三层石墨烯

仪器信息网三层石墨烯专题为您整合三层石墨烯相关的最新文章,在三层石墨烯专题,您不仅可以免费浏览三层石墨烯的资讯, 同时您还可以浏览三层石墨烯的相关资料、解决方案,参与社区三层石墨烯话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

三层石墨烯相关的资讯

  • 同是三层石墨烯结构 电学性质因何大相径庭?
    p style=" text-indent: 2em " 近日,日本科学家研制出两种新材料,它们都是三层石墨烯结构,但由于堆叠方式不同,却各具独特的电学性能,这项研究对于光传感器等新型电子器件的发展具有重要意义。 /p p style=" text-indent: 2em " 自从2004年,两位科学家首次利用清洁石墨晶体的透明胶带分离出了单层碳原子,石墨烯就因其迷人的特质吸引了无数研究者蜂拥而至。它的强度是钢的200倍,不仅非常柔韧,而且是一种极为优良的电导体。 /p p style=" text-indent: 2em " 石墨烯的碳原子呈六边形排列,构成了蜂窝状晶格。在单层石墨烯上再堆叠另一单层石墨烯,就可以形成双层石墨烯结构。有两种堆叠方法:让每层石墨烯结构的碳六边形中心彼此正对在一起,就构成了AA堆叠结构;而将其中一层向前移位,使得其碳原子六边形中心位于另一层石墨烯的碳原子之上,就构成了AB堆叠。AB堆叠的双层石墨烯材料在施加外部电场时,具有半导体的性质。 /p p style=" text-indent: 2em " 刻意堆叠三层石墨烯结构是非常困难的,但是这样做却可以帮助科学家们研究三层材料的物理性质是怎样随层与层间堆叠方式的不同而变化的,并从而对新型电学仪器设备的发展具有促进作用。现在,日本东京大学和名古屋大学的研究者已成功研制出两种具有不同电学性能的三层石墨烯结构。 /p p style=" text-indent: 2em " 他们采用了两种不同的方式加热碳化硅,一种是在加压氩气环境下将碳化硅加热到1510摄氏度,另一种是在高真空环境将碳化硅加热至1300摄氏度。随后用共价键已被破坏成单个氢原子的氢气喷涂两种材料,两种不同的三层石墨烯结构就大功告成了。在加压氩气下加热的碳化硅形成了ABA堆叠结构的三层石墨烯,其顶部和底层的碳原子六边形精确对齐,中间层稍有移位。高真空环境下加热的碳化硅则形成了ABC堆叠结构的三层石墨烯,每一层碳原子六边形都比其下面一层稍稍向前移位。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/fda047f2-d0aa-4cca-894b-6475b2f605a5.jpg" title=" 同是三层石墨烯结构 电学性质因何大相径庭?.jpg" / /p p /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " ABA堆叠状三层石墨烯(图a)与ABC堆叠状三层石墨烯(图b)的晶体结构示意图 /span /p p style=" text-indent: 2em " 科学家们检测了这两种三层石墨烯结构的物理性质,发现他们电学性能差异显著。ABA型石墨烯与单层石墨烯类似,是十分优良的电导体,而ABC型石墨烯却更像AB型双层石墨烯结构,具有半导体的性质。 /p p style=" text-indent: 2em " “ABA型和ABC型两种不同三层石墨烯结构的成功制备,将从堆叠层数和堆叠序列的角度,拓宽石墨烯基纳米电子器件的研发可行性。” 相关研究人员在NPG Asia Materials杂志上发表的论文中这样总结道。 /p
  • 天才少年曹原再发Nature:三层扭转石墨烯诞生,具备更稳定超导性
    近日 ,美国麻省理工学院 Jeong Min Park、曹原等人在《自然》发文,报告三层扭转石墨烯能够表现出超导性。这个“三明治”比双层的“魔角” 石墨烯更加稳定,并且能够通过两种相互独立的方式进行调节。这样的结构或有助于理解实现高温超导需要的条件。图片来源:Pixabay当两片石墨烯 以 1.1° 的扭转角度交错排列,这个双层结构就会转变为非常规的超导体,从而使电流无阻通过,而不会浪费能量。这种“魔角”石墨烯结构及其超导效应由美国麻省理工学院 (MIT)物理学教授 Pablo Jarillo-Herrero 团队在 2018 年首次发现。这项研究也让中科大少年班毕业生、当时年仅 21 岁的曹原“一战成名”: 他以共同第一作者/共同通讯作者 的身份首次在同一天发表了两篇《自然》 (Nature )论文,随后他 成为了 《自然》2018 年十大科学人物中最年轻的学者 。扭转电子学 (twistronics)领域从此兴起。