质谱算分子量

仪器信息网质谱算分子量专题为您提供2024年最新质谱算分子量价格报价、厂家品牌的相关信息, 包括质谱算分子量参数、型号等,不管是国产,还是进口品牌的质谱算分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱算分子量相关的耗材配件、试剂标物,还有质谱算分子量相关的最新资讯、资料,以及质谱算分子量相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

质谱算分子量相关的厂商

  • 400-860-5168转6112
    质谱佳科技是国内专业从事分析仪器维修等技术服务、进口二手分析仪器销售和租赁的领先企业,原厂工程师团队为客户在色谱、光谱、质谱仪的维护保养、维修、仪器认证、技术升级、仪器搬迁,软硬件操作培训等多方面提供完善的技术支持和整体解决方案。 质谱佳科技在美国、欧洲、日本有着良好的合作伙伴,凭借优质的进货渠道和专业的选品团队为客户提供优质的二手仪器。主营品牌有:Thermo(赛默飞)、AB Sciex(爱博才思) 、Agilent (安捷伦)、Waters(沃特世)、Shimadzu(岛津)等,另外质谱佳科技还提供分析仪器配件、耗材的销售。 质谱佳科技总部位于长沙,通过设在上海、海口等地的分公司,形成服务全国的网络。为制药、食品、环保、三方检测、新能源等多个行业以及高校、科研院所、政府实验室等客户提供方便快捷的本地化服务。
    留言咨询
  • 合肥迪泰质谱检漏仪专业生产厂家。氦质谱检漏仪用于真空检漏、如电厂汽轮机组,镀膜机,高压真空柜,真空炉,如有需要请联系 15056044460 王小姐合肥迪泰真空技术有限公司是专业氦质谱检漏设备供应商。主要产品有:氦质谱检漏仪,充氦回收系统,真空箱检漏系统,高真空设备,真空零配件等。公司拥有专业化的研发团队和科技人才队伍。所生产的新一代全自动高灵敏度氦质谱检漏仪采用多项国际先进技术。真空箱氦检漏系统设计科学,产品性能稳定。氦质谱检漏广泛应用于航天航空,汽车制造,真空应用等领域。
    留言咨询
  • 400-860-5168转4496
    衡昇质谱专注无机质谱等分析仪器的研发和制造。公司业务聚焦在质谱领域的自主研发,既定战略是:只专注发展有自主知识产权的质谱仪器。 以“衡昇”命名,是将“张衡”“毕昇”两位我国古代科技创新的杰出代表作为榜样,希望继承先贤之创新精神,立足科学研究,促进创新发明,为我国科学仪器事业做贡献。
    留言咨询

