体发生解离。在本项研究中,作者们在NALCN的C末端融合了GFP,UNC80的N末端融合了与GFP高亲和力结合的纳米抗体以稳定UNC79/80与NALCN间的相互作用。  经过同源蛋白筛选等步骤,研究人员确定以大鼠NALCN和小鼠FAM155A, UNC79和UNC80亚基组成的复合体为研究对象,并在克服了样品制备、数据处理等困难后,通过单颗粒冷冻电镜技术获得了整体分辨率为3.2埃的四元复合物的电子密度,并搭建了原子模型。  结构显示,UNC79和UNC80均由富含螺旋的结构组成,这些螺旋进一步的组装成HEAT重复或ARM重复等超螺旋结构。UNC79的N端与UNC80的C端、UNC79与UNC80的中间铰链区以及UNC79的C端与UNC80的N端均存在着紧密的相互作用,形成钳子状的复合体,整体形状类似于无穷号“∞”。 进一步的研究发现,NALCN主要通过胞内loop区与UNC79-UNC80发生相互作用的:NALCN胞质侧的I-II linker中的一段β-发卡结构(UNIM-A)与UNC79发生相互作用,II-III linker中的一段loop-螺旋结构(UNIM-B)以及一段L型螺旋结构(UNIM-C)与UNC80发生相互作用。作者们将NALCN与UNC79/80发生相互作用的基序命名为UNC Interacting Motif (UNIM)。  陈雷介绍,该项研究还发现,UNC79, UNC80和FAM155A三个附属亚基对于NALCN能够正确的转运到细胞膜上是必不可少的。“这有可能是因为这些互作使UNC79/80遮挡了NALCN胞质侧loop上的内质网滞留信号,从而促进NALCN上膜。另外,这些互作也释放了CIH对NALCN的自抑制,使其激活。这为深入理解NALCN复合体的工作机制奠定了基础。”他说。

钠通道相关的方案

  • 纳米通道反应器中联合气固液界面和控制湿润性激励气体反应
    采用立陶宛Ekspla公司的和频光谱测量系统SFG,对纳米通道反应器中联合气固液界面和控制湿润性激励气体反应过程进行了实验测量和理论分析研究。
  • hERG K+通道电流和药理学特性的研究-Molecular Devices IonWorks
    HERG (human ether-a go-go-related gene) K+ 通道在心脏中高表达,是心肌动作电位三期快速复极化电流(IKr)的主要组成部分(Curran ‘95 Sanguinetti ‘95)。hERG 突变引起的功能缺失常伴随一些遗传性长QT 综合症(LQTS) 并且会增加发生严重的室性心律失常, 扭转性实行心动过速 (Tanaka ‘97 Moss ‘02)的风险。HERG 钾离子通道被作用于 心脏或非作用于心脏的药物抑制,都被证实有非常大的可能性出现获得性药物诱导的长QT 综合症(LQTS),甚至导致猝死(Vandenberg, Walker & Campbell ‘01)。实际上,hERG 钾离子通道被抑制引起的副作用是近年来药物撤市的主要原因,因而药物作用于外源性表达于哺乳动物细胞的hERG 通道的体外效应评价已被 国际药品注册协调会议(International Conference on Harmonization)推荐作为临床前安全性评价工作的一部分(ICHS7B Expert Working Group, ‘02)。
  • hERG K+通道电流和药理学特性的研究-Molecular Devices IonWorks
    HERG (human ether-a go-go-related gene) K+ 通道在心脏中高表达,是心肌动作电位三期快速复极化电流(IKr)的主要组成部分(Curran ‘95 Sanguinetti ‘95)。hERG 突变引起的功能缺失常伴随一些遗传性长QT 综合症(LQTS) 并且会增加发生严重的室性心律失常, 扭转性实行心动过速 (Tanaka ‘97 Moss ‘02)的风险。HERG 钾离子通道被作用于心脏或非作用于心脏的药物抑制,都被证实有非常大的可能性出现获得性药物诱导的长QT 综合症(LQTS),甚至导致猝死(Vandenberg, Walker & Campbell ‘01)。实际上,hERG 钾离子通道被抑制引起的副作用是近年来药物撤市的主要原因,因而药物作用于外源性表达于哺乳动物细胞的hERG 通道的体外效应评价已被 国际药品注册协调会议(International Conference on Harmonization)推荐作为临床前安全性评价工作的一部分(ICHS7B Expert Working Group, ‘02)。