此后,科学家一直在寻找其他可以经过扭转而表现出超导性质的材料。但是到目前为止,除了最初的双层“魔角”石墨烯以外,没有发现其他材料具备相似的特性。近日,已经成为博士后的曹原再次以共同第一作者身份 在《自然》发文报告,在三层石墨烯组成的“三明治”中观察到超导性。 在新的三层结构中,中间一层石墨烯相对于外层以新的角度扭转,其超导性比双层结构更稳定。该论文 2 月 1 日在《自然》发表, Jeong Min Park 和曹原为共同一作,此外曹原还与他的导师、Pablo Jarillo-Herrero 共同担任论文通讯作者。日本国立材料科学研究所(National Institute of Materials Science)的渡边贤司(Kenji Watanabe)和谷口尚(Takashi Taniguchi)也参与了这项研究。研究人员还可以通过施加和改变外部电场的强度来调节结构的超导性。而通过调节三层结构,研究人员能够产生超强耦合超导性,这是一种奇特的电学行为,在其他所有材料中很少见。Jarillo-Herrero 说:“目前尚不清楚魔角双层石墨烯是不是特例,但现在我们知道它并不孤单,它有一个三层表亲。这种超可调(hypertunable)超导体的发现将转角电子学领域扩展到了全新的方向,在量子信息和传感技术中具有潜在的应用。”打开新型超导体研究的大门在 Jarillo-Herrero 和同事们发现扭转双层石墨烯中可能产生超导性之后不久,理论物理学家提出,在三层或更多层石墨烯中也可能看到相同的现象。石墨烯就是厚度仅有一层原子的石墨,它完全由排列成蜂窝状晶格的碳原子组成,如同纤细却坚固的金属网格。理论物理学家提出,如果将三层石墨烯像三明治一样堆叠, 中间层相对于两个外层扭转 1.56 度,那么这种扭曲构型将产生一种对称性,从而促使材料中的电子配对,形成无阻力的电流,即超导的标志。Jarillo-Herrero 说:“我们就想,为什么不尝试检验一下这个想法?”为此,Park 和曹原设计了三层石墨烯结构。他们将单层石墨烯小心地切成三个部分,并将其按照理论预测的角度精确堆叠。他们制造了几个这样的三层结构,每个结构的尺寸仅有几微米,大约相当于人类头发的直径的 1/100,高度则为三个原子。Jarillo-Herrero 称之为 “纳米三明治”。接下来,研究小组将电极连接到结构的两端,并通过电流,同时测量材料中损失或耗散的能量。“我们没有观察到能量耗散,这意味着它是超导体。”Jarillo-Herrero 说,“我们必须肯定理论物理学家的贡献,他们算出了正确的夹角。”但他补充说, 这种结构具备超导性能的确切原因仍然有待确认,目前还不确定这是不是因为理论物理学家所提出的对称性。这也是他们计划在未来的实验中进行检验的内容。 他说:“目前我们只能确认相关性,而无法确认因果关系。但现在我们至少有了一条途径,可以根据这种对称性思想探索一大批新型超导体。”“ 最强大的耦合超导体”在探索新的三层石墨烯结构时,研究团队发现,可以通过两种方式控制其超导性。对于团队此前提出的双层石墨烯,可以通过施加外部 门电压来改变流过材料的电子数量,从而调节其超导性。研究团队上下调节门电压,同时测量材料停止耗散能量、转变为超导体时的临界温度。通过这种方式,团队能够像调节晶体管一样打开和关闭双层石墨烯的超导性。团队使用相同的方法来调节三层石墨烯,同时还发现了控制材料超导性的第二种方法,这在双层石墨烯和其他扭转角结构中是不可能的。这种方式就是使用附加电极对材料施加 电场,这能够改变三层结构之间的电子分布,同时不改变结构的整体电子密度。Park 说:“现在,这两个相互独立的‘旋钮’能为我们提供大量有关超导电性出现条件的信息,帮助我们理解这种不寻常的超导状态背后至关重要的物理学原理。”通过同时使用这两种方法调整三层结构,研究小组在一定条件下观察到了超导性,包括在相对较高的 3 开尔文临界温度下,即使此时材料的电子密度很低。相比之下,量子计算领域正在研究使用铝制作超导体,铝具有更高的电子密度,而它仅在约 1 开尔文的温度下才具备超导性。Jarillo-Herrero 说:“我们发现魔角三层石墨烯可以成为最强大的耦合超导体,这意味着在给定的电子数量很少的情况下,它也能在相对较高的温度下进行超导。它能带来最大的收益。”研究人员计划制造三层以上的转角石墨烯结构,以了解具有更高电子密度的此类构型是否可以在更高的温度下表现出超导性,甚至实现室温超导。“如果能够工业化大规模生产这些结构,那么我们就可以制造用于量子计算的超导比特,或者低温超导电子器件、光子探测器等。不过我们还不知道如何一次制造数十亿个这样的结构,”Jarillo-Herrrero 说。Park 说:“我们的主要目标是理解强耦合超导的基本性质。三层石墨烯不仅是有史以来最强大的强耦合超导体,它还具备最大的调节空间。借助这种可调谐性,我们能够真正实现在相空间的任何位置探索超导电性。”论文信息:Park, J.M., Cao, Y., Watanabe, K. et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature (2021).
