微生物细胞计

仪器信息网微生物细胞计专题为您提供2024年最新微生物细胞计价格报价、厂家品牌的相关信息, 包括微生物细胞计参数、型号等,不管是国产,还是进口品牌的微生物细胞计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微生物细胞计相关的耗材配件、试剂标物,还有微生物细胞计相关的最新资讯、资料,以及微生物细胞计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

微生物细胞计相关的厂商

  • 原能细胞科技集团由知名创业企业家瞿建国先生和上市公司开能健康(股票代码:300272)等于2014年创立,实收资本15亿元人民币。原能细胞总部位于上海张江国家科学城药谷核心区域拥有占地60多亩的原能细胞产业园、原能细胞科创园两大园区,同时也是上海张江细胞科技产业园的核心基地。原能细胞科技集团是创业老兵瞿建国先生在成功创办两家上市公司(老八股申华实业(600653)、创业板开能健康(300272)后再次创业,致力于“天下无穷人、地上无病人”的全民健康使命。 原能细胞科技集团下辖上海原能细胞生物低温设备有限公司、上海原能细胞医学技术有限公司、上海原能细胞库有限公司,围绕细胞生物产业构筑细胞生物低温设备、细胞医学技术与新药研发、细胞库等领域产业生态发展圈。原能细胞科技集团与海内外顶尖专家、中国一流研究型医院(复旦大学附属中山医院、上海交通大学附属仁济医院、上海市第一人民医院、海军军医大学附属长征医院等)、著名研究机构(中科院上海免疫所等)、生命科学院、著名生物研发药企等开展了多层面,多方式的合作,建有多个联合实验室和细胞治疗临床中心,开辟了细胞生物产业化发展新局面。 上海原能细胞生物低温设备有限公司是国家高新技术企业并获得ISO90001认证。公司致力于生物医学设备及系统国际前沿领域发展,集研发、设计、生产制造为一体,自主研发的全流程深低温、自动化、信息化、智能存储设备,实现超低温(-80度)、深低温(-196度)等温区全覆盖,实现生物样本与“活细胞”程序降温、冷链运输、存储、入库/出库等全流程自动化、智能化、信息化,广泛应用于分子临床转化医学中心、研究型医院样本中心、生物医药研发企业/CRO/CDMO、生命科学研究机构、大学生命科学院、医学院等。公司BSN系列设备(液氮自动化存储设备)获得CE 认证,BSN200项目获批2020年首批上海市高新技术成果转化项目。公司已申请PCT国际及国外专利、中国专利200+项,获得授权120+项、软件著作权多项。 公司与国际深低温生物顶尖专家等合作,建设业内唯一的低温生物冷冻技术平台,为低温设备研发、冻存技术研发等提供前沿核心技术保障。依托公司自动化、智能化、信息化、临床级低温存储设备及解决方案,原能细胞科技集团在张江细胞产业园打造了全国首家、国际领先的千万级临床“活细胞库”,掀开了细胞存储产业化新篇章。
    留言咨询
  • 西宝生物成立于1999年7月,是一家面向生命科学领域,从事科研机构及生产企业所需的各类试剂、仪器、耗材等的专业性公司。以生命科学科研及产业为中心,主要从事:分子生物学试剂、生化试剂、免疫试剂、生物制品、诊断试剂、药品、食品、精细与专用化学品、医用及实验室耗材、仪器设备等产品的推广应用和进出口服务。 李艳 13761298100 /021-50272976-6216/ QQ:2574946592优势代理品牌:美国聚合物标准品(APSC)-中国大陆独家授权代理商;日本和光纯药(wako)-中国官方授权代理商;日本日水Nissui培养基,美国MP,美国laysan,丹麦BioPorto;ChromaDex植物提取物标准品,TRC,sigma,Merck等。
    留言咨询
  • 上海蓝基生物科技有限公司1.供应各种试剂盒,有elisa试剂盒,质粒抽提试剂盒,生化试剂盒,各种神经肽放免试剂盒,免疫组化试剂盒,DAB染色试剂盒,荧光定量PCR试剂盒;2.供应各种抗体,有一抗、二抗,单克隆抗体,多克隆抗体,免疫组化抗体及免疫组化试剂盒及免疫组化相关试剂,WB抗体,荧光标记抗体,酶标记一抗二抗,生物素标记一抗二抗,单标多标抗体等等; 3.供应各种细胞及培养基,有sciencell原代细胞及配套培养基,内皮细胞,上皮细胞,神经元细胞,平滑肌细胞,脐静脉细胞,成纤维细胞,纤维原细胞,造骨细胞,干细胞,心肌细胞及配套专业细胞培养基,还有正常遗传变异细胞,肿瘤细胞,肿瘤耐药细胞及常用培养基等等; 欢迎来电来函咨询:021-65423863 65423776 65314745 65314744 潘小姐 15921525315 QQ:982625975 或 e-mail: elisakit@sohu.com or sales@lifescience.cc 或登陆网站: www.elisakit.cc or www.elisakit.cc
