表木栓醇

仪器信息网表木栓醇专题为您提供2024年最新表木栓醇价格报价、厂家品牌的相关信息, 包括表木栓醇参数、型号等,不管是国产,还是进口品牌的表木栓醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表木栓醇相关的耗材配件、试剂标物,还有表木栓醇相关的最新资讯、资料,以及表木栓醇相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

表木栓醇相关的资料

表木栓醇相关的论坛

  • 粘度计测粘度

    先用溶剂汽油洗涤粘度计的内容器及其流出孔,然后用空气吹干。再用木栓塞住粘度计的流出孔,将预先加热稍高于规定温度的试油注入内容器中,试油液面必须稍高于尖钉顶端。然后提起木栓使多余的试油流下。直至三个尖钉的顶端与试油液面处于同一水平面上。然后加盖并不断搅拌。对温度为50℃以下的试油进行粘度测定时,应将外容器的水预先加热到稍高于测定油温(一般高0.2—0.5℃)。测定前将试油在规定的温度下恒定5 分钟,温差不应超过±0.2℃。 试油达到所需温度并恒定后。迅速提起木栓同时开动秒表,记录接受瓶中试油达到200毫升所需时间。以此时间除以该粘度计的水值,即是试油的恩氏条件度。使用恩氏粘度计应注意粘度计的内容器不准擦拭,只允许用剪齐边缘的滤纸吸去遗留在容器内的液滴。用木栓塞住粘度计的流出孔口时,不要用力过分以免磨损。注入试油时注意不要产生气泡。在试验过程中,外容器的水温应保持与内容器试油温度的差

表木栓醇相关的方案

表木栓醇相关的资讯

  • 利用MALDI质谱成像技术揭示牡丹和芍药根的空间代谢组
    关键词:MALDI-MSI 质谱成像、Paeonia suffruticosa 牡丹、Paeonia lactiflora 芍药、Monoterpene glycoside 单萜苷、Spatial distribution 空间分布01 前言 芍药属植物具有较高的观赏价值和经济价值,以及重要的药用价值,引起园艺学家、植物学家和草药学家的极大关注。芍药属植物约有35种,其中牡丹 (Paeonia suffruticosa,PS)和芍药(Paeonia lactiflora ,PL)是两种主要的东方药草。牡丹和芍药同属,外形也极为相似,从植株形态上进行区分:牡丹,是小灌木,有木芍药之称;而芍药是多年生草本植物。在中国、日本和韩国,牡丹皮(牡丹的干燥根皮)和白芍(芍药的根部)是具有镇痛和抗炎活性的重要中药。尽管 PS 和 PL 的植物化学和药理作用的相似性和差异性已经被广泛研究,但其空间代谢组的比较几乎没有报道。空间代谢组学是代谢组学研究发展中的一个分支,它提供了组织结构和个体代谢物之间的直接联系。阐明PS和PL的空间代谢组差异在植物分类和药用植物质量控制等领域具有重要意义。02 摘要 2021年4月,中国药科大学天然药物与中药学院国家重点实验室李萍教授、李彬教授在 New Phytologist 期刊上发表了题目为:“Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging”的研究论文,本研究结合多基质和正负离子检测模式,对牡丹和芍药的根切片进行了高质量分辨率基质辅助激光解吸电离质谱成像(MALDI MSI)和 AP-SMALDI 串联质谱(MS/MS)成像,系统地研究了单萜糖苷类和丹皮酚苷类、单宁类、黄酮类、糖类、脂类等多种代谢产物的空间分布。利用 Li DHB 基质的串联质谱成像技术来准确区分芍药苷和芍药内酯苷两种结构异构体的组织分布。此外,参与没食子单宁生物合成途径的主要中间产物在根部成功定位和显示。03 结果 3.1MALDI MSI的PS和PL根代谢产物的原位分析采用高分辨率 MALDI MSI 和 MALDI MS/MS Imaging 相结合的方法,获得了 PS 和 PL 根横截面的综合代谢产物分布图,并进一步用 LC-MS/MS 进行了验证。