  • Nature Nanotechnology :大面积可控单晶石墨烯多层堆垛制备技术新突破
    多层石墨烯及其堆垛顺序具有特的物理特性及全新的工程应用,可以将材料从金属调控为半导体甚至具有超导特性。石墨烯薄膜的性质相对于层数及其晶体堆垛顺序有很大变化。例如,单层石墨烯表现出高的载流子迁移率,对于超高速晶体管尤为重要。相比之下,AB堆垛的双层或菱面体堆垛的多层石墨烯在横向电场中显示出可调的带隙,从而产生了高效的电子和光子学器件。此外,有趣的量子霍尔效应现象也主要取决于其层数和堆垛顺序。因此,对于大面积制备而言,能够控制石墨烯的层数以及晶体堆垛顺序是非常重要的。 近日,韩国基础科学研究所(IBS)Young Hee Lee教授和釜山国立大学Se-Young Jeong教授在期刊《Nature Nanotechnology》以“Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation” 为题报道了采用化学气相沉积的方法来实现大面积层数及堆垛方式可控的石墨烯薄膜的突破性工作。为石墨烯和其他2D材料层数的可控生长迈出了非常重要的一步。 文章提出了一种基于扩散至升华(DTS)的生长理论,实现层数可控生长的关键是在铜箔基底上先可控生长SiC合金,具体来讲(如图1所示),先在CVD石英腔室内原位形成Cu-Si合金,之后将CH4气体引入反应室并催化成C自由基,形成SiC,随后温度升高至1075℃以分解Si-C键,由于蒸气压使Si原子升华。因此,C原子被留下来形成多层石墨烯晶种,在升华过程中,这些晶种横向扩展到岛中(步骤III),并扩展致边缘。在给定的Si含量下注入不同浓度稀释的CH4气体,可以控制Si-Cu合金中石墨烯的层数。图1e显示了在步骤II中引入不同稀释浓度CH4气体时C含量的SIMS曲线,在较高CH4气体浓度下,C原子更深地扩散到Cu-Si薄膜中,形成较厚的SiC层,然后生长较厚的石墨烯薄膜。由此实现可控的调节超低限CH4浓度引入C原子以形成SiC层,在Si升华后以晶圆尺寸生长1-4层石墨烯晶体。   图1. 不同生长过程中的光学显微镜结果,生长示意图及XPS能谱和不同生长步骤中Si和C含量的二次离子质谱SIMS曲线 随后,为了可视化堆垛顺序并揭示晶体取向的特电子结构,进行了nano-ARPES光谱表征,系统研究了单层,双层,三层和四层石墨烯的能带结构(图2a-d),随着石墨烯层数增加,上移的费米能逐渐下移。另外,分别根据G和2D峰之间的IG/I2D强度比和拉曼光谱二维模式的线形来确定石墨烯薄膜的层数和堆垛顺序。IG/I2D随着层数增加而增加(从0.25到1.5),并且2D峰发生红移(从2676 cm-1到2699 cm-1)。后,双层、三层和四层石墨烯的堆垛顺序通过双栅器件的电学测量得到了确认(图2i-k)。在双层石墨烯(图2i)中,沟道电阻(在电荷中性点处)在高位移场下达到大值,从而允许使用垂直偶电场实现带隙可调性。在三层器件上进行了类似的测量(图2j),与AB堆垛的双层相反,由于导带和价带之间的重叠,沟道电阻随着位移增加而减小,这可以通过改变电场来控制,从而确认了无带隙的ABA-三层石墨烯。在四层器件中也观察到了类似的带隙调制(图2k),确认了ABCA堆垛顺序。 图2. 不同层数的石墨烯样品的nano-ARPES,拉曼及电学输运表征 本文通过在Cu衬底表面上使用SiC合金实现了可控的多层石墨烯,其厚度达到了四层,并具有确定的晶体堆垛顺序。略显遗憾的是本文并没有对制备的不同层数的石墨烯样品进行电导率,载流子浓度及载流子迁移率的标准测试。值得指出的是,近期,西班牙Das-Nano公司基于THz-TDS技术研发推出了一款可以实现大面积(8英寸wafer)石墨烯和其他二维材料100%全区域无损非接触快速电学测量系统-ONYX。ONYX采用一体化的反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学特性,为科研和工业化提供了一种颠覆性的检测手段。ONYX主要功能:→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向:石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线

