木犀草素

仪器信息网木犀草素专题为您提供2024年最新木犀草素价格报价、厂家品牌的相关信息, 包括木犀草素参数、型号等,不管是国产,还是进口品牌的木犀草素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合木犀草素相关的耗材配件、试剂标物,还有木犀草素相关的最新资讯、资料,以及木犀草素相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

木犀草素相关的资料

木犀草素相关的论坛

  • 【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分酸浆(拉丁文名:Physali alkekengi L.)又名红菇娘、挂金灯、戈力、灯笼草、灯笼果、洛神珠、泡泡草、鬼灯等北方称为菇蔫儿、姑娘儿,以果实供食用。化学成分含酸浆苦素A(Physalin A)、酸浆苦素B、酸浆苦素C、木犀草素(Luteolin)及木犀草素-7-β-D-葡萄糖甙。果实含枸橼酸、草酸、维生素C、酸浆红色素(physalien)、酸浆醇(physanol)A,B。花萼含α胡萝卜素、酸浆黄质(physoxanthin)及叶黄素等,种子油的不皂化物中分得多种4α-甲基甾醇,主要为禾本甾醇(gramisterol)和钝叶醇(obtusifoliol)及4种新甾体。此外尚含多种4-脱甲基甾醇,如胆甾醇和24-乙基胆甾醇等。还含有多种三萜3β-一元醇,其中环木菠萝烷醇(cycloartanol)35%,环木菠萝烯醇(cycloartenol)27%、羊毛脂-8-烯-3β-醇(lanost-8-en-3β-ol)。木犀草素(luteolin)是一种天然黄酮类化合物,存在于多种植物中,具有抗炎、抗肿瘤、抗过敏等方面的作用。化学是如下:http://ng1.17img.cn/bbsfiles/images/2016/08/201608311303_607620_2217446_3.jpg目前,国内传统中药有效成分的提取方法普遍存在提取率低、杂质清除率不高、生产周期过长、能耗高、溶剂用量大等缺点。随着中药现代化进程的不断深入,许多现代高新技术不断地被应用到中药有效成分的提取和分离,使得中药有效成分的提取更高效和简便。超声-微波协同萃取技术直接将超声振动与开放式微波两种作用方式相结合,充分利用超声波振动的空化作用以及微波的高能作用,实现了低温常压条件环境下,对固体样品进行快速、高效、可靠的预处理,与常规提取方法相比,超声-微波协同萃取技术具有快速、节能、节省溶剂、污染小等优点。本实验应用超声-微波协同萃取法提取酸浆中的木犀草素及木犀草素-7-β-D-葡萄糖甙,采用高效液相-二极管阵列检测法(HPLC-DAD)测定提取物中木犀草素及木犀草素-7-β-D-葡萄糖甙的含量,药材中二者成分的含量分别为:1.200mg/g 和0.43mg/g,二个峰,木犀草素-7-β-D-葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素-7-β-D-葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,天麻素二个峰位置都发生了蓝移,样品中二个峰的光谱图与标准品二个峰的光谱图相同,可以进一步确定酸浆中含有木犀草素及木犀草素-7-β-D-葡萄糖甙。主要仪器与试剂主要仪器Agilent1100型四元梯度高效液相色谱仪(美国 Agilent 公司)Agilent TC-C18(ODS)色谱柱(5μm,4.6×250mm,美国 Agilent 公司)CW-2000 超声-微波协同萃取仪(新拓微波溶样测试技术有限公司)DJ-10A 型倾倒式粉碎机(上海隆拓仪器设备有限公司)RE-52AA 型旋转蒸发仪(河南巩义仪器厂)LXJ-IIB 型低速大容量多管离心机(上海安亭科学仪器厂)试剂木犀草素(中检所,含量98%;)木犀草素-7-β-D-葡萄糖甙(中检所,含量98%;)酸浆全草(采于黑龙江)除甲醇、乙腈为色谱纯(国药集团化学试剂有限公司),其余试剂除专门提到外,均为分析醇,实验用水为二次蒸馏水。实验方法供试品溶液的制备 精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,加入50mL70%甲醇,开启超声微波,控制在恒温50℃下提取40min,萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm 的微孔滤膜,取续滤液,即得。提取条件的考察溶剂的选择:精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取40min(n=3),萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm的微孔滤膜,取续滤液,HPLC 测定萃取率。溶剂体积分数的选择:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),方法同上。溶剂用量的选择:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,方法同上。提取时间的选择:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),方法同上。提取温度的选择:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,方法同上。对照品溶液的制备 分别精密称取常温减压干燥12h 的木犀草素及木犀草素-7-β-D-葡萄糖甙对照品适量,加甲醇配制成木犀草素-7-β-D-葡萄糖甙为200μg/mL、木犀草素为100μg/mL 的混合对照品溶液,冷藏备用。色谱条件 色谱柱:Agilent TC-C18柱(5μm,4.6×250mm);流动相:A-0.1%乙酸水溶液;B-甲醇,线性梯度洗脱:0~30 min,3%~5% B;30~35 min,5%~20%B;35~40min,20%~20%B;检测波长:270nm;流速:1mL/min;柱温:30℃;进样量:20μL。结果与讨论提取条件的优化结果溶剂的优化结果:分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取30min(n=3),结果表明70%甲醇提取木犀草素-7-β-D-葡萄糖甙的量较高,而木犀草素的量差异不明显,因此选择70%甲醇提取。溶剂体积分数的优化结果:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),结果表明,在甲醇体积分数70%时,木犀草素-7-β-D-葡萄糖甙和木犀草素的提取率随着甲醇浓度的增加而增加;但当甲醇体积分数在70%以上时,木犀草素葡萄糖甙的提取率呈现下降趋势,木犀草素没有明显的变化。木犀草素葡萄糖甙属于一种苷,分子量小,极性较大,当甲醇体积分数过高时,溶液极性降低,使得极性较强的木犀草素葡萄糖甙不易溶出,而木犀草素极性相对木犀草素葡萄糖甙小,影响不明显,因此实验选择70%甲醇作为提取溶剂。溶剂用量的优化结果:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,结果表明溶剂体积在50mL时木犀草素葡萄糖甙和木犀草素的提取率最高,之后随着溶剂用量的增加,木犀草素葡萄糖甙和木犀草素的提取率趋于稳定,因此溶剂用量选用50mL 进行提取 。提取时间的优化结果:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),结果表明超声-微波协同萃取时间从20~40min的过程中木犀草素葡萄糖甙和木犀草素的提取率逐渐增加;而提取时间超过40min之后,提取率反而逐渐下降。超声-微波协同萃取时间太长,植物中大量细胞细胞破碎,使得大量粘性物质等进入提取液,溶剂杂质增多、粘度增大,影响了有效成分的溶出,有效成分含量反而减少,因此选择提取时间为40min。提取温度的优化结果:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,实验表明,提取温度在50~60℃的范围内,木犀草素葡萄糖甙和木犀草素的提取率没有明显差异,考虑到温度太高容易破坏活性成分,因此选择提取温度为50℃。流动相的考察在实验过程中,流动相首先考察了甲醇-水、乙腈-水等度洗脱对酸浆超声-微波协同萃取样品溶液进行分离,乙腈-水作为流动相时,出峰较快,不能较好地把木犀草素葡萄糖甙和木犀草素与其他杂质成分分离;甲醇-水作为流动相时,出现峰形拖尾现象,分离效果不理想。为改善上述现象,改用0.1%乙酸代替水并采用梯度洗脱,经过反复筛选之后,最终确定流动相组成为 A -0.1%乙酸水溶液, B -甲醇,洗脱程序为0~30 min , 3%~5% B;30~35 min ,5%~20% B ;35~40 min 20%~3% B,木犀草素葡萄糖甙和木犀草素和其他杂质成分能够很好的分离,得到较理想的色谱图。对照品溶液和酸浆萃取样品的HPLC-DAD 分析下图分别显示了在上述的色谱条件下,采用 DAD 进行检测得到的两种混合对照品及酸浆萃取样品的 HPLC 分离色谱图。图1色谱图中木犀草素葡萄糖甙和木犀草素的保留时间分别为18.74min, 26.87min,根据保留时间判断,图2中的 a、b 色谱峰分别初步鉴定为木犀草素葡萄糖甙和木犀草素。图3、4分别显示了混合对照品和酸浆萃取物中保留时间18.74min, 26.87min 的色谱峰进行 DAD 检测后得到的光谱图,木犀草素葡萄糖甙和木犀草素 UV 光谱图形状相似,出现 二个峰,木犀草素葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,木犀草素葡萄糖甙二个峰位置都发生了蓝移,样品中二个峰的光谱图与

