溴化铁

仪器信息网溴化铁专题为您提供2024年最新溴化铁价格报价、厂家品牌的相关信息, 包括溴化铁参数、型号等,不管是国产,还是进口品牌的溴化铁您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溴化铁相关的耗材配件、试剂标物,还有溴化铁相关的最新资讯、资料,以及溴化铁相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

溴化铁相关的资料

溴化铁相关的论坛

  • 【资料】学习氯化铁

    【资料】学习氯化铁

    [img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911152359_184668_1610969_3.jpg[/img][color=#DC143C]氯化铁[/color]物质的理化常数  国标编号 81513   CAS号 7705-08-0   中文名称 三氯化铁   英文名称 Ferric trichloride;Ferric chloride   别 名 氯化铁   分子式 FeCl3 外观与性状 黑棕色结晶,也有薄片状   分子量 162.21 沸 点 319℃   熔 点 306℃ 溶解性 易溶于水(溶液呈棕黄色),不溶于革油,易溶于甲醇、乙醇、丙酮、乙醚   密 度 相对密度(水=1)2.90;相对密度(空气=1)5.61 稳定性 稳定   危险标记 20(酸性腐蚀品) 主要用途 用作饮水和废水的处理剂,染料工业的氧化剂和媒染剂,有机合成的催化剂和氧化剂对环境的影响  一、健康危害  侵入途径:吸入、食入、经皮吸收。  健康危害:吸入本品粉尘对整个呼吸道有强烈刺激腐蚀作用,损害粘膜组织,引起化学性肺炎等。对眼有强烈腐蚀性,重者可导致失明。皮肤接触可致化学性灼伤。口服灼伤口腔和消化道,出现剧烈腹痛、呕吐和虚脱。  慢性影响:长期摄入有可能引起肝肾损害。  二、毒理学资料及环境行为  急性毒性:LD50 1872mg/kg(大鼠经口)  危险特性:受高热分解产生有毒的腐蚀性气体。  燃烧(分解)产物:氯化物。与其他物质的反应  三氯化铁和铁反应,生成氯化亚铁  2FeCl3+Fe=3FeCl2  三氯化铁作腐蚀液  Cu+2FeCl3=CuCl2+2FeCl2  三氯化铁与苯酚发生显色反应三氯化铁溶液制Fe(OH)3胶体  实验室将饱和的三氯化铁溶液滴入沸水中来制备Fe(OH)3胶体  反应方程式  FeCl3+3H2O = Fe(OH)3(胶体)+3HCl 反应条件为加热。

  • 【讨论】测氧化铁红中铅含量前的处理

    [align=left][b]氧化铁通常指三氧化二铁,化学式Fe[sub]2[/sub]O[sub]3[/sub],分子量159.69,棕红色粉末,俗称铁红。密度5.24g/cm[sup]3[/sup],熔点1565℃。不溶于水,不与水反应。跟酸反应,生成铁盐。在高温下可被氢气、一氧化碳等还原成铁。用作颜料、抛光剂、催化剂等。灼烧硫酸亚铁或氢氧化铁制得。 应用领域 涂料工业用于制造防锈底该。橡胶工业用作轮胎、三角带等橡胶制品的着色剂。建筑工业与水泥一起用于制作人造大理石、地面水磨石。也用作塑料、石棉、人造革、皮革揩光浆等的着色剂和填充剂。还用于五金器材、光学仪器和玉器材料的抛光。化学工业中作为催化剂和其它含铁产品的原料。另外,还是电子、电讯工业制造磁性材料铁氧体元件的重要原料。我用的是0.07mol的盐酸处理的[/b][/align]

  • 【求助】关于氯化铁

    我想请问大家,我们没有氯化铁药品,现在需要急用氯化铁溶液,可是我们只有二氯化铁药品,我想请问有没有什么办法将二氯化铁用于三氯化铁呢?