三层石墨烯相关的方案

三层石墨烯相关的论坛

  • 请问人员文档算是第三层还是第四层文件?

    请问人员文档是算在第三层还是第四层文件里?还有有没有人跟我普及一笑文件编号和受控编号呢,比如我的质量记录表格模板有一个编号,但实际使用中这张表有很多张,怎么保证每张表的唯一性呢?

  • 葡萄酒的香气有三层

    葡萄酒的香气有三层:第一层主要是花果香气,第二层是酿造香气,第三层是陈年香气。

三层石墨烯相关的资料

三层石墨烯相关的仪器

  • 单层石墨烯机械剥离分散设备,石墨烯分散设备,石墨烯剥离设备,石墨烯锂电池分散机,石墨烯防腐涂料分散机,石墨烯分散技术,双层石墨烯浆料分散机一、单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。是世上蕞薄却也是蕞坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,导热系数高达5300 W/mK,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/Vs,又比纳米碳管或硅晶体高,而电阻率只约10-6 Ωcm,比铜或银更低。二、单层石墨烯高剪切分散机设备原理石墨烯高剪切分散机的线速度达21M/S,由3级可调间隙的锥形定子和4级高速旋转的锥形转子形成研磨模块,根据生产要求,剪切研磨间隙可从0.01mm至2mm无级调速,定转子每一级上的凹槽一级比一级精细,深度,方向的不同增加了流体的揣流。当物料经过的时候,形成强有力的挤压、剪切、乳化、粉碎、混合、分散均质及研磨作用。从而得到精细超微粒乳化研磨的较高效益。锥形定子外围、出料腔体及密封件部位有循环水冷却,可根据用户的特殊要求提供多功能的可空转式运作。石墨烯研磨分散机结合乳化机与胶体磨的特长,具有吸、消泡能力。使石墨烯浆料在设备的高线速度下形成湍流,在定转子间隙里不断的撞击,破碎,研磨,分散,均质,从而得出超细的颗粒(当然也需要合适的分散剂做助剂)。综合以上几点可以得出理想的导电石墨烯浆料。 (洽谈:)三、石墨烯分散难点石墨烯研究所在开发石墨烯的过程中,遇到如何将石墨更好的细化,以及细化后团聚问题,成为大的难点。四、SID石墨烯高剪切分散机及解决方案石墨烯高剪切分散机具有非常高的剪切速度和剪切力,粒径约为0.2-2微米可以确保高速分散乳化的稳定性。SDH3是一种三级高剪切在线分散机,用于生产非常精细的乳液和悬浮液。工作腔内的剪切力大大增加了物料的输送,加快了单分子和高分子物质的溶解速度。三级定转子组合(分散头)确保液滴或粒度小且分布范围很窄。此工艺可以使单次混合的混合物长时间保持稳定,尤其是混合乳化液时。SID希德/SDH3系列研磨分散机,可以很好的解决这两个问题.SDH3系列的胶体磨(锥体磨) 分散头的组合,可以先将石墨混合物(配入溶剂和分散剂)研磨细化,然后再经过分散头,进行分散。这样既可以细化又可以避免团聚的现象,为石墨烯行业提供了强有力的设备力量。五、石墨烯高剪切分散机剥离过程石墨烯高剪切分散机液相直接剥离法制备,石液相直接剥离法制备墨烯,,液相直接剥离法,石墨烯研磨分散机,德国液相直接剥离法制备石墨烯研磨分散机,SID液相直接剥离法制备石墨烯研磨分散机是是利用剪切力、摩擦力或冲击力将粉体由大颗粒粉碎剥离成小颗粒。