  • 69.4 大鼠口服菊花提取物后血浆中木犀草素及芹菜素测定方法的研究

    69.4 大鼠口服菊花提取物后血浆中木犀草素及芹菜素测定方法的研究

    【作者中文名】潘兰英; 李丽萍; 蒋惠娣;【作者英文名】PAN Lan-ying; LI Li-ping; JIANG Hui-di*(Department of Pharmaceutical Analysis and Drug Metabolism; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310031; China);【作者单位】浙江大学药学院药物分析与药物代谢研究室; 浙江大学药学院药物分析与药物代谢研究室 杭州;【摘要】目的建立大鼠血浆中木犀草素和芹菜素总浓度的HPLC测定方法,并研究大鼠口服菊花提取物(CME)后其效应成分——木犀草素、芹菜素的药动学参数。方法大鼠血浆在2 mol.L-1盐酸酸性条件下于80℃水浴水解1.5 h,水解液经乙酸乙酯萃取,萃取液减压抽干后溶解,经HPLC分析。采用Diamonsil ODS C18色谱柱,以甲醇-0.2%磷酸(55∶45)为流动相,流速1.0 mL.min-1,检测波长350 nm,柱温30℃。应用建立的方法测定大鼠口服200 mg.kg-1菊花提取物后血浆中木犀草素及芹菜素质量浓度,并以3P87软件计算其药动学参数。结果本法木犀草素和芹菜素的定量下限(LOQ)分别为0.045 5和0.145 mg.L-1;两者分别在0.045 5~8.09和0.145~25.7 mg.L-1内呈良好线性关系,r分别为0.995 7及0.997 4;两者低、中、高质量浓度的绝对回收率及方法回收率均在89%~107%内。日间及日内精密度RSD均小于11%。大鼠口服CME后木犀草素与芹菜素的Ka分别为1.72和0.237 h;t1/2(Ka)分别为0.440和3.21 h;t1/2α分别为0.77...http://ng1.17img.cn/bbsfiles/images/2012/08/201208271745_386602_2379123_3.jpg