质谱算分子量相关的仪器

  • LC-MS 2000是天瑞仪器自主研发生产的新一代液相色谱-单四级杆质谱联用仪。LC-MS 2000具有体积更小,灵敏度更高,维护更方便,性价比更优的特点。可应用于生物医药(生物大分子、蛋白、多肽)、化工、食品安全(农残、兽残、食品添加剂)、环境保护(环境中VOCS检测) 、公检刑侦( 兴奋剂) 、工业检测(RoHS2.0指令、REACH指令)等领域。LC-MS 2000产品各项性能指标均达到国家检定规程要求。其采用更大抽速的进口真空泵、有效降低了本底真空的化学干扰。结构更加紧凑,大大缩减了仪器的体积,为实验室节约更多空间。产品性能升级离子源独特的涡旋加热气体设计,离子源温度控制精度高,均匀。多通道采集功能,快速地提高了分析速度及工作效率。可快速切换正、负电离模式,灵活测试;高压电源最快切换时间-10KV到+10KV可达20ms。专利的六级杆聚焦设计,可大幅提高离子的通过率,特别是高质量数离子信号。可获得丰富的质谱信息(包含分子量和多个结构信息)。ChemAnalyst软件功能强大、可一键切换的中英文用户界面,操作简便。可以选择多种离子源配置组合ESI(标配),APCI(选配),APPI(选配)。软件可操控自动进样器,有效提高样品通量,可完成无人值守的自动化序列检测。满足GMP,GLP要求,增加用户权限管理模块,数据完整性,审计追溯模块。测试质量范围10-2000AMU。大幅提升检测器的使用寿命,增强动态范围和灵敏度。应用领域生物医药:合成药物检测(CRO有机合成、生物多肽合成),原料药检测(合成原料药、中药药材)等。RoHS,REACH检测: PAEs,PAHs,双酚A,PBBs,PBDEs的超快速筛查。工业分析:生产质控(合成中间体及成品质量控制)。环境监测:环境污染物监测分析。食品安全:食品添加剂,食品残留物、污染物,非法添加物等。
    留言咨询
  • 谱育科技自主研发的TRACE 8000 化学电离飞行时间质谱仪,将高灵敏度化学电离源和高分辨飞行时间质量分析器进行结合,具有灵敏度高、分析速度快、分辨率高、测量组分种类多等突出优点;仪器具有创新的辉光放电源、高压离子漏斗和静电透镜传输技术,保证样品的电离效率和离子的传输效率,适用于走航监测、食品科学、材料分析、爆炸物和药物检测等方面的应用。产品概述性能优势分析速度快微秒级的扫描速度,可捕捉目标物质的瞬时变化,为科学研究、应急监测、生产过程的高通量监测提供有效手段。分辨率高可实现复杂混合物样品中分子量相近物质的分析识别,解决传统低分辨直接进样质谱分析定性难的问题,将“看不见”变成“看得见”,追溯物质本源。多试剂离子可选配合试剂离子快速切换系统,根据目标物质的化学特性,可选择H3O+、O2+、NO+等多种不同电离能的试剂离子进行靶向电离,适测物质涵盖醛、酮、有机硫、有机胺、卤代烃、苯系物、长短链烃类等,是优选的快速检测技术。 应用领域TRACE 8000 化学电离飞行时间质谱仪适用于走航监测和园区VOCs在线监测,可实现VOCs精准溯源及扩散预警。可对半导体生产过程中的AMC、食品生产的风味物质进行实时监控;石油化工生产过程中移动测量、定点在线监测;材料中有害成分的快速鉴定分析;人呼出气体的宽动态范围内的追踪分析。
    留言咨询
  • MSQ™ Plus是当前市场上与离子色谱或液相色谱联用体积最小且灵敏度最高的四极杆质谱仪,配有ESI及APCI两种电离源,分子量17-2000 m/z。 MSQ™ Plus可以简便地与各种型号的液相色谱或离子色谱联用,特别适用对含有盐、离子对试剂及成份极其复杂的样品的检测;高效、耐用,可不需要人员看管连续超长时间的使用;操作简单,几乎不需要设置或调试就可以达到最佳灵敏度;利用内置快速校准和输入功能,可真正实现质谱检测自动化。。? 新型M-Path™ 三重直角离子源◇ 完全消除中性碎片噪音和背景影响,可确保实际样品的最佳灵敏度? 专利的锥孔清洗系统◇ 兼容含盐流动相,大大提高了产品在常规条件下的使用周期◇ 可使用不挥发性LC流动相◇ 可使用磷酸盐作LC流动相以得到更好的色谱结果◇ 不需要改变原有的方法◇ 不会因为样品脏而堵塞质谱入口? 新型正方形RF透镜◇ 更高效的离子传输速率? 四极杆质量过滤器◇ 有预过滤器保护,可长时间保持性能稳定? 新型专利的Ion Bright™ 检测器◇ 对正负离子均可保证最大的信噪比MSQ™ Plus同时配置电喷雾(ESI)和大气压化学(APCI)两种离子源,不需分流,极大扩展了检测器的应用能力。? 无需工具即可快速简便地维护离子源,为样品分析节约大量的时间。? 新型钛合金锥孔,具有更持久的耐用性和高强的抗化学品腐蚀能力。? 能够检测阳离子和阴离子,甚至阴阳离子同时在线检测。? 系统能实时转变离子源极性或者改变连续扫描色谱峰的锥孔电压(应用于碎片峰),从而在最少的进样量条件下获得更完整的碎片信息。? 不分流流速◇ ESI为10 μL-2 mL◇ APCI为200 μL-2 mL? 加热辅助 — 气动雾化◇ 可从室温加热至650℃◇ 雾化用氮气 12 L/min
    留言咨询