    留言咨询

微生物细胞计相关的仪器

  • 细胞工厂 细胞工厂是应用细胞生物学与分子生物学的理论和方法,在细胞培养过程中对细胞的生长速度、新陈代谢等监控,进行大规模的细胞和组织培养和观察的方法。 细胞工厂因可灵活地选择细胞培养的层数与培养面积,结构紧密,受污染风险低,使其在批量生产疫苗、单克隆抗体或制药工业等方面应用广泛。解决方案 因快速,低成本,自动化,简便操作等特点,长工作距离的细胞工厂显微监测系统,可实现细胞工厂多层培养皿中的细胞的快速观察监测。广泛应用于生物制药行业领域的细胞实时监测。建议配置显微镜:XDS-CF显微镜相机:2000万硬件加速相机;HDMI 2K高清显微相机目镜10X平场大视野目镜,视场数Ф22mm物镜(无限远长工作距离平场消色差物镜)类 型放大倍率数值孔径工作距离mm盖玻片厚度mm正常物镜4倍0.1281.210倍0.2519.41.220倍0.408.01.240倍0.603.51.2目镜筒45°倾斜,双目瞳距调节范围:53~75mm.调焦机构粗微动同轴调焦, 微动格值:2μm,粗动松紧可调,带锁紧和限位装置转换器四孔转换器载物台固定载物台尺寸:227mmX208mm 玻璃圆载物台板尺寸:Ф118mm专为细胞工厂加宽平台(左右各一片,各180mm)总尺寸227mmX568mm平台(选购件)机械式移动尺寸,移动范围:横向(X)114mm,纵向(Y) 77mm培养皿托板一86mm(宽)X129.5mm(长),可适配圆形培养皿Ф87.5mm培养皿托板二34mm(宽)X77.5mm(长),可适配圆形培养皿Ф68.5mm培养皿托板三57mm(宽)X82mm(长)聚光系统特长工作距离聚光镜,工作距离高度可调节,调节范围55mm-400mm照明系统9W S-LED照明(白光照明),亮度可调,亮度可调滤色片内置磨砂玻璃适配接口(选购)1倍或0.5X CCD适配接口成像系统(选购)USB输出:1800/2000万像素 显微相机成像系统HDMI输出:1080P2K/4K高清成像 显微相机成你系统成像效果1、操作简便,亮度可以连续调节、放大倍数可以在4-40X切换 2、观察空间大,可以放置1-20层细胞工厂培养系统,方便细胞工厂和常规培养皿的切换3、可以添加荧光光源,对细胞标记荧光成像更方便 应用领域1、生物制药2、疫苗研发生产3、细胞治疗典型案例
    留言咨询
  • QUANTOM Tx&trade 微生物细胞计数仪是一种基于图像的自动细胞计数装置,可在不到30秒的时间内,扫描多达10个视野,产生精确的单个细菌细胞计数,满足不同形状、大小和排列方式的各种细菌的计数需求。产品亮点产品亮点说明快速显示结果几分钟后显示结果无需培养准确的结果客观且没有不同使用人之间的计数结果的波动 无需基于对菌落形成单位或浊度方面的估算单细菌检测不需要考虑细胞的形状、大小或排列状态;先进的细菌细胞计数软件总细胞数和活细胞数计数更为准确的荧光染色法细菌计数;多视野图像采集与分析技术参数物理特性设备类型台式细菌细胞计数仪触摸屏1280 x 800像素尺寸43.3 × 31.0 × 22.5 cm (17.0 × 12.2 × 8.8 inch)重量10.8kg(23.9 lb)技术参数细胞检测方法自动荧光显微镜处理时间约30s(捕获和分析10张图像)样品浓度范围2 x 10⁵ to 1 x 10⁹ cells/mL (最佳: 1 x 10⁶ to 5 x 10^8 cells/mL)单元格大小范围0.3~50 μm样品体积加载体积:5~6μL,测量体积:0.09μL(10张图像)
    留言咨询
  • 生物细胞实验室破壁机,细胞粉碎用破壁机,高剪切细胞匀浆机希德SID生物医药工业破碎机是一款专为制药、基因研究、组织破碎、细胞浆化、病理分析、乳品均质、聚合反应等实验与生产领域而研发的全新产品;具有操作方便、性能优越、噪音低、可无极变速控制且适合长时间运转等特点。所有的分散刀头都是可更换的且方便清洗灭菌。LD系列生物医药工业破碎机适合医药、化工、化妆品、食品等工程及制药等行业使用LD系列的标准处理量有0.5L,1L,2L,5L,10L。能在真空或压力环境下,实现物料的分散、乳化、均质、混合等工艺过程。可配备多种高效宏观搅拌器,高剪切均质乳化机以及可靠的真空密封系统和温控系统,多种传感检测系统能在实验室环境模拟工业化生产。