溴化铁相关的方案

溴化铁相关的资讯

  • 比起传统电气化铁路,氢能轨道交通赢麻了
    近年来,随着新能源在轨道交通的应用兴起,氢能正成为轨道交通领域备受关注的技术“新秀”。业内人士普遍认为,当前,在轨道交通清洁化需求、政策支持等因素推动下,氢能轨道交通正持续升温。满足降碳需求“氢能轨道交通采用氢能源作为动力,从全产业链角度来看,更加低碳环保。”四川荣创新能动力系统有限公司董事长陈维荣在2023世界氢能青年科学家论坛上指出,“据测算,一列时速160公里的氢能源市域动车,一天跑500公里,一年大概可以减少1万多公斤二氧化碳的排放,减碳效果显著。因此,氢能轨道交通是我国交通领域实现‘双碳’目标的重要手段之一。”氢能巨大的减碳潜力也获得了更多的政策支持。目前,成都、佛山、张家口、青岛等地在“十四五”规划中明确提出,要把有轨电车、城际交通纳入氢能应用范围中。竞争优势明显陈维荣指出,氢能轨道交通的核心是以氢能为动力系统,由于避免了传统电气化铁路的接触网、变电所等复杂工程问题,氢能轨道交通的一次性建设成本和全寿命周期运营成本,比传统电气化铁路成本低10%—20%,有很好的竞争优势。“目前,氢燃料电池已开始在乘用车、客车、物流车等当中推广应用,由于需要布局更多加氢站,短期内难以大规模商业化。相比而言,轨道交通系统的线路相对固定,让氢气的运输和储存更简单。”陈维荣表示。基于上述应用优势,目前国内外都在积极推进氢能轨道交通的研究和应用。国内氢能轨道交通发展持续加快,以中国中车、国能集团、中国中铁为主的相关企业瞄准能源转型方向,加快推动燃料电池在氢能轨道交通领域的应用。2023年6月,“宁东号”氢动力机车在中国中车下线,这是目前氢燃料电池装机功率最大的氢动力机车,也是国内首台由内燃机车改造而来的氢动力机车;同年7月,国内首台氢能源地铁施工作业车在湖北襄阳正式下线,与传统燃油作业车相比,该车全生命周期可累计减少碳排放225吨。国际范围内,法国阿尔斯通、德国西门子、日本丰田等公司都在研发氢能轨道机车;英国和德国等欧洲国家计划在2035年逐步将现有内燃机车替换为氢能机车;马来西亚已完成38列氢能智轨车的全球招标;印度发布了35列氢能列车的招标计划等,这些都为氢能轨道交通发展带来更多机遇。
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • Nature:原位TEM研究氧化铁介晶形成!
    定向附着结晶使粒子沿着特定的晶体方向排列,产生像单晶体一样衍射的介晶。传统观点认为成核提供了粒子的供应,这些粒子受有吸引力的粒子间势的影响,通过布朗运动聚集。介晶通常表现出规则的形态和均匀的大小。尽管许多晶体系统形成介晶,并且个体的附着事件已经被直接可视化,但是随机的附着事件如何导致良好的自相似形态仍然是未知的。基于此,美国西北太平洋国家实验室James J. De Yoreo教授利用原位透射电子显微镜(TEM)和“冷冻观察”TEM,研究了氧化铁介晶形成,这是自然环境中重要的胶体相,以及形成普遍的前驱相并经历颗粒附着结晶(CPA)伴随相变系统经典例子。作者原位跟踪了在草酸盐(Ox)存在的情况下赤铁矿(Hm)中晶体的形成。发现孤立的Hm粒子很少出现,但一旦形成,覆盖在ox表面上的界面梯度驱动Hm粒子在距离表面大约两纳米的地方重复成核,然后附着在表面,从而产生介晶。原位TEM追踪晶体形成作者首先研究了一种由低结晶的两线铁氧体(Fe2O3xH2O, Fh) 聚集而成的前体,在约1.5 Å和2.5 Å处表现出两个典型的弥散环(图1a)。在不添加添加剂的情况下,在10小时内形成具有多面的Hm (Fe2O3)单晶(图2a-c)。然而,在加入2mm的草酸钠(NaOx)后,两小时后,Fh聚集体中出现了纺锤形的Hm中晶体(图1b)。到10h,所有的Fh消失,只剩下Hm介晶(图1c,图2d-f)。低温透射电子显微镜(cryo-TEM)在相同的时间点进一步验证了这些结果(图3)。