  • 【金秋计划】木犀草素纳米混悬剂的制备及其体外肠吸收研究

    木犀草素(luteolin),别称草木犀、黄示灵等,大多以糖苷的形式广泛存在于多种中药材、天然药用植物[1]及蔬菜[2]中的一种黄酮类化合物,是一种天然色素成分,可以作为食用色素添加于食品中。木犀草素的化学名为3′,4′,5,7-四羟基黄酮(3′,4′,5,7-tetrahydroxyflavone),物理状态为淡黄色结晶状粉末,熔点为330 ℃,包含4个酚羟基,具有弱酸性,可溶于碱性溶液中,因脂溶性高而难溶于水,从而阻碍了其在体内的吸收与利用[3]。木犀草素具有抗炎和抗菌[4-5]、抗氧化[6]、抗肿瘤[7]、神经保护[8]、抑制肺纤维化[9]及肺癌[10-11]和心血管疾病[12]等多种药理作用。由于水溶性差(仅为6.0 mg/L)、生物利用度率低等原因限制了其成药性和临床应用。针对这一问题,近年来许多学者开展了增加木犀草素溶解度的研究,如微球[13]、纳米胶束[14]、金属配合物[15]、自微乳[16]、脂质体[17]等,并明显提高了其生物利用度,这表明木犀草素的肠道渗透性不是限制其生物利用度的关键因素,其属于生物药剂学系统II类药物。因此,采用制剂技术提高木犀草素的溶解性是可以改善其成药性和生物利用度的,将有利于推广其临床应用。然而上述开发的剂型仍存在诸多的缺点,如工艺复杂、载药量低、生物安全性差、成本高等,难以大范围推广应用。近年来,逐步发展成熟的纳米混悬剂[18]作为一种新剂型,与传统纳米制剂相比,它具有载药量高、溶出度高、添加剂用量少、易于放大生产等优点。因此,本实验尝试将难溶性木犀草素制备成纳米混悬剂以提高其水溶性和生物利用度,改善其成药性和临床优势。 为此,本实验首先采用微沉淀-高压匀质法制备口服木犀草素纳米混悬剂(luteolin nano-suspension,LNS),并以纳米粒的粒径、稳定性、多分散性指数(polydispersity index,PDI)、ζ电位等为考察指标,采用单因素考察法筛选LNS的稳定剂和最优药物-稳定剂比;接着,对LNS的理化性质进行考察,并分析其物理状态和体外溶出行为;最后通过大鼠外翻肠模型考察药物在肠道不同部位的吸收转运情况,探索药物在肠道内的吸收速率和最佳部位,预测纳米混悬剂可能存在的体内吸收行为,既可以用于木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供基础。 1 仪器与材料 1.1 仪器 ZNCL-BS180型恒温磁力搅拌器,北京市永光明医疗仪器有限公司;AL104-1C型精密分析天平,上海鼎科科学仪器有限公司;NS1001L型高压匀质机,意大利GEA [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]o Soavi公司;Nanotrac wave II型激光粒度仪型激光粒度仪,美国麦奇克有限公司;LC3100型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],安徽皖仪科技股份有限公司;ZWY-103D型恒温振荡仪,上海智诚分析仪器制造有限公司;H1650-W型医用离心机,湖南湘仪实验室仪器开发公司;DZF-6030型真空干燥箱,上海精宏实验设备有限公司。JEOL 2010型透射电子显微镜(TEM),日本JEOL公司。 1.2 试剂 木犀草素原料药,批号JZ19021403,质量分数97.0%,南京狄格尔医药科技有限公司;木犀草素对照品,批号ps1032-0025,HPLC质量分数≥98%,成都普思生物科技有限公司;十二烷基磺酸钠(sodium dodecyl sulfonate,SDS),医药级,河南圣拓实业有限公司;泊洛沙姆188(Poloxamer 188,Pluronic,F68),医药级,西安天正药用辅料有限公司;维生素E聚乙二醇琥珀酸酯(D-α-tocopherol polyethylene glycol 1000 succinate,TPGS),医药级,上海惠诚生物科技有限公司;二甲基亚砜(dimethyl sulfoxide,DMSO),分析纯,天津市德恩试剂有限公司。 1.3 动物 SD大鼠购买于河南省实验动物中心,体质量(200±20)g,合格证号:SCXK(豫)2017-0001。所有动物实验均经过河南大学动物伦理委员会审核批准(HUSOM2019-216)。 2 方法与结果 2.1 LNS的制备 2.1.1 LNS中稳定剂的选择 将40 mg木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再取等量的稳定剂(SDS、F68、TPGS)溶解于纯水中(作为水相,或称反溶剂相);在室温下,将有机相通过注射器快速注入转速为1 800 r/min的反溶剂相中,继续搅拌10 min,得到预混悬剂;将预混悬剂转移至高压匀质机中,分别以20.0、50.0、80.0 MPa的压力循环匀质5、5、25次,得到LNS。 利用动态光散射仪分别考察LNS的粒径、多分散系数(polydispersity index,PDI)、表面电荷(ζ电位)和稳定性。本实验以不同稳定剂(SDS、F68、TPGS)制备的LNS粒径大小、PDI、ζ电位结果如表1所示。3种稳定剂所制备的粒径均在100~500 nm。以SDS为稳定剂制备的纳米混悬剂粒径最大,以F68为稳定剂制备的纳米混悬剂PDI最大,以TPGS为稳定剂制备的纳米混悬剂ζ电位最大,但是3者没有较大的差异,因此对于预测稳定性来说,上述结果难以判断哪个稳定剂制备的LNS会有良好的贮存稳定性。 因此,本实验又对各种条件的贮存稳定性进行了研究,结果见图1。以SDS、F68为稳定剂制备的纳米混悬剂在1周内粒径呈现持续增长的趋势,而以TPGS为稳定剂制备的LNS粒径未出现明显变动,由此可知,本实验中以TPGS为稳定剂制备的LNS具有较好的物理稳定性。 2.1.2 LNS中药物-稳定剂质量比的筛选 将40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再分别按照木犀草素与TPGS的质量比为1∶2、1∶1、2∶1称取TPGS,溶解于水中,得到反溶剂相;再按上述工艺制备LNS,得到不同药物-稳定剂质量比的LNS。利用动态光散射仪分别考察纳米混悬剂的粒径、分布、ζ电位和稳定性。不同药物-稳定剂比制备的LNS的理化性质研究结果见表2和图2。如表2所示,3种不同药物-稳定剂比制备的LNS的粒径分别为(289.3±6.6)、(210.7±2.0)、(34.6±3.7)nm,3种LNS的PDI接近,1∶2时ζ电位最大,2∶1时ζ电位没测到。虽然药物与稳定剂的质量比为2∶1时,其粒径与1∶2、1∶1时相差较大,但是粒径难以反映稳定性情况。因此,接下来考察了1∶2、1∶1、2∶1 3种不同比例下制备的LNS的稳定性,结果如图2所示。当药物-稳定剂比为2∶1和1∶2时,在2周内粒径变化幅度都较为明显,说明其稳定性表现均极差;而当药物-稳定剂比为1∶1时,制备的纳米混悬剂的粒径基本保持稳定,表明其稳定性较好。因此,本实验最终选用药物-稳定剂比为1∶1。 2.1.3 最优制备处方和方法的确定 依照LNS的稳定剂及药物-稳定剂比的筛选结果,初步确定LNS的最优制备处方与方法如下:将精密称取40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相;将40 mg TPGS搅动溶解于40 mL纯水中作为水相,将有机相快速注入转速为1 800 r/min的水相中,搅动10 min,得到预混悬剂;将制备的预混悬剂倒入高压匀质机的导入槽中,分别以20.0、50.0、80.0 MPa的压力,分别循环匀质5、5、25次,得到LNS。重复制备3批,以粒径、PDI和ζ电位考察制剂处方和制备工艺的稳定性。 