质谱算分子量相关的资讯

  • 小身材大智慧丨检测器级MS助力寡核苷酸和多肽药物分子量测定
    导读随着生物医药技术的发展,越来越多的生物药陆续上市,如治疗慢性疾病的寡核苷酸药物Leqvio,“一年只需注射两针”就可以长效持久的降低血液中胆固醇含量,以及用于治疗II型糖尿病的多肽类药物Mounjaro。在寡核苷酸和多肽药物的质量控制中,分子量测定是定性表征中不可缺少的一部分,而单四极杆液质联用仪(LCMS)是测定分子量的利器。但与小分子药物相比,多肽和寡核苷酸药物极性和分子量均较大,在LCMS中带多电荷,所以分子量测定时可能会存在分子量测定范围窄、灵敏度低等问题。小身材大智慧 LCMS-2050岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化和高性能,其离子源为加热型ESI/APCI(DUIS)源,使得寡核苷酸和多肽药物等分子量较大的极性化合物更容易电离,所以LCMS-2050具有分析灵敏度高,分子量测定范围广的特点。此外,岛津LabSolutions软件自带分子量解卷积功能,可以快速对多电荷质谱图进行解卷积,获得分子量相关信息。分子量测定案例分享寡核苷酸药物本方案中寡核苷酸药物为小干扰核苷酸(siRNA),是一类双链RNA分子(正义链和反义链),长度为20-25个碱基对。通过流动相的调整和质谱参数的优化,LCMS-2050(负模式)检测得到了siRNA多电荷质谱图,质荷比为600~1700。此时质谱图中无其他加和离子干扰,且高质荷比也有明显响应。通过岛津LabSolutions软件自带的多电荷解卷积功能,计算得到siRNA正义链电荷数量为4~11,分子量为6631.64 Da,反义链电荷数量为4~10,分子量为6637.66 Da,与理论值的偏差均小于0.4 Da。siRNA色谱图正义链质谱图正义链分子量解卷积结果反义链质谱图反义链分子量解卷积结果多肽药物此多肽药物为一种生长抑素,其理论分子量为1637. 72 Da。LCMS-2050(正模式)检测得到质荷比为546.76~1638.47,通过LabSolutions解卷积功能计算得到分子量为1637.45 Da,与理论值偏差为0.27 Da。多肽药物色谱图多肽药物质谱图多肽药物分子量解卷积结果结语岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化与高性能,适用于多肽、寡核苷酸等化合物分子量测定,具有灵敏度高、分子量测定范围广的优势。了解更多详情,敬请下载《LCMS测定小干扰核苷酸siRNA分子量》《LCMS-2050在多肽分子量定性分析检测中的应用》本文内容非商业广告,仅供专业人士参考。
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 基质升华重结晶法进行低分子量代谢产物质谱成像分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 自质谱成像技术于二十世纪80年代前半期诞生以来,至今为止不断持续着技术改革,并被广泛运用于以新药研究和代谢产物研究领域为首的众多领域中。如今仍以提升灵敏度和空间分辨率、重现性等为目标,不断进行着技术改良。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 同时,也开发出多种离子化所需的基质,如何从这些基质中选出适用于检测目标化合物的基质成为重点。 span style=" text-indent: 2em " 除基质选择外,其涂布方法也会对分析结果造成很大影响,因此,现有多个应用于检测目标化合物的基质涂布方法正在研究中。大致可分为喷雾法和升华法两种方法,两种涂布方法均有自己的优缺点,现阶段经常会同时使用两种方法。本公司开发了能控制基质膜厚的基质升华涂布装置iMLayer(图1),对涂布方法进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们针对以往难以重结晶的基质9AA,开发了升华后重结晶的方法,并在此进行报告。此外,还将对小鼠肝脏中低分子量代谢产物的MS成像结果示例进行介绍。 /p p style=" text-align: right text-indent: 2em line-height: 1.75em " ——R.Yamaguchi, E.Matsuo, T.Yamamoto /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 1、不同基质涂布方法对MS成像分析造成的影响 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基质涂布方法对基质的结晶形成和MS成像分析造成的影响如表1所示。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 与升华法相比,通过喷雾法生成的基质的结晶较粗,并可能因样本中所含成分的渗漏导致空间分辨率降低。均匀性较差,基质溶液干燥后结晶时会依赖湿度和温度等周围环境,因此重现性也会变差。另一方面,样本中所含化合物的提取效果较好,可能提高检测灵敏度。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相比之下,升华法具有结晶较细、难以渗漏、均匀性好、重现性良好的特点,是高空间分辨率成像所不可或缺的方法。但相对的,其样本中成分的提取效果不佳,在灵敏度上可能存在不利的一面。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 实际的测量灵敏度依赖于检测化合物的结构。