分散:纳米粉体被其所添加溶剂、助剂、分散剂、树脂等包覆住,以便达到颗粒完全被分离、润湿、分布均匀及稳定目的。液相直接剥离法制备石墨烯研磨分散机通常直接把石墨或膨胀石墨((一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。coleman等参照液相剥离碳纳米管的方式将石墨分散在n-甲基吡咯烷酮(nmp)中, 超声1h后单层石墨烯的产率为1%, 而长时间的超声(462h)可使石墨烯浓度高达1.2mg/ml, 单层石墨烯的产率也提高到4%[17]。 他们的研究表明, 当溶剂的表面能与石墨烯相匹配时, 溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量, 而能够较好地剥离石墨烯的溶剂表面张力范围为40~50mj/m2;[18]把石墨直接分散在邻二氯苯(表面张力:36.6mj/m2)中, 超声、离心后制备了大块状(100~500nm)的单层石墨烯;[利用液?液界面自组装在三甲烷中制备了表面高度疏水、高电导率和透明度较好的单层石墨烯。为提高石墨烯的产率, 近 等发展了一种称为溶剂热插层(制备石墨烯的新方法,该法是以eg为原料, 利用强极性有机溶剂乙腈与石墨烯片的双偶极诱导作用来剥离、分散石墨, 使石墨烯的总产率提高到10%~12%。同时, 为增加石墨烯溶液的稳定性, 人们往往在液相剥离石墨片层过程中加入一些稳定剂以防止石墨烯因片层间的范德华力而重新聚集。设 备 参 数功率500W电源220V,50/60Hz流量范围 (H?O)1-15L/min处理粘度1000CP速度范围10000-28000rpm温度120℃转速显示刻度/数显转速控制无级接触物料材质SS316L、FKM标准工作腔不锈钢无夹套工作腔标准工作头20DG机械密封材质SiC、FKM、陶瓷进、出口外径14(软管接口)工序类型在线处理底座材质SS304外形尺寸477×120×122重量~6kg包装纸箱
    留言咨询
  • 高温三层夹层反应釜 400-860-5168转1513
    高温三层玻璃反应釜厂家技术1、由于玻璃反应釜采用的材料(GG17高硼硅玻璃)是拥有优良物料和化学性能。在变频调速的搅拌过程运转中会比较平稳,即使力矩大也不会产生火花。2、另外,组件采用四氟密封,在市场同类产品中可保持较好的真空度(一般在-0.095mpa左右),保持在工作状态下的高精度密封。而且还有磨屑收集槽。3、合金钢机械密封,聚四氟乙烯连接口,保持在工作状态下的高精度密封。4、Pt100传感器探头,测温精度高,误差小,有效提高工作效率5、聚四氟乙烯放料阀,可活动接口,出料彻底快捷。6、玻璃反应釜夹层的制冷或加热溶液在反应完毕后,能彻底排积,不积液7、整体不锈钢立柱移动式框架结构,五口反应釜盖,具回流、加液、测温等全套玻璃。8、强扭力,无噪声。采用的日本技术交流齿轮减速电机9、玻璃反应釜的双聚四氟乙烯搅拌桨,适用于低至高黏度液体的搅拌与混合。