钠通道相关的论坛

  • 【求助】关于DV-5添加Na通道后出现的问题

    我们单位DV-5光谱仪原来没有Na通道,后来因为工作需要请工程师开通了一条,开通后除标样Na有变化外其余样品的钠含量始终变化不大,如:1#样Na:0.0062 2# Na:0.0061 3# Na:0.0062 4# Na:0.0062,但这4个样的真实值其实从0.0022到0.0070之间,我们给光电倍增管加高压,互换元素板都不行,请大家给我一个解决方法。谢谢了。

  • Nature杂志封面成果---光敏感通道

    http://www.biomart.cn//upload/userfiles/image/2012/02/1329478430.jpg光遗传学技术Optogenetics(optical stimulation plus genetic engineering 光刺激基因工程/光遗传学)是2010年Nature杂志评出的年度技术,近年来在这一领域获得了不少重要的成果,近期来自日本东京大学,美国斯坦福大学等处的研究人员发表了题为“Crystal structure of the channelrhodopsin light-gated cation channel”的文章,报道了两个光敏感通道构成的一个嵌合体的X-射线晶体结构,这将有助于光遗传学的发展,这一成果公布在2月16日Nature杂志上,并被作为封面文章推荐。领导这一研究的是东京大学Osamu Nureki,与斯坦福大学的Karl Deisseroth副教授,其中Deisseroth副教授曾开发出多种光遗传学技术新方法,比如其研究组曾经利用光遗传学技术开展多项试验对工程动物的中枢神经系统进行研究。光敏感通道(channelrhodopsins)是一种受光脉冲控制的具有7次跨膜结构的非选择性阳离子通道蛋白,自1991年从莱茵衣藻中发现后被许多实验室所关注,由于这一通道可以快速形成光电流,使细胞发生去极化反应的电生理特性,因此已被广泛应用于神经系统的研究。与传统的神经系统研究方法如电生理技术、神经药理学方法相比,这一方法具有更高的空间选择性和特异性,作为光遗传学技术的核心组成部分,这一领域的研究吸引了不少科学家的关注。在这篇文章中,研究人员报道了两个光敏感通道构成的一个嵌合体的X-射线晶体结构(2.3 Å ),光敏感通道在神经科学研究中扮演了重要角色,但是有关它的分子作用机制至今了解的并不多,这项研究就通过其晶体结构,揭示了光敏感通道的结构,及电生理作用机制,结果表明这一离子通道的分子架构包括与视网膜相结合的区域和阳离子通道。这将有助于揭示光敏感通道的功能,并且为光遗传学更好的利用光敏感通道提供了更加精确的信息。生命现象离不开细胞发挥着各种功能。实时了解细胞间的活动状况是揭开复杂生命谜团和疾病治疗方法获取的重要途径。在保护头盖骨的同时,对处理大脑庞大信息的大量神经细胞活动进行实时性成像是非常困难的。因此研究人员开发了各种方法,包括光遗传学技术进行探索。去年来自斯坦福大学的华裔研究组则接连设计了几种新颖的光遗传学工具,可以更好的分析活体哺乳动物大脑神经环路生理现象,比如他们将光遗传学技术结合细菌人工染色体(BAC)转基因策略成功构建了四种神经元可被蓝光激活的转基因小鼠动物模型。除此之外,Bamberg研究组的一项最新成果:看似简单的融合方法解决了光遗传学研究的一大问题。之前的研究表明channelrhodopsin-2受到蓝光的刺激时,会导致阳离子通过细胞膜,细胞去极化,神经元激活,而盐菌紫质(halorhodopsin)在受到橙色光的刺激时,则会引发氯离子通过细胞膜,细胞极化,阻止细胞激活。这些成果都有利用更好的通过光遗传学分析生物现象,当然要实现这些方法并不容易,比如Bamberg研究组这项成果,因为当细胞表达两种光遗传学蛋白的时候,它们表达两种蛋白的表达水平不均衡,一种可能很多,而另一种可能很少。而且不同细胞的表达比率也不一致。