2.2 LNS的表征 2.2.1 粒径、ζ电位及形态分析 将最优处方制备的3批LNS分别通过激光粒度分析仪测定其粒径、PDI、ζ电位,结果LNS的粒径为(209.00±3.24)nm(n=3),PDI都低于0.228±0.013(n=3),粒径分布图见图3;ζ电位值为(?16.80±0.27)mV (n=3),较小的PDI和绝对值较大的ζ电位,意味着LNS可能具有较好的长期稳定性[19]。 再取适量的LNS加蒸馏水稀释到适当倍数后,滴在覆有支持膜的铜网上,自然环境下干燥后,通过TEM观察其形态特征及大小,并成像,结果见图4。LNS呈现均匀分散的球形或椭圆形颗粒,粒径约为180 nm,比动态光散射测定结果较小,这可能是由于TEM样品为干燥品,导致粒子外层亲水部分失水而收缩[20]。 2.2.2 储存稳定性 将制备的LNS分别放在4 ℃和室温环境中,在预定的时间点取样,通过激光粒度分析仪测定其粒径和PDI,连续考察14 d,每个样品平行操作3份,结果见表3。LNS在4 ℃和室温下储存2周后,粒径和PDI稍有增加,但变化范围都较小,说明该LNS的储存稳定性较好。 2.2.3 体外胃肠环境中的稳定性 以pH 1.2和pH 6.8的缓冲溶液模拟胃液和肠液,将制备的LNS分别以1∶1与上述2种缓冲溶液混合,并于37 ℃水浴中放置,在预定的时间点0、2、4、6、8、12、24 h时取样,通过激光粒度分析仪测定其粒径,连续考察24 h,每个样品平行操作3份,结果见表4。在2种37 ℃的缓冲溶液中孵育24 h内,LNS的粒径和PDI几乎无变化,表明LNS在2种环境中能保持稳定,这表示LNS口服给药后,在经胃肠道给药时能保持良好的稳定性,这有利于木犀草素到达肠道后仍以纳米晶存在,从而有利于木犀草素的快速释放而获得较高的生物利用度。 2.2.4 纳米混悬剂的物理状态研究 本实验选用DSC来确定LNS中的木犀草素晶型是否发生了改变,测试样品有木犀草素、TPGS、木犀草素与TPGS的物理混合物和LNS。以空铝盘作为空白对照,分别精密称取3~5 mg的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS干粉放于差式扫描量热分析(differential scanning calorimetry,DSC)仪中,N2流(40 mL/min)保护下,以10 ℃/min升温速度持续升温,升温范围设置为40~600 ℃,记录差式扫描量热分析图谱,所有测试样品重复分析3批,结果见图5。木犀草素和LNS、物理混合物均是结晶,其熔融温度为339.38 ℃,稳定剂对木犀草素的熔融温度基本无影响。这表明LNS中的木犀草素仍处于结晶状态,稳定剂的存在不会改变木犀草素的晶型。在木犀草素和LNS中,在50~150 ℃出现了1个宽峰,这可能是由于药物吸收了水分造成的。 再分别称取适量的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS置于X射线粉末衍射(X-ray powder diffraction,XRPD)仪中,以步进测定方式,散射角扫描范围设为5°~60°,电压设为40 kV,电流为30 mA,结果见图6。由图6可知,木犀草素在19.12、23.20、26.32 ℃有3个衍射峰,衍射峰的峰形较为尖锐,峰值较高,表明木犀草素的晶型为结晶型。稳定剂TPGS在15.72、17.48、22.86、25.60、29.26 ℃有衍射特征峰。制备成纳米混悬剂后,虽然LNS图谱中木犀草素的特征峰有所减弱,但与木犀草素相比,在相应位置特征峰均存在,进一步证实制备成LNS后木犀草素并未显著改变晶型,说明稳定剂的加入不会影响木犀草素的晶型,这与DSC分析的结果一致。 2.3 平衡溶解度与过饱和溶出度测试 为了测定木犀草素的平衡溶解度与木犀草素纳米混悬剂的过饱和溶出度,本实验参考文献方法[21]建立了HPLC法。 2.3.1色谱条件 色谱柱为Sino Chrom ODS-BP色谱柱(250 mm×4.6 mm,5 μm);流动相为甲醇-0.3%磷酸水溶液(60∶40);柱温30 ℃;检测波长350 nm;体积流量1 mL/min;进样量10 μL。 2.3.2对照品溶液的配制 精密称取木犀草素对照品2.50 mg,放入100 mL棕色量瓶中,以适量色谱甲醇使之完全溶解,并定容至刻度线,摇匀得到质量浓度为25 μg/mL的木犀草素对照品储备液。 2.3.3 线性关系考察 采用色谱甲醇稀释成质量浓度分别为0.5、1.0、2.0、5.0、7.0、10.0 μg/mL系列的木犀草素对照品溶液,按“2.3.1”项下色谱条件进行分析,以对照品质量浓度为横坐标(X)、峰面积为纵坐标(Y)进行线性回归,得线性回归方程为Y=44 670 X-2 498.3,R2=0.999 8,结果表明木犀草素在0.5~10.0 μg/mL线性关系良好。 2.3.4 专属性、精密度和准确度考察 在建立的HPLC色谱条件下,木犀草素色谱峰不会受pH 1.2和pH 6.8的溶出介质、稳定剂TPGS、Tyrode液以及肠吸收液中所有成分的干扰(图7),表明本实验所建立的含量测定方法具有较好的专属性,能够满足体外溶出和肠吸收试验中木犀草素的含量测定要求。另外,其精密度实验的RSD为1.2%,高、中、低3个质量浓度的样品加样回收率在99.67%~101.47%,RSD均小2%,符合《中国药典》2020年版的规定。 2.3.5 平衡溶解度的测定 为了测定木犀草素在pH值为1.2、6.8缓冲溶液中的平衡溶解度,取5 mL 2种缓冲溶液各3份于西林瓶中,加入过量的木犀草素,将西林瓶置于恒温振荡箱中,在温度为37℃,转速为75 r/min条件下振荡24 h。取出各样品,3 000 r/min下离心10 min后取上清液,然后用0.2 μm滤膜滤过,取续滤液于进样瓶中,按照“2.3.1”项下色谱条件进样测定,并计算木犀草素的平衡溶解度,结果可知,木犀草素在pH值为1.2、6.8的缓冲溶液中的平衡溶解度分别为(3.83±0.23)、(7.81±0.13)μg/mL。 2.3.6 过饱和溶出度的测定 为了考察LNS体外溶出行为,参照《中国药典》2020年版中桨法进行。具体操作如下:在智能溶出仪中,以500 mL模拟胃液为溶出介质,温度为37℃,桨旋转速度为75 r/min,将30 mL LNS加入溶出介质中,以相同质量浓度的木犀草素乙醇溶液作为对照,二者均平行操作3份。以药物刚接触溶出介质开始计时,分别于5、15、30、60、120、130、150、180、240、360、480 min时取样4 mL,取完样后立即补充4 mL相应的新鲜溶出介质。另外,于120 min取样后,每个溶出杯中分别加入适量的Na3PO4溶液,调节pH值为6.8,以模拟肠液。将所取样品溶液经0.2 μm微孔滤膜滤过,取续滤液置于进样瓶中,照“2.3.1”项下色谱条件测定,计算累积溶出度,结果见图8。为了测定过饱和溶出水平,在整个实验过程中,介质中药物的质量浓度都应保持远远大于药物的饱和溶解度[22]。结果如图8所示,在pH 1.2和pH 6.8时,木犀草素-原料药的过饱和溶出始终低于对应的平衡溶解度,LNS的过饱和溶出始终高于对应的平衡溶解度,说明制剂的过饱和度高;在溶出介质的pH值调为6.8后,过饱和溶出水平明显下降,在150 min后过饱和溶出水平逐渐稳定,说明LNS能维持较高的过饱和溶出水平。 结果表明,LNS较木犀草素原料药具有明显优势,其饱和溶出度约是木犀草素原料药的15倍,过饱和度高并能维持较长时间,可以延缓药物在体内因析出晶体而沉淀的过程,从而使稳定剂在较小用量下也能保证药物分子成溶解态,提高了原料药的溶解度,有利于增加其生物利用度[23]。 2.4 小肠吸收实验 为了探索LNS对木犀草素在胃肠道的吸收部位和吸收速率的影响,采用外翻肠囊法[24]研究LNS在肠道不同肠段的吸收特征,以探究药物在肠道内的最佳吸收部位。 