高分辨率透射电镜(HRTEM)显示所有纺锤均由结晶排列Hm粒子组成(图1 d-f),并沿[001]轴伸长(图2)。横断面透射电镜(图4),以及切片样品的三维(3D)断层扫描证实了纺锤状微观结构,并显示了许多纳米级孔隙。主轴的尺寸分析表明,一次颗粒的尺寸从2 h时的3.5 nm(图1d)增加到10 h时的6.5 nm(图1e),到200 h时长到9.5 nm(图1f)。纺锤长度与宽度的曲线图显示恒定的长宽比为2.15± 0. 08,证明了纺锤体主轴的生长具有确定性。此外,即使前12小时纺锤体的平均长度和宽度都增加,之后则减少,这种一致性也保持不变 (图1 g, h)。与长宽比相比,主轴的尺寸在任何给定时间都有很大的变化。例如,在3.5小时,主轴长度在40-140 nm之间变化。这个大约四倍大小的排列反映了新纺锤体的缓慢但持续的诞生。尽管如此,纺锤体呈现出一种特征性的大小,而不是幂律大小分布(图2)。分析还表明,纺锤体的发育经历了两个阶段:第一阶段纺锤体的长度、宽度和颗粒数都有所增加 在第二阶段,纺锤体尺寸减小,但平均一次颗粒尺寸继续增大,可识别颗粒总数减少(图1i),暴露的颗粒缓慢长大(图1i),并形成小平面(图1e,f)。从第一阶段到第二阶段的转变与Fh的消失有关(图1c,i)。这些结果表明,第一阶段主要由纺锤体生长控制,而第二阶段主要由溶液中的颗粒粗化控制,溶液中的颗粒相对于Hm处于平衡状态,且没有Fh。图1 Fh纳米粒子形成纺锤形Hm介晶图2 菱形Hm与纺锤形Hm的表征图3 90°C下Fh生长纺锤形Hm介晶的低温TEM研究图4 Hm主轴横截面的TEM成像为了跟踪Fh和Hm的时间演化,使用了一种“冷冻观察”的方法,即将Fh置于TEM网格,并随时间对其进行成像。将载有Fh的网格置于含Ox的90°C溶液中然后在数小时后用TEM在相同区域成像(图5a,图6)。观察到Fh最初由大团聚体组成(图5b),当第一个Hm颗粒开始出现时,其整体形态在3h后保持不变,仅位于Fh团聚体中(图5c)。考虑到溶液必须与Fh平衡,Hm的存在仅与Fh相关,这意味着初始Hm颗粒必须通过Fh的直接转化或Fh/溶液界面的异相成核形成。对Hm颗粒的进一步探究表明,它们呈半纺锤形,所有半纺锤都指向溶液,而不是Fh聚集体(图5d)。HRTEM(图5e, f)显示,主要的Hm粒子在晶体上是同轴的(图5f,插图,快速傅里叶变换(FFT)模式)。如果Hm纺锤是通过Fh的直接添加而生长的,然后Fh转化为Hm,可以预期,纺锤将生长为Fh粒子的聚集体——也就是说,纺锤的尖端将向Fh粒子的来源处前进。纺锤尖端远离Fh源并进入本体溶液的事实表明Hm初级粒子是从周围的溶液中形成和添加的。如果Hm粒子来自于自由溶液,则与时间无关的主轴形状和长径比的含义是,首先形成的Hm粒子决定了后续粒子的产生和附着速率。为了进一步探索这一可能性,作者将Hm的多面体单晶晶种加入到含Ox的Fh前驱体溶液中。与Fh相比,晶种的数量密度可以忽略不计。5 h后, Hm初级粒子在晶体形成和附着在Hm晶种匹配,以形成纺锤,其增加的长度和宽度的比值约2.2(图7,图8)。因此Hm晶种增长与不含Hm晶种遵循相同的结晶路径,种晶为新粒子的配制提供了模板。当进行反向实验时,将Hm纺锤加入到不含Ox的Fh的溶液中,具有良好多面的Hm纺锤以晶体共线方式在Hm纺锤上生长(图9)。上述结果表明,一旦Hm粒子出现在含Ox的Fh溶液中,无论Hm粒子是通过溶液成核,还是在Fh上形成,或者通过Fh晶种,Fh都会溶解为新的Hm粒子提供溶质,它必须直接在Hm晶体的晶体共线中或在Hm晶体附近的溶液中成核,然后它们以共线方式附着。为了验证这一假设并确定新的Hm颗粒形成的位置,作者使用了80°C 的原位液相透射电镜来观察现有Hm晶种的纺锤体形成。