高温三层玻璃反应釜厂家简介: 实验室真空保温三层玻璃反应釜是常用的生化仪器,广泛地被现代精细化工,生物制药,科研实验等行业所选用,可在恒速,恒力,恒温的条件下做浓缩,蒸馏,回馏,分离,提纯反应,是教学,实验,中试,生产的理想仪器设备。产品可与循环水真空泵、隔膜真空泵、低温循环泵、循环冷却器、高温恒温循环器、低温冷却液循环泵、密闭制冷加热循环装置(又名:高低温循环装置)等配套组成系统装置。工作原理: 玻璃反应器内胆放反应物料,密闭状态下,常压或负压进行搅拌反应,其夹层可连通介质(冷冻液、加热水或加热油)做循环加热或冷却。双层玻璃反应器(电机采用全防爆电机,电器采用防爆电器箱、柜及本安化防爆处理)从而极大满足了现代生物、化学、制药等实验生产车间的防爆要求,达到Q/HA01—2005标准。 公司以科技创新,服务社会为宗旨,积极研究开发新产品,奉献于教育和科学,经过长期的研究开发和不断的技术积累,为化学、化工、生物、制药、高分子工程、电池、电子、钢铁、石油、机械、新材料等领域的科学研究和工业应用提供了精良装置
    留言咨询
  • 简介:三层玻璃反应器与夹套玻璃反应器相比,具有最外层以保持真空密闭状态。更有效的保护温度,从而节省反应时间,最终使您的研究更有效。对于现代精细化工厂、生物制药、新材料合成、环境分析、食品工业、学术研究和大学教学等,三层玻璃反应器是理想的仪器。三层玻璃反应釜优点:● 国内外我公司是更先进的,更理想实用,支撑架三重弹性设计,确保承担重负荷的反应操作,并兼容升位变换安全。● 采用高硼硅3.3玻璃材质,拥有优质的物理化学性能● 可在高温200℃至低温-80℃大温区使用● 先进变频调速, 变频控制器, 内部元件具有真空镀膜保护,耐腐蚀,可选择全防爆,安全可靠● 三层釜体,第一层为真空夹层釜体做保温 第二夹层为反映提供热,冷的满足。全透明反应瓶,可使反映过程一目了然● 聚四氟乙烯(PTFE)组件密封,特殊设计,可保持市场同类产品的最佳真空度(-0.098mpa左右),放料阀门可放出浓液和微量固体料。● 釜腔和夹套设计为没有死角,防腐蚀,无污染结构● 传热介质在反应结束后,能排除干净,无积液三层玻璃反应釜工作原理:1. 可提供低温装置,低温可达-80℃,满足您对低温-80℃的特殊研究要求,定制夹套实验室反应釜系统。2. 高温300℃,可配置油浴或电热套。3.采用UC系列闭式加热器,热量散失小,升温效果快,保温效果好。4. 真空,可配备真空泵和真空控制器,精确设定和控制真空度。5. 内层,中间层,外层,三层设计。三层玻璃反应器外层可保持真空密闭状态,用作保温层。因此,小的温度损失可以使您的研究样品在稳定的加热或冷却环境下进行反应。6. 搅拌密封塞采用“机械密封、动环、静环扣合原理",具有良好的密封性能,保护搅拌桨无磨损,无泄漏现象。保证您的研究过程在密封状态下进行,保证无泄漏,使您的实验保持高精度和小误差。7. 全不锈钢柱框架结构,不锈钢厚度≥1.5mm。轴承受力强,使用寿命长,使仪器工作状态稳定。8. 大扭矩电机,高粘度物料加工能力强,无噪音。9.高速均匀搅拌。10. 聚四氟乙烯搅拌桨适用于低粘度到高粘度液体的搅拌和混合。增加你可以选择的材料粘度范围。11.脚轮设计,你可以在任何地方进行搜索,只要这个地方有条件进行研究。三层玻璃反应器技术参数
    留言咨询