是常规成套实验室设备的蕞好选择,符合成套设备的所有模拟条件。(洽谈:) 以下是设备选型表:型号LD-1LLD-2LLD-5LLD-10L电源220V/50/60HZ蕞小搅拌量300ml500ml1000ml3000ml蕞小乳化量500ml1000ml2000ml5000ml蕞大处理量1000ml2000ml5000ml100000ml蕞高工作温度120°(可选配250℃配置加热方式水浴、油浴循环可达真空-0.096Mpa(正压可选)蕞大处理粘度70000CP(130000CP超高粘度可选)搅拌机功率120W120W180W180W搅拌机转速0-200rpm(超高转速可选)桨叶配置锚式刮壁搅拌桨(螺带式可选)刮板材质硅橡胶(PTFE硬刮壁可选)乳化均质机功率500W500W1050W1050W乳化均质机转速10000~28000rpm5000~25000rpm乳化工作头型号20BCS20BCS25BCS30BCS反应釜盖开口均质机口+投料口+测温口+真空口+3个备用扣支架升降方式电动升降(手动选配)支架升降形成230mm230mm280mm280mm接触物料材质SUS316L不锈钢+PTEF+硅硼玻璃夹层容器反应釜体材质硅磞玻璃夹层容器(SUS316L不锈钢容器可选)真空口外径10mm生物细胞实验室破壁机
    留言咨询

微生物细胞计相关的资讯

  • 张学礼:合成生物学促进微生物细胞工厂构建
    细胞工厂操作系统 图片来源:百度图片  自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。  如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。  生物制造瓶颈  石油资源是目前运输燃料和整个化工产业的基础。然而,石油资源是不可再生的,并且以其为基础的化工炼制是一个高能耗、高污染的过程。  而从另一个角度看,天然产物在药物开发方面有着广泛的应用,很多产物具有抗肿瘤、消炎、抗寄生虫、抗氧化防衰老等功效,一直是新药来源的重要组成部分。  天然产物的生产目前主要从药用植物中直接提取分离。然而,植物生长周期长、产物含量低,导致这种生产方式对野生植物资源造成严重破坏。  如何以一种可持续、绿色清洁的方式生产燃料、大宗化学品和天然产物,对于保障社会经济可持续发展至关重要。  生物质是一种可再生的清洁资源。通过生物制造技术,生物质可以被转化为燃料、大宗化学品和天然产物,从而替代石油化工炼制和植物资源提取。生物制造的核心技术是构建高效的微生物细胞工厂,将生物质原材料转化为各种终端产品。  然而,自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。  如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。  合成生物学助力  合成生物学技术的发展极大地提升了细胞工厂的构建能力。通过以下四个方面的改造,可以快速构建出生产各种化学品的高效细胞工厂:  最优合成途径的设计:生产目标化学品的合成途径可能不存在于单一生物中,通过计算机模拟设计,可以将不同的生化反应组装到一个细胞中,形成一条完整的合成途径。在此基础上,根据基因组代谢网络和调控网络模型,设计出目标化学品的最优合成途径,使其合成过程中能量供给充足、氧化还原平衡,碳代谢流最大程度地流入产品合成。另一方面,自然界中可能不存在某步关键的生化反应,导致合成途径不能被打通。通过计算机模拟设计,可以人工合成出一个全新的蛋白,使其催化该步生化反应,从而进一步拓展化学品的合成种类。  合成途径的创建:目标产品合成途径由一系列生化反应及相关的编码基因组成,其中某些基因是外源生物的。传统的PCR(聚合酶链式反应)扩增方法周期长,而且很多外源基因在宿主细胞中的表达及翻译效率很低。DNA合成技术的发展很好地解决了这一问题。基于芯片的高通量、高保真DNA合成技术显著降低了合成时间、合成成本和错误率 单个酶的大量合成和高通量筛选相结合,能有效解决外源基因的表达和翻译问题。另外,标准化的结构元件和调控元件文库,如启动子、核糖体结合位点和信使RNA稳定区文库,为合成途径的创建提供了坚实的物质基础。多片段DNA组装技术,如酵母体内同源重组技术,则能快速高效地实现功能模块组装和合成途径创建  合成途径的优化:合成途径创建完之后,通常效率都很低,远远达不到产业化生产的要求,因此需要对合成途径进行优化,提高其效率。高效的合成途径很多时候不仅仅只受限于某个单一的限速反应步骤,而且需要多个酶的协同平衡。