2.4.1 对照品溶液的制备 精密量取“2.3.1”项下相应体积的储备液,置于50 mL棕色量瓶中,用Tyrode液定容至刻度,摇匀,配制出质量浓度为1、2、4、8、16、32、40 μg/mL木犀草素对照品溶液。 2.4.2 线性关系考察 按照“2.3.1”项下色谱条件测定,以木犀草素对照品质量浓度为横坐标(X),峰面积为纵坐标(Y)进行线性回归,得到回归方程为Y=45 475 X-19 575,R2=0.999 6,结果表明木犀草素在1~40 μg/mL线性关系良好。 2.4.3 供试品溶液的制备 大鼠按实验质量浓度随机分为3组,每组4只,实验前12 h禁食,自由饮水。颈椎脱臼处死,打开腹腔,小心分离出小肠,分别截取十二指肠、空肠、回肠、结肠相应肠段各10 cm,用生理盐水冲洗至无内容物流出。将肠段放入37 ℃ Tyrode液中,冲洗,在不损伤肠管的情况下,小心剥离肠表面的脂肪及血管,取出,用滤纸吸干表面水分。 将肠管一端结扎,用光滑的玻璃棒外翻,用Tyrode液冲洗过后,向不同肠段中注入3 mL的空白Tyrode液后将另一端也进行结扎形成囊状的肠管。将肠管放入盛有Tyrode液的烧杯中,实验中始终保持37 ℃的恒温,并不断通入95% O2/5% CO2的混合气体。平衡5 min后,将烧杯中的液体倒出,分别加入不同质量浓度(0.15、0.30、0.60 mg/mL)的木犀草素及LNS药液。以肠囊和药液接触时开始计时,取样时间点分别为15、30、45、60、75、90、105、120 min,每个时间点从肠囊内取样500 μL,同时补充同温同体积的空白Tyrode液。待试验结束后,将各段肠囊置于空白Tyrode液中孵育1 h,以清除掉肠囊及肠组织中残留的药物;随后将上述用于木犀草素和LNS吸收实验的各肠段互换,再按上述操作同法重复试验,以进行自身对照交叉试验的后段实验。取上述肠吸收液,加入甲醇500 μL,超声混匀,15 898×g离心(离心半径6.32 cm)2次,每次15 min,取上清液用0.2 μm滤膜滤过,取续滤液适量即得。 按照“2.3.1”项下色谱条件测定,并计算药物在各时间点的累积吸收量(Q,μg)和药物吸收速率常数[Ka,μg/(mincm2)],结果见图9。 由公式计算不同质量浓度下木犀草素在各个时间点的累积吸收量(Q)。 Q是每个时间点木犀草素的累积吸收量,Ci是每个时间点的实际检测质量浓度,V1是加入肠囊内的空白Tyrode液,V2是每次取样的体积 由图9可知,通过对比2种制剂在各肠段中不同质量浓度的药物吸收情况,可以发现药物的同一时间点的吸收量表现出质量浓度相关性。相同质量浓度下,在各肠段中2制剂组吸收量相比,LNS组的药物累积吸收量显著大于木犀草素溶液组,表明LNS相比于木犀草素溶液能够促进药物在肠道的吸收。 根据小肠内(4个肠段)的Q值,通过线性拟合,由公式Ka=L(斜率)/A(肠管平铺面积)求得吸收速率常数(Ka)和相关系数(R2),结果见表5。2种制剂中木犀草素在肠道的不同部位中的吸收速率大小顺序均为十二指肠>空肠>回肠>结肠,这可能归因于十二指肠和空肠肠段的吸收面积较大;这一结果还表明LNS并没有改变木犀草素在肠道内的主要吸收部位和机制。对比相同质量浓度、相同肠段中2种制剂的吸收情况可以发现,LNS中木犀草素的吸收速率显著高于木犀草素溶液的情况,尤其是十二指肠和空肠中LNS和木犀草素溶液的木犀草素吸收速率差异更加明显,这表明LNS可以增加木犀草素的肠吸收,且十二指肠和空肠是主要吸收部位。 另外,还可以发现2种制剂在每一肠段中的吸收速率都存在显著的质量浓度相关性(P<0.01),但是2种制剂在同一肠段中的吸收速率随质量浓度增加而提高的程度有明显差异,即木犀草素溶液随质量浓度的增加,各肠段中吸收速率增幅增大,而LNS随质量浓度的增加,各肠段中吸收速率增幅减小,这些结果表明2种制剂在各肠段中的吸收均有质量浓度相关性,但其吸收速率与质量浓度之间均存在非线性关系,且仅在Ka<0.052时,木犀草素的肠吸收过程可能只受木犀草素溶解度限制,而不受吸收速度限制。然而,木犀草素的实际口服吸收情况是否符合上述规律以及其具体吸收机制如何,将有待于后期开展体内外吸收途径探索和体内药动学研究来进一步证实。 3 讨论 3.1 稳定剂的选择及药物-稳定剂比的确定 由于不同的稳定剂中化学基团的差异,导致稳定剂与药物微粒之间的分子间作用力以及胶粒间的作用力都有明显差异,所以稳定剂种类会影响到纳米混悬剂的稳定性[25]。因此,本实验首先以粒径和稳定性为考察指标,通过单因素筛选法优化了LNS的稳定剂种类,并确定了以TPGS作为稳定剂能达到较好的预期效果;考虑到稳定剂用量对稳定效果的影响[26],随后本实验又考察了药物-稳定剂比对纳米混悬剂的粒径、稳定性、PDI、ζ电位的影响,最终确定最佳药物-稳定剂比为1∶1。 3.2 LNS体外分析方法的建立及研究 3.2.1 波长的选择 木犀草素对照品与稳定剂TPGS在紫外波长200~800 nm扫描,结果显示木犀草素在207、254、350 nm 3处波长处有强吸收;而TPGS在219、286 nm显示出强吸收,350 nm处没有显示出强吸收。为了排除稳定剂TPGS对木犀草素测定的干扰,选用350 nm作为木犀草素的测定波长。 3.2.2 Tyrode溶液的配制 在木犀草素的肠吸收情况研究中,虽有文献报道了外翻肠囊模型和在体单向肠灌流模型[27-29],但关于木犀草素及其制剂在大鼠不同肠段中的吸收情况鲜有报道,且大多数文献对其吸收情况所提甚少。 本实验采用离体外翻肠囊法,可操作性强、重复性好;能够保留较为完整的肠道组织和黏膜特性,其实验结果与机体药物吸收水平比较接近,具有说服力;但肠外翻肠囊法也存在缺点,如长时间暴露在体外,肠管没有血管和神经的控制,肠黏膜功能和形态会失去作用。因此,本研究为解决这一问题,利用Tyrode培养液改善肠管的存在环境,具体配制方法如下:将NaCl(8.0 g/L)、KCl(0.2 g/L)、CaCl2(0.2 g/L)、NaHCO3(1 g/L)、NaH2PO4(0.05 g/L)、MgCl2(0.1 g/L)、葡萄糖(1.0 g/L),用蒸馏水定容至1 000 mL,稀盐酸调pH值为7.2~7.4,由于CaCl2不好溶解,应在其他无机盐溶解完全后再加入,葡萄糖于临用前再加入。并且在实验过程中连续通入95% O2/5% CO2,保证了在实验期间肠管上肠黏膜的活性。实验证明用该模型了解药物的离体吸收,其结果可靠。 3.3 LNS的过饱和溶出 药物在纳米混悬剂中所处的物理状态关系着其粒径和溶出稳定性,通常无定形药物微粒具有较高的饱和溶出度,但其属于热力学不稳定状态,因此物理稳定性差,容易引起纳米混悬剂粒径分布发生变化,同时溶出速率和溶出度下降;而结晶型药物具有较好的热力学稳定性,随着其粒径的减小,其饱和溶出度会明显提高[30]。根据本实验对LNS中木犀草素物理状态的研究结果可知,本实验制备的LNS中木犀草素以结晶形式存在,这表明LNS可能存在稳定的粒径和溶出度。 在过饱和溶出实验中发现,相比于木犀草素原料药,LNS具有显著的长期高过饱和溶出水平,这可归因于LNS中药物以粒径远小于原料药的状态存在,正如开尔文定律所描述的小粒径药物具有高溶解度一样[31]。药物的长期高过饱和溶出水平将有助于避免或减少口服给药后因胃肠道pH变化而引起的析晶沉淀现象,从而增加药物的吸收速度和时间,提高药物的口服生物利用度。 综上所述,本实验制备的LNS,分散性和储存稳定性良好,方法也简单易行,本实验建立的木犀草素体外分析方法,经方法学验证可知,该方法快速、可靠、准确度高,适合LNS的体外溶出和外翻肠囊吸收实验研究。 同时,外翻肠实验表面,LNS能促进药物在肠道的吸收,可作为木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供坚实基础。同时,在木犀草素肠道吸收的具体机制方面还有很大的研究空间。