三层石墨烯相关的耗材

  • Nunc三层培养瓶
    ThermoScientificTM NuncTM三层细胞培养瓶 NunclonTMΔ表面 聚苯乙烯,已灭菌产品特色三个平行生长表面提供总面积为 500 cm2 的培养面积外尺寸为标准 175 cm2 的培养瓶适用于生产规模放大每个包装内部附有额外的瓶盖通过 NunclonTMΔ 认证使用长条 Code128 条形码标记订购信息132865-NunclonTM△三层细胞培养瓶,4个/包,32个/箱(原132867改为1个/包),瓶盖透气/密封,CS/32132867-NunclonTM△三层细胞培养瓶,瓶盖透气/密封,CS/32132913-NunclonTM△三层细胞培养瓶,瓶盖-过滤,条形码-,CS/32132935-NunclonTM△三层细胞培养瓶,4个/包,32个/箱(原132913改为1个/包),瓶盖-过滤,条形码-,CS/32132920-NunclonTM△三层细胞培养瓶,瓶盖-过滤,条形码+,CS/32132925-NunclonTM△三层细胞培养瓶,4个/包,32个/箱(原132920改为1个/包),瓶盖-过滤,条形码+,CS/32
  • 带GN-4 Metricel膜的滤膜套盒三层件
    预组装的三件套盒装,包含GN-4 Metricel膜盒支撑点,关键应用可选用加固盒,保证气密性,并且防止渗透盒破损。 可用于纤维(石棉尘)和空气中金属(例如铅)的空气监测(NIOSH方法7400盒7402) 也可以用于监测可吸入颗粒物,例如石英、金属和灰尘 尺寸:25mm×0.8um 品牌:PALL 描述:三层件带GN-4膜及支撑板 包装:50张/盒 尺寸: 25mm×0.8um
  • 带GN-4 Metricel膜的滤膜套盒三层件
    预组装的三件套盒装,包含GN-4 Metricel膜盒支撑点,关键应用可选用加固盒,保证气密性,并且防止渗透盒破损。 可用于纤维(石棉尘)和空气中金属(例如铅)的空气监测(NIOSH方法7400盒7402) 也可以用于监测可吸入颗粒物,例如石英、金属和灰尘 尺寸:25mm×0.8um 品牌:PALL 描述:三层件带GN-4膜及支撑板 包装:50张/盒 尺寸: 25mm×0.8um

三层石墨烯相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制