基于标准化调控元件文库,可以对合成途径各个基因的表达进行精确调控,从而获得多个基因协调表达的状态。多重基因组自动改造技术则可以同时对染色体上的多个基因进行改造,结合高通量筛选技术,可以快速高效地鉴定出最优的调控组合。另外,通过人工合成的蛋白骨架,既可以使合成途径相邻的两个酶聚集在物理空间比较近的区域,提高两个生化反应的速率,也可以获得这些酶的最优组合比例。  细胞生产性能的优化:合成途径优化完之后,可以获得一个初步的人工细胞。需要进一步提高人工细胞的生理性能和生产环境适应能力,才能将其转变为实际生产可用的细胞工厂。进化代谢和全局扰动等技术的发展可以有效地提高细胞的生产性能。在此基础上,使用各种高通量组学分析技术可以解析细胞性能提升的遗传机制,并可用于新一轮细胞工厂的构建。  产业化初见成效  使用上述的合成生物学技术,科学家们成功构建出一系列高效的细胞工厂。在燃料化学品方面,生产长链醇(丙醇、异丁醇、异戊醇)、脂肪酸酯、脂肪醇、烷烃、烯烃等燃料的细胞工厂相继面世。  另外,利用二氧化碳和钢厂废气为原料生产乙醇、脂肪醇等燃料的细胞工厂也被成功开发。在大宗化学品方面,科学家们成功开发出生产C3(乳酸、聚乳酸、1,3-丙二醇、1,2-丙二醇、3-羟基丙酸、丙烯酸、丙氨酸)、C4(丁二酸、苹果酸、富马酸、1,4-丁二醇、异丁烯、丁二烯)、C5(异戊二烯、戊二胺、戊醇、木糖醇)和C6(己二酸、葡萄糖酸、甘露醇)等化学品的细胞工厂,其中很多已实现产业化生产,并被进一步用于塑料、纤维、尼龙、橡胶等一系列终端产品的生产。  在天然产物方面,生产青蒿素、紫杉醇、银杏内酯、丹参酮、吗啡、白藜芦醇、莽草酸、番茄红素、虾青素、辅酶Q10等产物及其关键前体化合物的细胞工厂也被成功开发。  随着合成生物学各种新技术的不断发展,微生物细胞工厂的构建技术也将越发完善。其必将极大地推动石油化工制造和药物生产的产业升级,为人类社会的可持续发展作出巨大的贡献。
  • 生物量监测在微生物(细胞)培养条件优化的应用
    上一篇推文,介绍了WIGGENS的CGQ生物量在线监测系统,在微生物(细胞)效能评价/菌种筛选的应用。 本期介绍生物量监测在微生物(细胞)培养条件优化中的应用。培养基为微生物(细胞)的生长提供环境条件以及碳源,氮源,生长因子等。培养基具有通用性,但每种培养物都有特殊性。在通用培养基的基础上针对培养物的特性做适当的调整或成分添加,对目的产物的高效产出,具有重要正作用。 下图是德国法兰克福歌德大学,使用CGQ生物量监测系统对Saccharomyces cerevisiae (一种酿酒酵母)在不同碳源组分中的生长曲线。 三种碳源Glc(葡萄糖)、Gal(半乳糖)、Mal(酰胺)不同浓度对酿酒酵母的生长有着明显的影响,对迟缓期和对数期的影响显著。碳源各组分浓度不同,对酿酒酵母进入平台期的时间甚至有超过6小时的差距影响。这对注重效率的工业发酵来说,减少迟缓期的时间段,有着重要的参考意义。 下图是,在M9培养基中,通过加入不同浓度的甘油,Escherichia coli (大肠杆菌)的生长曲线 从上图大肠杆菌的生长曲线可以看出,在M9培养基中,甘油浓度是对大肠杆菌最终生长量的最大影响因素。0.4%的甘油浓度对比0.1%的甘油浓度,对数生长期有明显提升,最终得到的生物量也是低浓度甘油的4倍以上。 下图是通过培养过程的摇瓶补液,CGQ进行的实时生物量监测。 在大肠杆菌培养中,通过LIS摇瓶补液系统,在摇瓶培养过程中进行在线补入缓冲液,缓冲液对pH值进行了调节。在使用LB培养基培养大肠杆菌的过程中,对生物量的限制的最大因素不是培养基组分,而是pH值,持续的进行pH调节,可以有效的增加生物量,提高培养基的利用率。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamicacidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).
  • 共探单细胞技术在微生物领域发展,长光辰英第二届微生物功能单细胞分离研讨会在杭州顺利召开