例如,在分析磷脂质等时,采用升华法便具有足够的灵敏度,诸如胺碘酮等药物可以足够的灵敏度完成MS成像(参考应用文集B61)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 另一方面,在检测小鼠肝脏等器官中含有的ADP 和ATP 等低分子量代谢产物时,通过升华法进行基质涂布,由于没有任何提取效果,无法得到足够的灵敏度。因此,绝大多数例子都是通过喷雾法涂布9AA来实施MS成像,但其空间分辨率相对较低。于是,我们对将DHB和CHCA上使用的升华后重结晶法涂布9AA所需的条件进行了研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0178e2f4-5edd-42fd-ab37-3b27f1e3173b.jpg" title=" 微信截图_20200619165723.png" alt=" 微信截图_20200619165723.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1 基质升华装置iMLayer /p p style=" text-align: center " 表1 基质涂布方法对结晶形成和MS成像分析造成的影响 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/962223c2-c637-4894-9498-e953c6d6b688.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 2、基质升华后重结晶法 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 对9AA进行升华后重结晶。如图2所示,将含有5%甲醇的滤纸和升华处理后的样本放入相同容器中,于37℃的恒温环境下静置5分钟。此时,滤纸中的5%甲醇蒸发,渗入样本中,在提取样本中化合物的同时会使少许9AA结晶溶解。之后将其真空干燥器内干燥10分钟,使溶解的9AA进行重结晶。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1b946ad-81b9-4670-bd42-0b2b1b03f739.jpg" title=" 33333333333333.png" alt=" 33333333333333.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图2 9AA升华后重结晶的方法 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8767d240-e8eb-44fc-8470-cff5822571a1.jpg" title=" 444444444.png" alt=" 444444444.png" / /p p style=" text-align: center " 图3 成像质谱显微镜iMScopeTRIO /p p style=" text-align: center " 表2 iMScope i TRIO /i 测量参数 /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/69636f83-0667-4f8a-a02b-4d1c757bc977.jpg" title=" 55555555555.png" alt=" 55555555555.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 3、使用升华后重结晶法提高MS成像灵敏度 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对9AA升华后重结晶的小鼠肝脏样本,使用成像质谱显微镜iMScope& nbsp i TRIO /i (图3),根据表2的参数进行质谱成像分析。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对比升华法进行基质涂布样本与升华后重结晶样本的分析结果、比较其分析区域的平均质谱图(图4)。仅采用升华法时、能强烈检测到基质9AA的峰(m/z 385.14)(图4▼),基本上检测不到低分子量代谢产物的峰,但通过实施升华后重结晶,使来自低分子量代谢产物的峰强度增加(图4▼等),确认其提升检测灵敏度的效果。此外,其他多个低分子量代谢产物的MS图像,通过升华后重结晶的处理,能够获得更为清晰的MS图像(图5)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 针对难以重结晶的9AA开发的升华后重结晶方法,充分利用升华法的优势成功实现了无损且高灵敏度的MS成像分析。 /p p span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0bbf3127-6052-4b6a-af7e-a0c6fc57f542.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 质谱图(升华法和升华后重结晶法的比较) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/de208828-8702-40d6-8202-037e64b3f190.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图5 MS图像(升华法和升华后重结晶法的比较) /p p br/ /p