图5 生长中Hm纺锤与Fh的关系图6 应用参考TEM网格跟踪Fh上的Hm增长图7 液相TEM观察Hm成核图8 菱形Hm晶种上生长的Hm纺锤体的TEM成像图9 菱形Hm在纺锤形Hm晶种上生长的TEM成像在TEM模式下,Hm晶种最初被清晰地分辨出来,但Fh粒子由于其低对比度而难以看到(图7c-e)。然而,扫描TEM(STEM)成像可以同时分辨出Hm晶种和Fh颗粒(图10。综合结果证实,Fh逐渐溶解,而新的“子”Hm颗粒在“母”Hm晶种附近成核,但不是在“母”Hm晶种表面成核,然后附着到晶种上(图7c-e中的箭头)。此外,晶核呈球状,晶种与晶核之间的接触角超过90°,这与晶种表面上的异相成核模型不一致,在这种模型中,只有在界面能和接触角较低的情况下,才更倾向于成核。此外,远离附着颗粒位置的晶种平面不会显著增长,也不会形成纳米或更大的粗糙度。这与观察结果一致,即在后期粗化期间,暴露的颗粒表面会形成晶面(图1e,f)。如果让实验进行较长时间,在此期间,光束在多个短图像系列的采集之间被阻挡(图7e),可以直接跟踪晶种周围纺锤的发展以及子粒子对生长纺锤的重复成核和附着。原位加热5小时后对液胞含量的分析表明,最终产物与非原位形成的纺锤难以区分(图11与图1c)。图10 Fh溶解和Hm晶种/溶液界面附近新Hm颗粒成核的连续STEM图像图11 液体电池芯片拆卸后表征原位透射电镜结果清楚地证明了Fh作为一个缓冲,提供并设定了形成子代Hm初级粒子的溶质离子的浓度。只要Fh颗粒存在,溶质浓度就保持在Fh的溶解度不变,从而确保当Fh溶解时,Hm颗粒在恒定的过饱和度下形成,以取代生长中的Hm所吸收的离子。然而,这些子颗粒在Hm-溶液界面附近成核,尽管TEM成像的二维性质和有限的分辨率妨碍了对初始分离的精确测定(图12和13),但在连接以构建纺锤形Hm单晶之前,显示出约2 nm的中间边到边间隙。所有新的Hm粒子都附着在母体晶种或纺锤上,没有发现任何粒子扩散到远离晶种(或纺锤)的溶液中。然而,无法从这些实验中辨别出新的Hm颗粒是否在成核时聚结,在附着过程中对齐,或者它们是否表现出其他类型的定向附着,包括未对齐的附着,然后消除缺陷,或者在某些情况下,通过在中间间隙中形成颈部附着。接着,作者试图了解Ox的作用。在溶液中,Ox与Fe3+结合,使Ox复合物成为主要的铁物种。因此,Ox能够加速Fh的溶解,尽管它不会明显改变大块Fe3+的活性,而大块Fe3+的活性保持在Fh的溶解度。然而,有Ox和无OxHm生长的差异表明,它也作用于Hm表面:在没有Ox的情况下,Hm形成大的多面晶体(图9a,图2a-c);在Ox存在的情况下,会形成球状粒子,可能是一个接一个的离子在生长,但当它们达到大约5nm直径时,生长速度非常缓慢。因此,Ox的一个作用是稳定Hm纳米颗粒并抑制其生长。此外,只有当Ox存在时,子Hm粒子才会成核和附着。Ox必须位于Hm颗粒表面,其第二个作用是通过偏压局部化学并可能协助驱动颗粒附着来促进Hm成核。图12 原位TEM中Hm晶种和晶核之间的间隙大小及其随时间的消除分析图13 晶种粒子和晶核之间间隙大小的进一步测量总之,作者通过原位TEM和冷冻TEM结合,追踪了在草酸存在情况下赤铁矿结晶的形成。草酸在土壤中含量丰富,而氧化铁是非常常见的,从而为天然存在的氧化铁的异常形态提供了可能的解释。本文所证实的界面梯度驱动粒子成核为天然氧化铁的异常形态提供了可能的解释,纺锤型的晶形是有纳米颗粒聚集体组成的。以上发现和与其他系统的比较表明,由界面驱动的CPA过程可能在合成和自然环境中均广泛存在。参考文献:Guomin Zhu et al. Self-similar mesocrystals form viainterface-driven nucleation and assembly. Nature. 2021, 590, 416-422.DOI: 10.1038/s41586-021-03300-0.https://www.nature.com/articles/s41586-021-03300-0