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/ec296395-275f-46fc-bea1-5b15c8fc0771.jpg" title="image001.jpg" alt="image001.jpg"//pp style="text-align: justify text-indent: 2em "strong仪器信息网讯 /strong2020年12月22日,由长春长光辰英生物科学仪器有限公司分公司长光辰英(杭州)科学仪器有限公司主办的“2020年第二届微生物功能单细胞分离研讨会”在杭州顺利召开。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/1ea571b9-7b49-4024-8683-59d48132155a.jpg" title="合影 单细胞02.jpg" alt="合影 单细胞02.jpg"//pp style="text-align: justify text-indent: 2em "本次会议以“微生物拉曼分选技术与应用”为主题,以科学性、专业性、前瞻性为特色,汇聚了来自北京、广州、上海、江苏、南京等地的微生物领域知名专家学者与青年学生六十余人。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3eca1e8a-a8f1-4b15-96ff-058dcecea113.jpg" title="image003.jpg" alt="image003.jpg"//pp style="text-align: justify text-indent: 2em "会议深入探讨了单细胞技术在微生物领域的最新研究成果及应用需求与前景,旨在进一步推动单细胞技术及国产高端光学装备在微生物研究领域的创新应用,促进科研成果转化。/pp style="text-align: justify text-indent: 2em "会议开始,上海交通大学特聘教授、中国微生物学会环境微生物学专业委员会主任周宁一教授进行了精彩的开幕致辞,并围绕“环境微生物学研究进展与存在的问题”做了大会主旨报告。在环境微生物研究中,传统方法(如培养法、宏基因测序等)存在一定的局限性,单细胞技术可逐一表征微生物细胞在其原生微生物群落中的特性,为研究未/难培养微生物提供了一种新方法。周宁一教授回顾了自首届微生物功能单细胞分离研讨会(2019年6月)以来,多个研究团队应用单细胞拉曼光谱技术与可视化分选技术的最新研究成果,认为在单细胞层面对微生物群落进行研究将是未来的重要科研方向。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/6be1efe8-3d26-4a8b-8260-1277e4bb7713.jpg" title="image004.jpg" alt="image004.jpg"//pp style="text-align: center text-indent: 0em "周宁一教授开幕致辞/pp style="text-align: justify text-indent: 2em "会议学术报告环节分别由南京农业大学生命科学学院院长蒋建东教授及上海交通大学唐鸿志教授主持。广东省微生物研究所杨永刚研究员、浙江大学沈超峰副教授、复旦大学全哲学教授、中科院长春光机所李备研究员、浙江大学吕镇梅教授、中科院苏州生物医学工程技术研究所宋一之研究员、中国水产科学研究院东海水产研究所迟海副研究员分别作了精彩的学术报告,分享了各自的研究进展及所在领域对单细胞技术的应用需求,引起了与会者的热烈交流与讨论。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/ec0449eb-f231-4a9c-91b6-f6803362d802.jpg" title="image005.jpg" alt="image005.jpg"//pp style="text-align: center "span style="text-indent: 0em "蒋建东教授主持学/spanspan style="text-indent: 0em "术报告/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/efe09b16-1349-4cd5-bb5a-930852eba356.jpg" title="image006.jpg" alt="image006.jpg"//pp style="text-align: center text-indent: 0em "唐鸿志教授主持学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/0f1204c5-3c23-4261-af9f-15720b2bd03c.jpg" title="image007.jpg" alt="image007.jpg"//pp style="text-align: center text-indent: 0em "杨永刚研究员做题为《胞外电子传递功能菌的单细胞示踪和挑选》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/c9ef28d0-5a24-4c1d-9408-bbf232fc1e39.jpg" title="image008.jpg" alt="image008.jpg"//pp style="text-align: center text-indent: 0em "沈超峰副教授做题为《基于拉曼光谱分析休眠状态下的多氯联苯降解菌》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/95470f83-d423-43ef-9743-dea80b5e6750.jpg" title="image009.jpg" alt="image009.jpg"//pp style="text-align: center text-indent: 0em "全哲学教授做题为《基于拉曼光谱技术在微生物学研究中的应用》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/8a8c8e62-113f-4159-9608-b3212913967e.jpg" title="image010.jpg" alt="image010.jpg"//pp style="text-align: center text-indent: 0em "吕镇梅教授做题为《污染物降解混合菌群中功能菌的发现与分选》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/a1b431f9-30ca-4e26-b38a-34ec9feca4bc.jpg" title="image011.jpg" alt="image011.jpg"//pp style="text-align: center text-indent: 0em "宋一之研究员做题为《单细胞表型分析与分选在微生物研究中的应用》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/dd8c68a8-45f6-4540-b3d3-fc6957bf749b.jpg" title="image012.jpg" alt="image012.jpg"//pp style="text-align: center "span style="text-indent: 0em "迟海副研究员做题为《水产品中副溶血性弧菌快速检测技术研究》的学术报告/span/pp style="text-align: center"br//pp style="text-align: justify text-indent: 2em "会上,李备研究员介绍了单细胞拉曼分选技术在微生物领域中的作用与意义,重点介绍了自主研制的拉曼分选系统在病原菌鉴定、微生物代谢监测、肠道菌群分析、深海微生物的原位观测等方向的应用进展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/429e94b6-e9a4-4158-9974-9f9a2a9eded0.jpg" title="image013.jpg" alt="image013.jpg"//pp style="text-align: center text-indent: 0em "李备研究员做题为《拉曼光谱技术在微生物学研究中的应用》的学术报告/pp style="text-align: justify text-indent: 2em "在随后开展的圆桌讨论环节中,各位专家学者围绕对单细胞拉曼分选的个性化需求、单细胞分选在环境微生物领域的实际应用价值、微生物拉曼数据库构建的方式及意义、共聚焦三维成像在微生物研究中的应用需求等具体问题进行了深入探讨,指出了微生物领域对单细胞研究技术的共性需求,认为免标记单细胞原位识别技术与适应微生物单细胞形态特征(尺寸小、形态各异等)的分离技术的缺乏,是目前微生物单细胞研究领域的限制因素。将共聚焦拉曼光谱系统与可视化单细胞精准分选系统相结合,对接后续微生物单细胞培养组、基因组、代谢组等研究,将为复杂环境下微生物生态、菌群互作、代谢机制及功能研究提供有力工具。