代表性部位的质谱图从根的四个区域获得,包括木栓层、皮层、韧皮部和木质部(图1)。在正离子模式下,使用 DHB 基质,检测到两种主要特定类别的次级代谢物单萜糖苷类(monoterpene glycosides,MGs)和没食子单宁(gallotannins)。在 PS 和 PL 中均观察到共同的代谢物 MGs,如芍药苷/芍药内酯苷(m/z 519.1263,结构异构体)、氧化芍药苷(m/z 535.1212)、苯甲酰芍药苷(m/z 623.1525)、牡丹皮苷 A(m/z 653.1631)、牡丹皮苷 B/J(m/z 669.1580)、牡丹皮苷 E(m/z 565.1318)和苯甲酰氧芍药苷/牡丹皮苷 C (m/z 639.1475,同分异构体)。牡丹/芍药中生物合成的没食子单宁是没食子酸葡萄糖酯(即没食子酰葡萄糖,GGs)。如图1所示,观察到具有相邻峰间距为 152.01 Da 的 m/z 分布,表明母体分子上连续添加了没食子酸基团。在 PS 和 PL 中,检测到12个没食子酰基残基的取代产物(2GG-12GG,m/z 523.0485-2043.1581)。作者还发现了 PS 特有的成分—丹皮酚苷类(PGs),如牡丹酚甙(m/z 367.0790)、牡丹酚原甙和牡丹酚新甙(m/z 499.1212,同分异构体)。图1. 正离子模式下牡丹(左)和芍药(右)根横截面不同区域的 MALDI 质谱图3.2MALDI MSI比较PS和PL根单萜和丹皮酚苷类成分的空间分布图a中,通过 PS 和 PL 的横截面可以看到解剖结构中的物种多样性,PS 根木质部区域高度木质化;PS 韧皮部约占整个横切面的45-55%,PL 根的韧皮部仅占10-20%。图b中,可以看到 PS 和 PL 中单萜糖苷类的空间分布模式,芍药苷(m/z 519.1263,[M+K]+)及其衍生物主要分布在 PS 和 PL 的木栓层、韧皮部区域,PL 的木质部射线区,但在 PS 的木质部(木芯处)检测信号较低。此外,在图c中,可看到丹皮酚苷的空间分布,在 PS 根的木栓层和韧皮部中可以解吸出丹皮酚苷类化合物,如丹皮酚苷(m/z 367.0790)、牡丹酚原甙和丹皮酚新甙(m/z 499.1212,同分异构体)、丹皮酚苷A/B/C/D(m/z 651.1322,同分异构体)和丹皮酚苷E(m/z 661.1741),而 PL 的根中不存在丹皮酚苷类物质。图2 牡丹和芍药根的 MALDI 成像 (a. 甲苯胺蓝O染色的组织切片的光学图像;b. 单萜糖苷类(MGs)的离子图像;c. 丹皮酚苷(PGs)的离子图像)。3.3AP-SMALDI MS/MS成像分析结构异构体的空间分布由于存在高丰度 [M+K]+ 断裂困难、[M+Na]+ 丰度太低等问题,Li DHB 被应用于本实验 AP-SMALDI MS/MS 成像。如图3(a)所示,Li DHB 显示为产生芍药苷和芍药内酯苷的 [M+Li]+ 二级碎片的有效基质,其中两个差异片段 m/z 253.13(芍药内酯苷)和 m/z 255.11(芍药苷)被检测到。在 50μm 空间分辨率下进行 AP-SMALDI MS/MS 成像实验,并在 m/z 487.1777处检测到 [芍药苷/芍药内酯苷+Li ] + 的前体分子离子。前体分子离子和二级碎片离子的离子图像如图3(b)所示,显示了前体分子离子和最终产物离子的空间分布,在 PS 中,仅检测到 m/z 255.11,且主要在木栓层中观察到;在 PL 中检测到 m/z 255.11 和 m/z 253.13,二者分布趋势相似,且木栓层、韧皮部和木质部射线区的信号强度高于皮层和木质部维管束。通过 AP-SMALDI MS/MS 成像,芍药苷和芍药内酯苷的空间分布被清晰的呈现出来。作者使用 LC-MS 方法进一步验证 MALDI 成像结果,PS 和 PL 的根被人工分成木质部和木质部外两个部分。