质谱算分子量相关的方案

质谱算分子量相关的资料

质谱算分子量相关的试剂

质谱算分子量相关的论坛

  • 质谱 母离子的分子量计算

    质谱 母离子的分子量计算

    [color=#444444]因为要做高分辨质谱,所以要知道化合物的分子式。看了很多文献,写花色苷的结构式时,那个氧原子上都有个加号,这个是正离子吧,如下图。它的中文名称是矢车菊-3-二葡萄糖苷-5-葡萄糖苷,按这个正离子数出来,应该是C(33)H(41)O(21),那么它的分子量计算时是不是要减去一个氢原子,为C(33)H(40)O(21)啊?做质谱时筛选母离子是用C(33)H(41)O(21) 还是C(33)H(40)O(21)来设置加氢加钠啊?应该按照请大家帮帮忙!谢谢!算分子量是不是要按照中性分子来计算啊?[/color][color=#444444][img=,421,280]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060957079190_8147_1843534_3.jpg!w421x280.jpg[/img][/color]

  • 求助:质谱,分子量鉴定问题?

    [color=#444444]为什么分子量多24?[/color][color=#444444]我做了三个化合物,组成原子为C、H、O、N,进行分子量鉴定,质谱数据比理论上的分子量每个化合物都多24!我怀疑是质谱测试的系统误差,可是我不知道这个误差是怎么来的。请专家帮助我!谢谢[/color]

质谱算分子量相关的耗材

  • 寡核苷酸 DNA 分子量标准品和 RNA 分离度标准品
    寡核苷酸分离度标准品含有 14、17、20 和 21 mer 的合成型寡核苷酸,专为测试 N/N-1 的分离度而设计。寡核苷酸分子量标准品含有 15、20、25、30、35 和 40 mer 合成型寡核苷酸,是测试色谱柱选择性和重现性的理想工具。AdvanceBio 寡核苷酸标准品均通过安捷伦高回收率玻璃自动进样器样品瓶以冻干形式提供,并附有分析证书。特性:用于测试 N/N-1 分离度的分离度标准品用于选择性和重现性测试的分子量标准品在高回收率玻璃自动进样器样品瓶中以冻干形式提供随附分析证书
  • TCSI Array® 成像质谱芯片
    【产品介绍】TCSI Array® 质谱芯片是国内第一款针对MALDI成像研究的一次性靶材,可一次性上机实现分子量校准、成像测试过程。检测对象包括穿刺、镜检、术中获得的组织样本和指纹、植物切片等。【产品优势】免基质喷涂,简化实验流程 | 高离子化效率,高保真度 | 含分子量校准位点,分子量精度高 | 适合多种成像平台,可根据用户需求定制和二次开发【产品应用】组织成像和内源性空间代谢组/脂质组分析;指纹成像和爆炸物残留测试;药物分布测试。适配真空环境质谱成像,可根据仪器进行尺寸及其他参数定制。
  • Rtx-5ms 低流失质谱柱 | 12623
    产品特点:Restek 低流失质谱柱完全满足高灵敏度质谱仪的要求。可以使用一体化嵌入式保护柱,无须连接即可实现保护!* 应用于分析药物,溶解性杂质,农药,烃类,PCB同族物(如Aroclor混合物),香精油,半挥发性化合物;* 温度范围:-60 ℃到350 ℃.* 相当于USP G27, G365%二苯基-95%二甲基聚硅氧烷是气相色谱中最常用的固定相,广泛应用于多种化合物的分离。Rtx-5/MXT-5柱是最高品质的5%苯基色谱柱。同时在聚合物中去除了所有的残留催化剂和低分子量的化合物片断,提供了一个紧密的单一分布和极低的柱流失。P/N品名长度(m)内径(mm)膜厚(um)使用温度(℃) 12623 Rtx-5MS30 0.25 0.25 -60 to 330/350
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制