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/fe99a60c-569a-4937-850f-c610e746958b.jpg" title="image014.jpg" alt="image014.jpg"//pp style="text-align: center text-indent: 0em "圆桌会议讨论/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9b851baa-b912-47a1-9783-006a06725222.jpg" title="image015.jpg" alt="image015.jpg"//pp style="text-align: justify text-indent: 2em "会议茶歇环节,与会者参观并试用了辰英科仪的单细胞领域系列产品,包括可视化单细胞分选仪、拉曼单细胞分选仪、超快共聚焦三维成像系统等。工作人员重点讲解了仪器性能、优势以及应用方案,并针对来宾关注的问题进行了现场解答,得到了到场专家及同学们的一致好评。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/341de611-dbe6-411b-abff-3003eea43ae7.jpg" title="image016.jpg" alt="image016.jpg"//pp style="text-align: center text-indent: 0em "辰英科仪副总李文杰向专家介绍仪器/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/3a57c3a7-fedc-4ef9-88f3-2be0cb7e5778.jpg" title="image017.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/6b4139da-8dc5-4be2-b30d-efe413118d6a.jpg" title="image018.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/bb45fa5b-c11a-4b7a-ab63-763dbb9db6ef.jpg" title="image019.jpg"//pp style="text-align: justify text-indent: 2em "未来,单细胞拉曼分选技术与应用研讨会将陆续在其他省份举办,届时欢迎更多各领域的专家学者参与到大会研讨中来,共同推进前沿光学技术与生物应用的创新融合。希望各位专家老师给予我们更多的意见与支持,辰英科仪将始终致力于国产原创性生物医学高端仪器的研发与制造,为探索生命科学提供有力工具,为共同推动人类健康事业发展贡献力量。/pp style="text-align: justify text-indent: 2em "strong关于长光辰英(杭州)科学仪器有限公司/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/309fe1e5-616e-4e1f-b087-0f8c3baba387.jpg" title="image020.jpg" alt="image020.jpg"//pp style="text-align: justify text-indent: 2em "长光辰英(杭州)科学仪器有限公司成立于2020年11月18日,是由辰英科仪与杭州长光产业技术研究院联合创办的企业,注册资金3000万。/pp style="text-align: justify text-indent: 2em "辰英(杭州)将建设单细胞创新技术平台,为长三角及全国的科研工作者提供前沿单细胞系列装备及技术服务。/p

微生物细胞计相关的方案

微生物细胞计相关的资料

微生物细胞计相关的论坛

微生物细胞计相关的耗材

  • 百欧博伟生物 Capan-1 人胰腺癌细胞
    百欧博伟生物 Capan-1 人胰腺癌细胞 一、细胞简介平台编号:bio-106177拉丁属名:Capan-1(人胰腺癌细胞)规格:1ml/T25细胞名称:人胰腺癌细胞种属:人源细胞系/甲状腺、胰腺、垂体、肾上腺、扁桃体、胸腺到货周期:10-15个工作日细胞用途:仅供科研使用。注意事项:仅用于科学研究或者工业应用等非医疗目的,不可用于人类或动物的临床诊断或治疗,非药用,非食用。 二、细胞介绍该细胞来源于一位40岁白人男性患者的肝转移。细胞表达粘液素,Rh+, HLA A2,,A9,B13,B17。含有刺激素受体和乙二醇激素受体。 三、细胞特性1)来源:胰腺癌,肝转移2)形态:上皮细胞样,贴壁生长3)含量:1x106 个/mL4)污染:支原体、细菌、酵母和真菌检测为阴性5)规格:T25瓶或者1mL冻存管包装 四、细胞接受后的处理:1)收到细胞后,请检查是否漏液,如果漏液,请拍照片发给我们。