如图3(c)所示,LC-MS 结果与 MALDI 成像结果一致,在牡丹中仅检测到芍药苷;在芍药中,检测到了两者,并且在外层中观察到更高丰度的芍药苷和芍药内酯苷,因此,Li DHB 基质是可行的,以获得用于分辨异构体空间分布的不同片段。图3 MALDI MSI 及 LC-MS 验证。(a)前体物质m/z 487.18的串联质谱,分别来自芍药内酯苷和芍药苷。(b)像素大小为50μm的牡丹(PS,上)和芍药(PL下)根中芍药苷和/或芍药内酯苷的 MSI图。(c)用 LC-MS 从 PL 和 PS 根切片的不同部位相对定量芍药苷和/或芍药内酯苷。3.4MALDI MSI的PS及PL根部没食子单宁生物合成途径的空间分布分析下图4显示了在牡丹和芍药的根切片中显现的没食子酸生物合成途径和离子图像,在牡丹和芍药根中观察到总共13种参与没食子酸生物合成途径的代谢物,包括没食子酸、没食子酰葡萄糖、2GG -12GG。如图4所示,没食子酸(m/z 169.0142,[M-H]-)是合成没食子单宁的起始化合物。没食子酸主要分布于 PS 的木质部区域(木芯),广泛分布于 PL 的根部,形成层部位含量明显增高。β-葡萄糖苷作为没食子单宁的基本单元和主要的酰基供体,主要分布于 PS 的韧皮部,PL 的木质部射线和皮层。从 2GG-12GG 途径观察到没食子单宁空间分布的动态变化。2GG、3GG 主要分布于 PS 的木栓层和韧皮部区域,在 PL 中含量明显较低。4GG、5GG 主要分布在 PS 的木栓层、韧皮部和木质部中,PL 的木质部和韧皮部。其中,作为 6GG-12GG 合成的前体物质,5GG 相对均匀地分布于牡丹和芍药根中。从 6GG -12GG 的第二个序列中,复合单宁主要集中在 PS根的木质部导管区和PL的楔形木质部区域和皮层中,且覆盖面积呈明显下降趋势(尤其是 11GG 和 12GG )。图4 MALDI 质谱成像技术研究牡丹和芍药根中没食子单宁生物合成途径。(a)没食子单宁的生物合成途径。(b)从 PS (左)和 PL (右)根切片获得的参与没食子单宁生物合成途径的主要中间体的质谱成像图。3.5MALDI MSI比较PS和PL根中其他代谢物的空间分布槲皮素(m/z 303.0499,[M+H]+)主要存在于 PS 和 PL 的皮层中(图5)。单糖(m/z 219.0266,[M+K]+)、二糖(m/z 381.0794,[M+K]+)、三糖(m/z 543.1322,[M+K]+)和四糖(m/z 705.1850,[M+K]+)主要积累在 PS 的皮层和韧皮部以及 PL 的皮层和木质部射线区。脂质 PC(34:2) (m/z 796.5253,[M+K]+)和 PC(36:4) (m/z 820.5253,[M+K]+)主要分布于 PS 的根系形成层和 PL 的木质部射线区。图5 从牡丹(PS,左)和芍药(PL,右)根部切片中选取的类黄酮、糖类和脂类的离子图04 总结 本研究采用 MALDI MSI 结合 LC-MS 代谢物检测技术,系统表征了单萜和丹皮酚苷类、鞣质类、黄酮类、糖类和脂类等多种代谢产物(65种)的空间分布。用高分辨 MALDI MSI 研究了两种芍药科植物牡丹和芍药共同代谢物和特定代谢物在空间分布上的相似性和差异性,为代谢物的生物合成、运输和积累研究提供了重要信息。为了解决异构代谢物空间分布不明确的问题,作者进行了 MALDI 串联质谱成像,明确了芍药苷和芍药内酯苷的空间分布。本研究表明牡丹和芍药的皮以及中心部位都含有丰富的生物活性物质,能够为传统药材加工方法的改良提供直观的依据。此外,本研究还首次绘制了参与没食子单宁生物合成途径的前体以及中间体的空间分布图,可水解的单宁主要分布在木栓层、韧皮部等,其可能在不损害细胞质成分的情况下发挥保护作用,如对抗生物压力;鞣花鞣质倾向于在木质部区域积累,这可能与木质素具有共同的支持植物的功能。