木犀草素相关的方案

  • 亳菊提取物木犀草素及芹菜素的含量测定
    目的建立同时测定亳菊提取物中木犀草素及芹菜素的反相高效液相色谱检测方法。方法采用Restek PinnacleⅡC18(250mm× 4.6mm,5μ m)色谱柱,配制流动相为甲醇∶四氢呋喃∶0.3%H3PO4水溶液=42∶13∶56,在流速为1.0ml/min,检测波长为350nm,柱温为室温,进样量为10μ l的情况下建立测定方法。结果木犀草素线性范围为3.99~99.75μ g/ml(r=0.9996),平均加样回收率为105.9%,RSD=1.5% 芹菜素线性范围为4.095~102.375μ g/ml(r=0.9996),平均加样回收率为103.7%,RSD=2.5%。结论用该方法测定亳菊提取物中木犀草素及芹菜素的含量,具有分析时间较短,分离度高的特点。
  • 北京豫维:亳菊提取物木犀草素及芹菜素的含量测定
    目的建立同时测定亳菊提取物中木犀草素及芹菜素的反相高效液相色谱检测方法。方法采用Restek PinnacleⅡC18(250mm× 4.6mm,5μ m)色谱柱,配制流动相为甲醇∶四氢呋喃∶0.3%H3PO4水溶液=42∶13∶56,在流速为1.0ml/min,检测波长为350nm,柱温为室温,进样量为10μ l的情况下建立测定方法。结果木犀草素线性范围为3.99~99.75μ g/ml(r=0.9996),平均加样回收率为105.9%,RSD=1.5% 芹菜素线性范围为4.095~102.375μ g/ml(r=0.9996),平均加样回收率为103.7%,RSD=2.5%。结论用该方法测定亳菊提取物中木犀草素及芹菜素的含量,具有分析时间较短,分离度高的特点。
  • 北京豫维:亳菊提取物木犀草素及芹菜素的含量测定
    目的建立同时测定亳菊提取物中木犀草素及芹菜素的反相高效液相色谱检测方法。方法采用Restek PinnacleⅡC18(250mm× 4.6mm,5μ m)色谱柱,配制流动相为甲醇∶四氢呋喃∶0.3%H3PO4水溶液=42∶13∶56,在流速为1.0ml/min,检测波长为350nm,柱温为室温,进样量为10μ l的情况下建立测定方法。结果木犀草素线性范围为3.99~99.75μ g/ml(r=0.9996),平均加样回收率为105.9%,RSD=1.5% 芹菜素线性范围为4.095~102.375μ g/ml(r=0.9996),平均加样回收率为103.7%,RSD=2.5%。结论用该方法测定亳菊提取物中木犀草素及芹菜素的含量,具有分析时间较短,分离度高的特点。