溴化铁相关的仪器

  • [ 产品简介 ]蔡司新一代场发射扫描电子显微镜Sigma系列,具有高质量的成像和分析能力,将先进的场发射扫描电子显微镜技术与优秀的用户体验完美结合。利用Sigma系列直观的4步工作流程,在更短的时间内获得更多的数据,提高测试与生产效率。可选配多种探测器,以满足半导体、能源等新材料、磁性样品、生物样品、地质样品等不同的应用需求。结合蔡司原位电镜实验平台,可以实现自动智能化的原位实验工作流程,高效率获取高通量、高质量的原位实验数据。领先的EDS几何设计保证了出色的元素分析性能,分析速度高、精度好、结果可靠。高分辨、全分析、多扩展、强智能、广应用,全新Sigma系列是助力于材料研究、生命科学和工业检测等领域的“多面手”。[ 产品特点 ]&bull 独特的Gemini镜筒设计,低电压高分辨,无漏磁&bull 广泛全面的应用场景&bull 丰富灵活的探测手段&bull 智能高效的工作流程&bull 先进可靠的分析系统&bull 强大完善的扩展平台[ 应用领域 ]&bull 材料科学,如纳米材料高分辨成像,高分子聚合物等不导电样品成像,电池材料成分衬度成像,二维材料分析&bull 生命科学,如生物样品超微结构成像,冷冻样品高分辨成像&bull 地质矿物学,如地质样品高分辨成像、成分分析以及原位拉曼联用分析&bull 工业应用,如组件失效分析,工艺诊断&bull 电子半导体行业,如质量控制与分析,6英寸Wafer快速换样,电子束曝光技术(EBL)&bull 钢铁行业,如夹杂物分析,金属材料自动原位成像分析&bull 刑侦、法医学&bull 考古学、文物保护与修复NanoVP lite模式下断裂的聚苯乙烯表面成像氧化铝颗粒高分辨二次电子成像ETSE探测器氧化锌枝晶成像InLens SE探测器氧化锆&氧化铁复合材料成像Sense BSD探测器刺毛苔藓虫超微结构成像aBSD探测器超导合金成像
    留言咨询
  • 仪器简介:溴钨灯的色温约为3000K-3200K,光谱辐射亮度为:L(&lambda )=&epsilon (&lambda )B(&lambda );其中,B(&lambda )为与溴钨灯色温相同黑体的光谱辐亮度。&Epsilon (&lambda )为钨的光谱发射率随波长和温度变化,约为0.2-0.5。技术参数:型号 名称、规格描述光源室LSH-T50 50W溴钨灯光源室LSH-T75 75W溴钨灯光源室LSH-T150 150W溴钨灯光源室灯泡LSB-T50A 进口50W溴钨灯灯泡LSB-T75A 进口75W溴钨灯灯泡LSB-T150A 进口150W溴钨灯灯泡稳流电源LSP-T50 50W溴钨灯稳流电源LSP-T75 75W溴钨灯稳流电源LSP-T150 150W溴钨灯稳流电源LSP-T700 700W溴钨灯稳流电源主要特点:■ 50W/75W/150W溴钨灯光源室主要特点◆ 提供多种功率选择◆ 光轴高度:134-154mm可调◆ 提供250-2700nm(300-2500nm)光谱范围◆ 色温达3000K以上,整个寿命期间溴钨灯色温只降低50K左右◆ 光效高,可达20~30lm/W◆ 光通稳定,灯泡寿命终止时的光通量为开始的95~98%◆ 应用我公司配套的稳流电源供电时,光通波动仅为0.12%~1%◆ 灯泡寿命长◆ 结构设计方便更换灯泡■溴钨灯稳流电源主要功能与特点◆ 与LSH系列光源室配合使用,提供高稳定电流源◆ 输出电流手动可调,并可以通过外接0-10V电压进行控制调节(LSP-T150输出电流不可调)◆ 输出指示:31/2位LED显示
    留言咨询
  • 溴钨灯光源 400-628-5299