综上所述,高分辨率 MALDI MSI 提供了全面、准确的代谢物空间分布,为中药的深入研究、使用和加工方法的改良提供了独特的见解。文献地址:https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17393「科瑞恩特」独家代理质谱成像离子源在大中华区独家代理的两款质谱成像离子源,都可搭载Thermo ScientificTM Q ExactiveTM或Obitrap ExplorisTM系列质谱仪。AP-SMALDI 5AF高分辨自动聚焦3D快速质谱成像系统,常压操作环境,空间分辨率可达到3μm,独特3D检测模式可以检测凹凸不平的样品表面,快速检测模式可达18pixel/s,全像素检测大大提高检测灵敏度,高空间分辨率和高质量分辨率使样本中的分子化合物达到最佳成像效果。MALDI ESI InjectorTM 透射式超高分辨质谱成像系统,可以同时搭载MALDI离子源与ESI离子源,既可用于传统LC-MS/MS实验,也可用于质谱成像检测,通过双离子漏斗接口实现离子源快速切换,无需拆卸,操作便捷,并且接口可以进一步升级为MALDI-2和t-MALDI检测,大大提高空间分辨率和检测灵敏度。
  • 岛津成像质谱显微镜应用专题丨板蓝根可视化
    质谱成像技术揭示板蓝根中化学成分的空间分布 板蓝根(Isatidis Radix)为十字花科菘蓝属植物菘蓝(Isatis indigotica Fortune)的干燥根,具有清热、解毒、凉血、利咽等功效。作为清热解毒类的代表药物,板蓝根与广泛用于各类感冒的预防和治疗,在严重急性呼吸综合征(SARS)、甲型H1N1流感等疾病的防治中发挥了积极作用。新型冠状病毒肺炎(COVID-19)爆发以来,各版《诊疗方案》和“三药三方”中也不乏板蓝根的身影。板蓝根的抗病毒抗炎药效显著,但化学成分复杂,质量评价难度较高,因而一直是国内外研究的热点。 目前研究学者已经从板蓝根中分离得到近400个化合物,综合文献报道主要可归纳为生物碱、含硫化合物、苯丙素、核苷、氨基酸、有机酸、酚、黄酮、蒽醌、萜、醇、醛、酮、腈、酯、糖、甾醇、肽、鞘脂等19大类。研究药用植物化学成分的空间分布,有助于了解其形态学结构和功能。尽管板蓝根的化学成分研究已经十分深入,但其分子空间分布鲜见报道。质谱成像(mass spectrometry imaging,MSI)技术是近年新兴的分子成像技术,通过直接测定样品表面的离子信号获得其空间分布信息,具有非靶向、无需标记和多成分同时检测的优势。与光学图像采集技术结合后,既可观察到高分辨率的形态图像,又可对特定的分子进行鉴定和可视化分布分析,在生命科学领域显示出巨大的应用前景。本文首次采用高分辨质谱成像技术对板蓝根化学成分的空间分布进行分析。利用大气压基质辅助激光解吸电离-离子阱-飞行时间质谱(atmospheric pressure matrix assisted laser desorption combined with ion trap-time-of-flight mass spectrometry,AP-MALDI-IT-TOF/MS)扫描不同产地药材横切面,鉴定所含化合物,并观察化合物空间分布模式和富集位置,结合偏最小二乘回归(partial least squares regression,PLSR)算法,对不同样品进行分类。研究思路见图1。 图1 AP-MALDI-IT-TOF/MS成像技术揭示板蓝根中化学成分的空间分布 1. iMScope TRIO 成像质谱显微镜测试条件质谱成像技术在植物、动物、人体组织中的内源性成分和药物代谢组分的可视化检测方面发展迅猛,但在中药分析领域的应用才刚开始起步,且多用于新鲜采集的原植物或中药材。而真正用于市场流通和临床应用的中药材为干品,制备满足MSI测试需要的切片比较困难,故相关研究鲜见报道。