木犀草素相关的资讯

  • 【瑞士步琦】SFC分离木犀草素的应用
    瑞士步琦SFC 分离木犀草素SFC应用”1简介紫苏(Perilla frutescens)是一种草本植物,其叶和种子中含有多种生物活性成分,包括木犀草素(Luteolin),这是一种具有多种药理作用的黄酮类化合物。木犀草素具有抗氧化、抗炎、抗肿瘤等生物活性。▲ Luteolin采用传统的 Prep HPLC 方式虽然可以将木犀草素从紫苏提取物中进行分离,但是制备时间较长且流动相损耗量较高,无论从时效性还是经济效益角度出发,都不是最佳的选择。2常规制备色谱洗脱条件C18, 10x250mm, 15um梯度洗脱, 水/乙醇 +1% 甲酸进样量:0.5mL流速:15mL/min▲ 木犀草素色谱峰在 36min 之后除了洗脱时间较长之外,由于流动相中水的存在,也给后续木犀草素样品的浓缩带来一定的麻烦。(即使步琦的旋转蒸发仪能够解决这一问题)。3采用 SFC 样品纯化那么是否可以采用超临界流体色谱(SFC)的方式进行样品的纯化呢?首先我们采用 Sepmatix SFC 8X 平行液相色谱快速筛选适合于木犀草素分离的色谱柱。实验条件:流速:3mL/min运行时间:15min梯度洗脱 10-60% 甲醇▲ 紫苏提取物在 PEI 色谱柱上具有更好的分离效果之后采用 Prep SFC-50 对样品进行大量分离与制备。实验条件:PEI, 10x250mm, 5um梯度洗脱 20-40% 甲醇 5min进样量:0.3mL流速:20mL/min▲ 木犀草素色谱峰在 2min 之后两种不同分离方式对比:萃取条件Prep HPLCPrep SFC木犀草素色谱峰36min 之后2min 之后总运行时长42 min + 15 min平衡8 min + 1 min 平衡总溶剂使用390ml ethanol + 240ml water50 ml methanol4实验结论通过对比发现,SFC 在分离木犀草素的过程中,无论从时效性还是溶剂消耗量上都优势明显。
  • 二极管阵列检测器——从现象到本质看木犀草素
    二极管阵列检测器——从现象到本质看木犀草素沈国滨 施磊 金燕 01紫外检测器的进阶版本——二极管阵列检测器(Diode Array Detector, DAD)紫外检测器(Ultraviolet Detector, UV)是目前HPLC应用最广泛的检测器,其工作原理是朗伯-比尔定律。紫外检测要求被检测样品组分具有紫外吸收,通常选择在被分析物有最大吸收的波长处进行检测,以获得最大灵敏度和抗干扰能力。可惜这会导致其它组分在该通道下的吸收变弱甚至无紫外吸收。因此,单通道紫外检测器在对目标化合物,特别是未知化合物进行纯度及定量分析时,结果可能会产生严重的偏差。图1 朗伯-比尔定律(A=lg(1/T)=Klc) 二极管阵列检测器(Diode Array Detector, DAD)是一种新型的光吸收检测器,它采用光电二极管阵列作为检测元件,形成多通道并行工作,可对光栅分离的所有波长的光信号进行检测,从而迅速决定具有最佳选择性和灵敏度的波长。可得任意波长的色谱图及任意时间的光谱图,具有色谱峰纯度鉴定、光谱图检索等功能,为定性、定量分析提供更丰富的信息。图2 二极管阵列检测器 02 DAD在天然产物构型变化监测时的妙用独一味(学名:Lamiophlomis rotata)是唇形科独一味属植物,有活血祛瘀,消肿止痛的功效,是青藏高原特有的一种重要药用植物。木犀草素是独一味叶中的主要成分 (Luteolin, CAS No. 491-70-3 ),是一种天然弱酸性的黄酮类化合物。木犀草素具有抗炎、抗过敏等作用,可用于治疗COPD、支气管哮喘以及慢性咽炎、变应性鼻炎等引起的慢性咳嗽。图3 木犀草素结构式本文基于赛默飞液相色谱系统和二极管阵列检测器,开发了一种可用于检测中药独一味胶囊提取液中木犀草素含量的方法。通过DAD检测器不仅可以实现定量分析,也可以用于色谱峰的定性分析。同时利用DAD全波长扫描的结果以证实木犀草素在流动相pH变化时会发生最大吸收波长红移,从而影响其在C18色谱中的保留等现象进行解释。 03 实验部分色谱条件流动相pH值对色谱行为的影响图4 流动相不同pH对于保留时间和吸收波长的影响 实验结合文献表明木犀草素对于流动相的pH敏感,依据计算模拟表明木犀草素的pKa 为 6.5±0.4。即在中性时,部分木犀草素可能以极性较强的离子形式存在,保留较弱;当调节pH为酸性时,抑制了电离,使得该分子以分子形式存在。借助二极管阵列检测器(DAD),可以实现全波长扫描,可以获得更全面的紫外光谱信息。木犀草素的紫外吸收波谱也对流动相的pH敏感,不仅保留时间产生了较大的差异,且随着碱性增强,最大吸收波长产生红移。表明该物质会在不同pH条件下产生不同的构象,且构象的变化会引起共轭结构的变化。 样品分析结果图5 标准品与样品对照色谱图(蓝色:标准品,黑色:样品) 图6 样品DAD三维色谱图(插图:8.640分钟的紫外吸收光谱图) 木犀草素保留良好,色谱峰形对称,无杂质干扰,可用于定性和定量分析。在0.3~100 μM 的范围内线性良好,相关系数R2达0.9999。进样精密度良好,标准品和样品的保留时间RSD均小于为0.2 %,峰面积RSD均小于为0.9 %。根据分析标准品保留时间的紫外吸收光谱,可见样品中对应色谱峰的最大吸收波长与木犀草素一致,推断该物质为木犀草素。根据校正曲线计算可得独一味胶囊提取液中木犀草素的摩尔浓度为27.4 μM。通过在样品中加入已知浓度的标准品来判断方法的准确性,该方法的回收率在95.9~103.0%之间。 04 结论本文基于赛默飞液相系统和二极管阵列检测器,开发了一种可用于检测中药独一味胶囊提取液中木犀草素含量的方法。通过DAD检测器不仅可以实现定量分析,也可以用于色谱峰的定性分析。利用DAD全波长扫描结合其它有关计算,验证了木犀草素在不同pH条件下最大吸收波长产生了红移,从而影响其在C18色谱中的保留。本文报道的方法能为极性小分子检测方法的开发提供定性和定量分析实验基础,为阐明色谱柱中的保留机理提供了理论依据,凸出了全波长扫描DAD检测器在分析物质变化过程和监测反应过程时的优势。
  • “检测直通车”之金银花的鉴别及质量评价——中广测
    我要测讯 金银花,忍冬科植物忍冬的干燥花蕾或带初开的花,主要成分为绿原酸和木樨草甘,是名贵药材之一。由于中药方剂中多用刀金银花,并且今年由药用转向食用和日用化工等因素,价格持续上涨,由此掺假现象也屡被发现。山银花与金银花外貌相似,其主要成分为绿原酸,多被不法商贩掺入金银花中,代替金银花。虽然山银花也为药材,但因其成分中不含木樨草甘,在药用价值和价格上还是有别于金银花。 金银花 金银花的检测方法(高效液相色谱法)   一、实验原理   试样经粉碎、过筛后,采用甲醇-水溶剂超声提取,后高效液相色谱法测定其中四种组分的含量值,再根据药典规定鉴别其真假判定其质量,主要区别金银花和山银花。   二、仪器和试剂   高效液相色谱仪带紫外检测器,AS3120超声波发生器 甲醇为色谱纯试剂,实验用水为超纯水。   三、试验方法   1. 提取   测定绿原酸、木犀草苷提取条件为:将样品充分粉碎,粉末(过四号筛)约0.5g,精密称定,置具塞锥形瓶中,精密加人50%甲醇50ml,称定重量,超声处理30分钟,放冷,再称定重量,用50 %甲醇补足减失的重量,摇匀,滤过,即得A, 上机测定得到绿原酸、木犀草苷的液相色谱图见图1A/B/C。   测定灰毡毛忍冬皂苷乙和川续断皂苷乙提取条件为:将样品充分粉碎,粉末(过四号筛)约2g,精密称定,置具塞锥形瓶中,精密加人50%甲醇50ml,称定重量,超声处理30分钟,放冷,再称定重量,用50 %甲醇补足减失的重量,摇匀,滤过,即得B, 上机测定得到灰毡毛忍冬皂苷乙和川续断皂苷乙的液相色谱图见图2。 A B C 图1 标准溶液绿原酸(A)、木犀草苷(B)和样品溶液的液相色谱图(C) A B 图1 标准溶液灰毡毛忍冬皂苷乙和川续断皂苷乙(A)和样品溶液的液相色谱图( B)   2 仪器参数   2.1 测定绿原酸、木犀草苷液相色谱条件   色谱柱: Aglient TC- C18 (250×4.6mm,粒径5μm)   检测波长: 350nm   流动相:甲醇-水(含有2mmol/L硫酸)(梯度洗脱)   流速:1.0mL/min   进样量:20μL。   2.2 测定灰毡毛忍冬皂苷乙和川续断皂苷乙液相色谱条件   色谱柱: Aglient TC- C18 (250×4.6mm,粒径5μm)   检测波长: 203nm   流动相:甲醇-水(含有2mmol/L硫酸)(60:40)   流速:1.0mL/min   进样量:20μL。   3 结果计算和评价   采用外标法计算各种物质的含量,再根据下表作出评价。 名称 绿原酸 木犀草苷 灰毡毛忍冬皂苷乙 灰毡毛忍冬皂苷乙+ 川续断皂苷乙 金银花限量指标(%) ≥1.5 ≥0.05 不得检出 不得检出 山银花限量指标(%) ≥2.0 不限 不限 ≥5.0   4 检出限   本方法仪器最低检测浓度绿原酸、木犀草苷为1 μg/mL,灰毡毛忍冬皂苷乙和川续断皂苷乙为10 μg/mL,按照上述样品前处理计算,本方法检出限绿原酸、木犀草苷为0.01%。灰毡毛忍冬皂苷乙和川续断皂苷乙为0.1%。   附图:   1、样品粉碎   2、检测仪器——高效液相色谱仪   3、测试谱图   附:中国广州分析测试中心   中国广州分析测试中心(简称中广测)——在广东省测试分析研究所基础上建立的国家级的分析测试中心,是以理化分析测试为重点的综合性研究和服务机构,已有50年历史。   中广测于1990年通过省级计量认证,1991年通过国家级计量认证,2001年通过中国实验室国家认可。经过多年的发展,中广测目前已成为通过国家级资质认定(CMA)和国家认可(CNAS)的第三方检测、校准实验室和A类检查机构,可向社会提供具有证明作用的测试数据和结果。中广测的管理体系符合ISO/IEC 17025和ISO/IEC 17020的要求,因而也是依据ISO 9001运作的。根据中国合格评定国家认可委员会与美国、欧盟、日本等国家和地区的认可机构达成的互认协议,中广测出具的数据和结果可获得广泛的国际互认。 撰稿人: 中广测 高级工程师 黄芳 我要测 杨改霞