    溴钨灯光源150W—250W ■ 稳定的可见到近红外光源■ 精确的外部调节■ 大量可选附件该光源会发出46mm 直径的准直光束。光源室外部有高度脚,可以调节光轴,137-173mm可调。制冷溴钨灯光源工作期间的表面温度高达几百度, 这就需要灯泡工作在安全的环境温度下。为此专门设计的光源室内有风扇制冷装置,提供恰当的空气对流从而达到制冷的效果。背面光反射镜光源室采用背面光反射镜结构,可提升60%的收集效率。该光源会发出46mm 直径的准直光束。右图为光路示意图:溴钨灯光源-灯泡调节在光源室外部,您可以通过面板上的旋钮,调整灯丝的位置。溴钨灯光源-电源电源是专门为卤素灯设计的具有高稳电流的恒流源。它使用数字板表显示工作参数,可确保电流的重复设置。市电交流电压通过变压器、整流器和滤波器变为适当的直流电压,再通过调整管和取样电路而输出,取样电路的输出信号送到比较放大电路,与参考电源和调节电路来的参考信号比较并放大后控制调整管的压降,形成负反馈,保持输出电流稳定。LSP-T150ALSP-T250A功率(W)150300电流(A)6-6.33~13电压(V)21-24.53~27电流稳定度0.05%0.05%输入电压(V)110/220V AC±10%110/220V AC±10%灯泡型号灯泡功率(W)电流(A)电压(V)典型光通量(lm)色温(K)平均寿命(hour)LSB-T1501506.2524320032002000LSB-T25025010.4249000300安全性■ 灯在点燃后仅几分钟就会变得非常热,在关闭后仍持续10分钟以上,因此在关闭灯10分钟以内,不要触摸灯泡壳。■ 溴钨灯工作时会产生较多热量,请勿在光源室上方加盖覆盖物,以免影响散热。■ 在光路调试过程中,请带上护目镜,避免对眼睛造成损伤。订购信息一个完整的光源需要光源室、电源、灯泡和应用附件,您可以按以下信息进行订货:订货型号名称内容GLORIA-T150A金曜150W溴钨灯光源金曜150W溴钨灯光源(GLORIA-T150A)已包含光源工作所必须的光源室(LSH-T150A)、电源(LSP-T150A)及灯泡(LSB-T150)。GLORIA-T250A金曜250W溴钨灯光源金曜250W溴钨灯光源(GLORIA-T250A)已包含光源工作所必须的光源室(LSH-T250A)、电源(LSP-T250A)及灯泡(LSB-T250)。我们还可以提供其他不同功率溴钨灯光源,详情请咨询销售人员。
    留言咨询

溴化铁相关的耗材

  • 硒化铁
    简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料,巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合美国2D Semiconductors为全球客户提供高质量的二维晶体材料、粉体、溶液、薄膜等材料,并提供定制服务,以满足客户的不同需求。硒化铁FeSe
  • 碲化铁
    简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料,巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合美国2D Semiconductors为全球客户提供高质量的二维晶体材料、粉体、溶液、薄膜等材料,并提供定制服务,以满足客户的不同需求。碲化铁Iron Telluride (FeTe)
  • 硒化铁碲
    简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料,巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合美国2D Semiconductors为全球客户提供高质量的二维晶体材料、粉体、溶液、薄膜等材料,并提供定制服务,以满足客户的不同需求。硒化铁碲Iron Selenide Telluride (FeTeSe)

溴化铁相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制