钠通道相关的资料

钠通道相关的仪器

  • 仪器简介:DCS300PA数据采集器是带有双通道前置放大器的微弱信号采集器,作为DCS103型数据采集器的升级版,涵盖了DCS103的所有数据采集功能,由于增加了多档位、高增益的前置放大器,因而适合于更微弱信号的数据采集。技术参数:主要技术参数:◆ 两路I/V信号输入,信号输入范围(满档量程):电压输入:± 100&mu V(FS)~± 10V(FS)电流输入:± 100nA(FS)~± 100mA(FS)◆ 增益设置范围:电压增益:100~104 电流增益:103~107◆ 积分时间:10&mu s~10s◆ 单路AUX电压输入通道,信号输入范围:DC 0-10V◆ 单路温度探头信号输入通道,使用温度探头型号:AD950◆ A/D转换精度:16bits,实现高动态范围信号采集◆ 两路D/A输出可用于控制其它实验设备,输出幅度:DC 0-10VD/A转换精度:12bits◆ 触发输出通道:可控制电子快门和电磁螺管快门◆ 触发输入通道: TTL电平上升沿触发◆ I/O:5路输入,2路TTL输出◆ 标准USB接口◆ CE认证◆ 电源需求: DC 24V,0.3A◆ 尺寸:240(L)× 240(W)× 120(H)◆ 重量:3.3Kg主要特点:主要特点◆ 测量范围宽(9级可至256倍的增益变换)◆ 测量精度高(高性能运算放大器和± 15Bits精度的A/D转换器)◆ 具有双路相同性能的输入通道,可分别设置为直流电压输入或直流电流输入◆ 附有双路0至10V的直流D/A变换输出通道◆ 可进行单通道测量和比率测量◆ 软件系统操作方便
    留言咨询
  • TP130 钠离子监测仪主要用于测量溶液钠离子浓度值、pH值、温度的测量。广泛应用于火电、化工、化肥、冶金、环保、制药、生化、食品和自来水等行业的溶液中钠离子的连续监测。原理TP130 钠离子监测仪从能斯特方程可以知道,在25℃时钠离子选择电极对十倍离子浓度变化的理论响应值59.16mV,这被称为电极斜率(S)。然而大多数电极并不表现为理论斜率,因此需要校准仪器以确定电极的真实斜率值。在具体使用中,我们用两个标准溶液来标定出电极的真实斜率值和零点。功能特点* 1~4通道可选择,节省费用。* 高精度电极,测量准确度高,测量范围宽。* 先进的贴片工艺及一体化设计,高集成度电路设计稳定耐用。* 先进单片机技术,高性能,低功耗。* 24位A/D信号采集,高精度测量,准确可靠。* 中文主菜单操作,易于理解,操作快捷方便。* 标准输出信号类型可选,报警继电器可任意设定。* 数据循环存储功能,自动清除溢出数据,操作简单,查询方便, 断电数据存储时间10年以上。* 结构精巧,开孔式安装,使用维护方便技术指标显 示:7.0寸彩色液晶触摸屏,中文显示测量范围:pNa : 0.00~9.36pNa (0.01μg/L~23.0g/L)示值误差:±0.03pNa或±3μg/L (取大值)重 现 性:≤±1% F.S稳 定 性:漂移±0.02pNa/24h或±0.5μg/L/24h温补范围:(0~60) ℃校准方法:二点校准响应时间: 2分钟水样要求:流量:10~40 L/h温 度:(0~60) ℃杂 质:固态物小于5微米,且无胶状物出现环境温度:(5~45) ℃环境湿度:≤ 90% RH(无凝结)试剂消耗:约1.5升/月 (二异丙胺)输出信号:隔离的直流电流信号,0~20mA、4~20 mA、0~10 mA三种模式可任意设置 (≤750Ω)报警信号:各通道独立报警,断流报警、上下限报警电 源:AC (85~265)V频率 ( 45~ 65)Hz功 耗:≤100 W外形尺寸:460mm×280mm×720 mm开孔尺寸:670mm×410mm重 量:22kg 订购指南配件指南* 钠离子复合电极* pH三复合电极(普通水)* 温度电极 1M-3.5-Ф4\130-PT1000* 钠标液 200mg/L二次仪表安装方式* 开孔式* 架装式注意事项1.在仪器出现明显故障时,用户不要自行打开修理,请及时与厂家联系。2.若开机无显示,请检查电源线是否接好。3.如使用说明书与实际操作有差异时以仪器为准。
    留言咨询
  • 合成产物种类 DNA/RNA荧光标记物、探针、硫代等 合成模式 单通道公共管路 合成周期 3小时内合成1条30bp产物600OD的引物 每个循环时间 6-15分钟 合成产物范围 500nmol-100mmol 产物承载方式 合成柱 碱基/试剂打入方式 公共管路打入 碱基/试剂驱动方式 保护气体压出方式 废液排放 保护气体快速下压,无需外置泵 碱基瓶位 标配8个,最大可扩充到12个
    留言咨询