木犀草素相关的仪器

  • 粗糙度仪平台JS-340介绍粗糙度仪平台JS-340为便携式粗糙度测量仪的主要附件之一,适用于各种国产手持式粗糙度仪TR200、TR210、NDT150、等,为其提供高精度的测量平台和立柱升降系统,可方便地调整仪器,其效果将大大降低仪器的操作难度,尤其是在测量高精度零件时,效果会更明显。该产品也适用于使用其他厂家(包括国外厂家)粗糙度测量仪的用户,但需要定制一个专用的连接部件。当然,也不排除其它用途的特殊用户。对于专用传感器,必须借助这套附件才能够进行复杂的精确调整。 工作原理:操作者通过转动升降手轮带动丝杠螺母系统运动,螺母与滑架连接,滑架与仪器连接,从而带动仪器沿精密燕尾导轨升降。由于丝杠螺母系统采取了消除间隙的特殊设计,使得升降回程差调到很小,因此,本系统升降调整精度很高。并采用了定心和推力轴承来提高旋转的平稳性。 技术参数:丝杆升降,平台上设置V型槽,用来测量形状较小的工件,可提高测量精度。升降高度:300±1mm;升降回程误差:不大于手轮旋转的1/6圈;测量平台的平面度:00级(平面公差值3μm);测量平台尺寸:400*250*80mm。 操作步骤:按照粗糙度仪的说明书要求操作,先将传感器装到仪器上,再将平台连接板装到粗糙仪的主机上,然后将仪器装到立柱的滑架上,锁紧要可靠。将工件放在平台(或V型块)上,置于传感器的正下方,然后调整升降手轮,使传感器接近工件,当传感器即将接近工件时,一定要放慢传感器的下降速度,当传感器接触工件后,要仔细观察触针位置,当触针处在零位附近时,即可测量。轴向测量圆柱形工件时,可将工件放在随机配置的V型块上,该V型块的中心线与传感器的触针处在同一垂直平面中(出厂时已调好),即传感器接触工件后所测量是圆柱形工件zui高点的母线。调整升降手轮前,先松开滑架锁紧手轮;测量高精度零件时,可将立柱锁紧手轮锁紧,使测量更稳定精确。要经常清洗和防锈;不要用力侧向搬动滑架;移动时,不要直接搬立柱,应把住平台移动,以防立柱松动,定位错误。 标准配置; 内六角扳手3把(M3、M4、M6)金属V型块1块粗糙度仪固定板4块连接板2块十字螺丝刀1把说明书一份 备注:可提供各种定制要求,以适应各个厂家各个型号粗糙度测量仪使用。
    留言咨询
  • 菊花液相检测--样品分离度解决 适用柱型号Zafex Acutfex YS-C18样品信息对照品:3,5-o-双咖啡酰基奎宁酸(货号:WXHY-0081-020批号: 20171212含量:102.61%)对照品:绿原酸(货号:WXHY-000740 批号:ZP1038 含量:98.17%)对照品:木犀草苷(货号:WXHY-0076-020 批号:20180326 含量:98.03% )供试品:本品为菊科植物菊Chrysanthemum morifolium Ramat.的干燥头状花序, 组分名称 保留时间 峰高 峰面积 理论塔板数 拖尾因子 (min) (mV) (mV*s)绿原酸 10.649 63.53 529171 35075 1.043木犀草苷 24.018 51.54 880166 47549 1.0443,5-o-双咖啡酰基奎宁酸 31.304 98.01 2514437 33549 0.962理论板数按3,5-o-双咖啡酰基奎宁酸峰计算不低于8000。菊花药材高效液相色谱条件色谱柱:Acutfex YS-C18 250*4.6mm 5μm流动相A:乙腈 流动相B:0.1%磷酸溶液时间(分钟)流动相A(%)流动相B(%)0-1110-1890-8211-3018-2082-8030-40208040-4520-8580-1545-4685-1015-90检测波长:348nm流速:1.0ml/min柱温:30℃进样量:10ul仪器:SHIMADZU LC2030plus 菊花液相检测--样品分离度解决 适用柱型号Zafex Acutfex YS-C18相关介绍品牌: 喆分特点:通用ODS-C18色谱柱 通用型的、耐受高比例水相的十八烷基反相色谱柱填料。其填料是在超高纯度球形硅胶上键合通用性的十八烷基官能团,并进行严格的亲水性端基封尾修饰所得。无论是对碱性化合物还是酸性化合物吸附都较小,使得化合物在色谱柱上具有理想的峰型。 采用标准封端技术,平衡亲水疏水,通用型C18柱;适用于绝大多数反相条件下化合物分析,贡献超高的理论塔板数;偏低的碳载量,出峰快 适用于酸性、中性化合物的分离分析。案例:测定菊花药材色谱柱:Acutfex YS-C18,5μm,4.6×250 mm;流动相:0.1%磷酸水溶液(用磷酸调节pH值至7.0)-乙腈流速:1.0 mL/min;检测波长:348nm;温度:30℃;进样量:10 μL对复杂基质样品具有良好的分离效果菊花液相检测--样品分离度解决 适用柱型号Acutfex YS-C18,依照2020年版中国药典进行测试,结果完全符合要求!欢迎老师您来咨询!
    留言咨询
  • 三为科学致力于中药中草药分离纯化、天然药物活性成分有效成分分离纯化应用的快速纯化制备液相色谱技术的开发,sanotac高压层析系统同时兼容Biotage 快速纯化制备液相色谱、ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学成分分离纯化与合成化合物的分离纯化领域已经得到广泛应用:皂苷类离纯化 ,黄酮分离纯化,异黄酮分离纯化,香豆素分离纯化,色原酮分离纯化,生物碱分离纯化,酚酸分离纯化,萜类分离纯化,蒽醌分离纯化,木脂素分离纯化。黄酮类化合物是以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素,其中包括黄酮的同分异构体及其氢化和还原产物,也即以C6一C3一C6为基本碳架的一系列化合物。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成盐而表现为弱碱性,因此曾称为黄碱素类化合物。黄酮类化合物可分为下列几类:黄酮类(flavone),黄酮醇类(flavonol),二氢黄酮类(dihydroflavone),二氢黄酮醇类(dihydroflavonol),异黄酮类(isoflavone),二氢异黄酮类(dihydroisoflavone),查尔酮类(chalcone),橙酮类(aurones),黄烷类(flavanes,花色素类(anthocyanidins),双黄酮类(biflavone) 高压层析系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-50.00ml/min(梯度)流速精度±0.5%压力范围0-30MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求 三为科学黄酮类化合物分离纯化案例:(二)黄酮类化合物 Flavonoids中文名英文名CAS No纯度(%)植物来源大波斯菊苷;芹菜素-7-葡萄糖苷;芹菜素-7-O-葡萄糖苷;芹菜素-7-O-β-D-葡萄糖苷;芹黄素葡糖苷;芹黄春Apigenin-7-glucoside;Apigenin-7-O-β-D-glucopyranoside Apigetrin578-74-5≥98.5黄菊花香叶木素-7-葡萄糖苷 香叶木素-7-O-葡萄糖苷;香叶木素-7-O-β-D-葡萄糖苷Diosmetin-7-glucoside;Diosmetin-7-O-β-D-glucopyranoside20126-59-4≥98.5芹菜苷 芹黄苷;芹菜素-7-O-葡萄糖-2-O-芹糖苷Apiin Apigenin-7-(2-O-apiosylglucoside)26544-34-3≥98.5芹菜芹菜素;芹黄素;4’,5,7-三羟基黄酮Apigenin 4’,5,7-Trihydroxyflavone Apigenin Apigenol520-36-5≥98.5山奈素;3,5,7-三羟基-4’-甲氧基黄酮;山奈酚-4’-O-甲醚Kaempferide;3,5,7-trihydroxy-4′-methoxyflavone491-54-3≥98.5高良姜高良姜素;3,5,7-三羟基黄酮Galangin 3,5,7-trihydroxyflavone Norizalpinin548-83-4≥98.5山奈酚Kaempferol520-18-3≥98.5油菜花粉香叶木素Diosmetin520-34-3≥98.5苏薄荷异槲皮苷;异栎素;罗布麻甲素;槲皮素-3-O-葡萄糖苷Isoquercitrin Isoquercitroside Quercetin 3-O-glucofuranoside21637-25-2≥98.5桑叶紫云英苷;黄芪苷;紫云英甙;莰非醇-3-O-葡萄糖苷;山柰酚-3-葡萄糖苷;百蕊草素ⅡAstragalin;Kaempferol-3-glucoside 3-Glucosylkaempferol480-10-4≥99.0百蕊草素I;山柰酚-3-葡萄糖鼠李糖苷;阿福豆苷Kaempferol-3-O-glucorhamnoside40437-72-7≥98.5百蕊草槲皮素Quercetin117-39-5≥98.5鱼腥草 桑寄生槲皮苷Quercitrin522-12-3≥98.5木犀草苷;木犀草素-7-O-β-D-葡萄糖苷;木犀草素-7-O-葡萄糖苷;青兰苷Luteolin-7-O-β-D-glucoside Luteoloside Glucoluteolin Cynaroside Cinaroside Cymaroside5373/11/5≥99.0金银花水仙苷;水仙甙;异鼠李素-3-O-β-D-芸香糖苷;异鼠李素-3-O-芸香糖苷Narcissoside;Narcissin Isorhamnetin-3-O-β-D-rutinoside604-80-8≥98.5芦笋异鼠李素Isorhamnetin480-19-3≥98.5蒲黄异鼠李素-3-O-新橙皮糖苷Isorhamnetin-3-O-neohespeidoside;55033-90-4≥98.5香蒲新苷Typhaneoside104472-68-6≥98.5异鼠李素-3-O-葡萄糖苷;异鼠李素-3-O-β-D-吡喃葡萄糖苷Isorhamnetin-3-O-β-D-glucoside;Isorhamnetin-3-O-glucoside5041-82-7≥98.5蒙花苷Acaciin Acaciin Linarin Buddleoflavonoloside Buddleoglucoside480-36-4≥95.0野菊花芸香柚皮苷;柚皮素-7-O-芸香糖苷Narirutin;Isonaringenin;Naringenin 7-rutinoside14259-46-2≥98.5枳实柚皮苷;柚皮甙;柚皮素-7-O-新橙皮糖苷Naringin;Naringenoside Naringenin 7-neohesperidoside10236-47-2≥98.5橙皮苷;橙皮甙Hesperidin;Hesperidoside Hesperetin 7-rutinoside 520-26-3≥98.5新橙皮苷;新橙皮甙Neohesperidin;Hesperetin 7-neohesperidoside13241-33-3≥98.5柚皮苷二氢查尔酮Naringin dihydrochalcone18916-17-1≥98.5柚皮素;柚皮苷元;柑橘素Naringenin;4’,5,7-Trihydroxyflavanone480-41-1≥98.5山奈苷;山奈酚-3,7-二鼠李糖苷Kaempferitrin Kaempferol 3,7-L-dirhamnoside Lespedin482-38-2≥98.5鸡冠花 罗汉果异荭草苷Isoorientin Homoorientin Lespecapitoside4261-42-1≥98.5竹叶异牡荆素(under development)Isovitexin Apigenin 6-C-β-D-glucoside38953-85-4≥98.5牡荆素鼠李糖苷;牡荆素-2-O-鼠李糖苷Rhamnosylvitexin Vitexin-Rhamnoside Vitexin 2' ' -rhamnoside64820-99-1≥98.5山楂叶牡荆素葡萄糖苷;牡荆素-4″′-O-葡萄糖苷Glucosylvitexin Vitexin glucoside Vitexin-4″-O-glucoside76135-82-5≥98.5金丝桃苷Hyperoside Hyperin Hyperosid Quercetin 3-galactoside482-36-0≥98.5牡荆素Vitexin Apigenin 8-C-glucoside Vitexina3681-93-4≥99.0白杨素;5,7-二羟黄酮;柯因Chrysin480-40-0≥98.5汉黄芩苷Wogonoside Oroxindin Wogonin 7-β-D-glucuronide51059-44-0≥98.5黄芩野黄芩苷;灯盏花乙素Scutellarin 27740-01-8≥98.0木蝴蝶素A-7-葡萄糖醛酸苷 木蝴蝶素A-7-0-β-D-葡萄糖醛酸苷 千层纸素A-7-0-β-D-葡萄糖醛酸苷Oroxyloside Oroxylin A-7-glucoronide ≥98.5Oroxylin A-7-O-β-D-glucoronide黄芩素Baicalein491-67-8≥98.5黄芩苷;黄芩素-7-O-葡萄糖苷Baicalin21967-41-998.5草质素苷;草质素甙;草质素-7-O-鼠李糖苷Rhodionin;Herbacetin 7-O-α-rhamnopyranoside≥98.5红景天红景天素;草质素甙;草质素-7-O-(3′′-β-D-葡萄糖基)-α-L-鼠李糖苷Rhodiosin Herbacetin-7-O-glucorhamnoside86831-54-1≥98.5射干苷;鸢尾种苷;鸢尾黄酮苷;鸢尾甙Shekanin Tectoridin611-40-5≥98.5射干杨梅素Myricetin 3,5,7,3' ,4' ,5' -hexahydroxyflavone529-44-2≥98.0侧柏叶杨梅苷;杨梅素-3-O-鼠李糖苷Myricitrin Myricetin3-O-rhamnoside Myricitroside Myricitrine17912-87-7≥98.0淫羊藿苷Icariin Icariine Icariln Ieariline489-32-7≥98.0淫羊藿朝藿定AEpimedin A110623-72-8≥98.0朝藿定BEpimedin B110623-73-9≥98.0朝藿定CEpimedin C Baohuoside VI110642-44-9≥98.0甘草素;4′,7-二羟基黄烷酮Liquiritigenin 4′,7-dihydroxyflavanone578-86-9≥98.5甘草甘草苷;甘草甙;甘草素-4’-O-葡萄糖苷Liquiritoside Liquiritin Likvirtin Liquiritigenin 4′-O-glucoside551-15-5≥98.5芹糖甘草苷;甘草苷芹糖;甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;甘草素二糖苷Liquiritin apioside≥98.5异甘草素;4,2' ,4' -三羟基查耳酮Isoliquiritigenin 2′,4, 4′-Trihydroxychalcone961-29-5≥98.5异甘草苷;异甘草甙Isoliquiritin5041-81-6≥98.5芹糖异甘草苷;异甘草苷芹糖;异甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;异甘草素二糖苷Isoliquiritin apioside; Neolicuroside120926-46-7≥98.5氯化矢车菊素-3-O-葡萄糖苷Cyanidin-3-O-glucoside;Kuromanin Chloride7084-24-4≥97.0黑米皮 黑豆衣 更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网: 流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询

木犀草素相关的耗材

木犀草素相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制