2)请先在显微镜下确认细胞生长状态,去掉封口膜并将T25瓶置于37℃培养约2-3h。3)弃去T25瓶中的培养基,添加6ml本公司附带的完全培养基。4)如果细胞长满(90%以上)请及时进行细胞传代,传代培养用6ml本公司附带的完全培养基。5)接到细胞次日,请检查细胞是否污染,若发现污染或疑似污染,请及时与我们取得联系。 五、本公司的细胞培养操作规程,供参考1、培养基及培养冻存条件准备:1)准备IMDM培养基(IMDM,GIBCO,货号C12440500BT),80%;优质胎牛血清,20%。 。2)培养条件: 气相:空气,95%;二氧化碳,5%。 温度:37℃,培养箱湿度为70%-80%。3)冻存液:90%血清,10%DMSO,现用现配。液氮储存。2、细胞处理:1)复苏细胞:将含有1mL细胞悬液的冻存管迅速放入37℃水浴中(水面要低于冻存管盖部)摇晃解冻,移入事先准备好的含有4mL培养基的15ml离心管中混合均匀。在1000RPM条件下离心4分钟,弃去上清液,加入1mL培养基后吹匀。然后将所有细胞悬液移入含有5ml培养基的培养瓶中培养过夜。第二天换液并检查细胞密度。2)细胞传代:如果细胞密度达80%-90%,即可进行传代培养。 对于贴壁细胞,传代可参考以下方法:1、弃去培养上清,用不含钙、镁离子的PBS润洗细胞1-2次。2、加2ml消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于37℃培养箱中消化1-2分钟,然后在显微镜下观察细胞消化情况,若细胞大部分变圆并脱落,迅速拿回操作台,轻敲几下培养瓶后加入3ml此细胞的培养基终止消化。3、轻轻吹打后吸出,移入15ml离心管中,在1000RPM条件下离心4分钟,弃去上清液,加入1mL培养液后吹匀。4、移入到事先准备好的含有5ml培养基的T-25培养瓶中或含有14ml培养基的T-75培养瓶中培养。3)细胞冻存:待细胞生长状态良好时,可进行细胞冻存。贴壁细胞冻存时,先要消化处理并进行细胞计数。消化方法按照细胞传代方法的1-3步骤进行,最后的重悬液使用血清。悬浮细胞直接计数后离心,用血清重悬浮,加DMSO至最终浓度为10%。加入DMSO后迅速混匀,按每1ml的数量分配到冻存管中。本公司按每个冻存管细胞数目大于1X106个细胞冻存。 六、运输和保存:可选择干冰运输及发送复苏存活细胞方式:(1)干冰运输,收到后立即转入液氮或者-80 度冰箱冻存或直接复苏;(2)存活细胞,收到后应继续生长,传代达到细胞生长状态良好时,再进行冻存。具体操作见细胞培养步骤。收到细胞后请拍照,3 天内如果发现污染,请及时拍照与我们联系。 七、注意事项:1、收到细胞后,若发现干冰已挥发干净、冻存管瓶盖脱落、破损及细胞有污染,请立即与我们联系。2、所有动物细胞均视为有潜在的生物危害性,必须在二级生物安全台内操作,并请注意防护,所有废液及接触过此细胞的器皿需要灭菌后方能丢弃。 中国微生物菌种查询网自设细胞系板块,是细胞株提供中心,专业提供代次低、周期短、活性好的细胞株。与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 华龛生物 细胞外泌体
    外泌体(Exosomes)是细胞外囊泡的一种,粒径大小在 30-150nm。目前主要应用于疾病治疗、药物载体、疾病诊断等。• 华龛生物生产的3D ExoTrix细胞外泌体产品在3D仿生培养环境中获得,质量高,产量大• 采用自动化、规模化、标准化的3D FloTrix干细胞大规模扩增培养工艺实现封闭式培养、自动化收集,单批次可实现1013个外泌体收获,同时避免了人工操作增加染菌风险• 外泌体高表达TSG101、CD81和CD63,电镜结果显示外泌体结构完整,为经典外泌体结构
  • 华龛生物 细胞外泌体
    外泌体(Exosomes)是细胞外囊泡的一种,粒径大小在 30-150nm。目前主要应用于疾病治疗、药物载体、疾病诊断等。• 华龛生物生产的3D ExoTrix细胞外泌体产品在3D仿生培养环境中获得,质量高,产量大• 采用自动化、规模化、标准化的3D FloTrix干细胞大规模扩增培养工艺实现封闭式培养、自动化收集,单批次可实现1013个外泌体收获,同时避免了人工操作增加染菌风险• 外泌体高表达TSG101、CD81和CD63,电镜结果显示外泌体结构完整,为经典外泌体结构
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制