钠通道相关的耗材

  • Nalgene DS0345 真空多通道支架,不锈钢;Teflon* PTFE 活塞
    Nalgene DS0345 真空多通道支架,不锈钢;Teflon* PTFE 活塞?可稳固地立于工作台上。其设计有三个真空出液口,每个出液口都带有防漏的双向阀和通气口。每个出液口在均可固定一个8 号塞和过滤漏斗柄,且不会相互干扰。各出液口间有一定间距,以便于操作单个漏斗使用的出液口少于三个时,每个阀门上的Teflon 活塞就会关闭,以防止管中的液体流出。具齿装置适合安装内径为3/8 in.(9.5 mm) 的胶管。对于在微粒和微生物分析方面进行的增加过滤量的同步过滤操作,可以使用Nalgene 带夹具的过滤漏斗,目录编号DS0315-0047,它是一套完整的过滤系统。还可使用Nalgene 过滤漏斗,目录编号140、145 和147;以及带漏斗的过滤支架,目录编号DS0310-4000、DS0310-4050高温高压灭菌订货信息:Nalgene DS0345 真空多通道支架,不锈钢;Teflon* PTFE 活塞目录编号 DS0345-0001每箱数量1
  • 多通道火焰光度计配件
    多通道火焰光度计配件是满足科研和工业双用途使用的高精度火焰光度计,多通道火焰光度计配件具有同时测量Na,K, Mg,Ca 四种元素的功能,并配有自动稀释器,非常方便样品微量稀释实验。多通道火焰光度计配件特色采用全球领先的设计理念,采用功能强大的微处理器和便携式移动电话设计,非常用户方便操作使用。这款多通道火焰光度计可以使用笔记本电脑,配置火焰光度计分析软件,非常方便用户选择单个元素分析,或同事对所有元素分析。具有自动归零功能,自动HI校准标定功能,大大简化标定校准的操作。多通道火焰光度计配件特点同时分析所有元素多通道光学元件分析Ca时不受Na元素干扰自动火焰点燃自动光学火焰控制自动标定校准单点或多点标定校准曲线使用环境广泛全球领先的微采样技术和微稀释技术,减少样品消耗和环境废弃物,节能而环保极为宽泛的应用领域如果连接笔记本电脑并使用配带软件后具有如下特点程序验证,确保数据安全自动记忆分析数据和分析方法,方便恢复和重复使用数据超级高效,减少实验室分析工作量高达60%自动提供用户ISO/IEC17025实验室质量标准文献,方便用户使用自动分析数据保护,具有强大的加密功能。多通道火焰光度计配件测量范围Na: 0-200ppm,K : 0-200ppmMg:0-200ppmCa :0-200ppm测量单位:ppm, mmol/L, mEq/L灵敏度: 0.4ppm Na 和K测量极限值:0.2ppm 对于Na, K重复精度:1% CV漂移:1% 对于30分钟时间燃料要求:丙烷,丁烷或液化燃气空气要求:空气压缩机 具有油、水,灰尘滤网工作环境温度要求:15-36摄氏度工作环境湿度要求:85%相对湿度尺寸:320x 400x 400mm (LxWxH)重量:9kg供电:220-230VAC, 50Hz多通道火焰光度计配件应用环境监测控制:用于分析水,废水和固体废物等中Na,K,Ca Li测量 食品和农业:用于土壤、植被、食品、饮料、酒类,肉类,饲料,肥料中Na,K,Ca Li含量测量兽医应用饮料分析:牛奶,软饮料,啤酒,白酒等测量医药领域:用于制药过程中的质量控制,如抗生素培养的营养液中钠/Na,钾/K, 钙/Ca的分析;医学研究:用于血液尿液等体液中Na,K分析, 血清中Na,K,Li电解质分析,排泄物中Ba的测量(如钡餐分析);工业或科研:玻璃,陶瓷,造纸,石化冶炼或化学制品中碱金属的测量, 水泥或原材料中Na,K,Ca的测量其它高等研究使用
  • 940 智能型双通道 IC 仪器2.940.2300
    940 Professional IC Vario TWO/ChS/PP订货号: 2.940.2300940 Professional IC Vario TWO/ChS/PP 是智能型双通道 IC 仪器,带有化学抑制和一个蠕动泵用于抑制器再生。 该仪器可使用各种分离和检测方法。典型的应用范围:并列测定阴离子和阳离子。双通道应用,使用不同的检测器。

钠通道相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制