在制备板蓝根干品冰冻切片时,其干燥、坚硬、易碎的结构带来了极大的挑战,故对冷冻切片的厚度、温度,切片固定方式,基质种类和添加方式等进行了详细的优化。板蓝根药材经明胶包裹冷冻后,先用双面碳导电胶贴牢后,再用冰冻切片机切制40 μm的组织切片,分别喷涂2, 5-DHAP溶液和1, 5-DAN溶液作为正、负离子的基质。主要质谱条件如下:激光照射直径:40 μm,像素间隔80 μm,扫描范围:m/z 100-500,m/z 500-1000。 2. 板蓝根中化合物的AP-MALDI-IT-TOF MSI可视化分布根据离子的准确质荷比、同位素丰度比,与对照品和液质一、二级数据比对,并结合文献检索和数据库搜查,初步鉴定了多个化合物类别118个质谱峰(见图2)。成像质谱显微镜将光学显微镜和质谱仪的优势整合,既可观察到形态图像,又可对分子进行鉴定和可视化分布分析,在软件上可简便且高精度地重叠观察光学显微镜图像与质谱分析图像,详细解析感兴趣区域。本文采用AP-MALDI-IT-TOF MSI技术首次揭示了板蓝根中化合物的空间分布, 图3和 图4展示了板蓝根横切面的木栓层、皮层、韧皮部、形成层、木质部及部分化合物在特定空间区域的分布。综合分析,板蓝根中化合物大多富集于营养储存的组织韧皮部,与之相比,水分输送组织木质部中集中分布的成分较少。 图2 板蓝根MALDI-IT-TOF MS成像化合物鉴别结果图3 板蓝根横切面光学图 (a) 和oxindole (b)、3-[2' -(5' -hydroxymethyl) furyl]-1(2H)-isoquinolinone-7-O-β-D-glucoside (c)、coniferin (d)、guanine (e)、histidine (f)、 proline (g)、arginine (h)、cyclo(L-Phe-L-Tyr) (i)等成分正离子质谱成像图 图4 板蓝根横切面光学图 (a) 和 isatindigoside F (b)、clemastanin B (c)、maleic acid (d)、malic acid (e)、citric acid (f)、sucrose (g)、isovitexin (h)、vanillin (i) 等成分负离子质谱成像图 3. PLSR法区分不同产地板蓝根药材将4个产地的各3批板蓝根药材分别划分到4个组。以样品横切面的AP-MALIDI-IT-TOF MSI数据为Y值,组别为X值,在正、负离子模式和m/z 100-500、m/z 500-1000两个扫描范围内,分别建立PLSR回归模型。由图5可见,在4个模型中,样品规格的预测值和实际值均呈现良好的相关关系,说明采用PLSR法可对不同产地的板蓝根进行准确的区分。 图5 MALDI-IT-TOF MS成像结合PLSR回归区分不同产地板蓝根样品 正离子m/z 100-500范围 (A)、负离子m/z 100-500范围 (B)、正离子m/z 500-1000范围(C)、负离子m/z 500-1000范围 (D) 本文相关内容由中国食品药品检定研究院的聂黎行研究员提供,详细研究内容已正式发表于Frontiers in Pharmacology - Ethnopharmacology, 2021, https://doi.org/10.3389/fphar.2021.685575。 文献题目《Microscopic Mass Spectrometry Imaging Reveals the Distributions of Phytochemicals in the Dried Root of Isatis indigotica》 使用仪器岛津iMScope TRIO 作者Li-Xing Nie1,2, Jing Dong3, Lie-Yan Huang2, Xiu-Yu Qian2, Shuai Kang2,4*, Zhong Dai2 and Shuang-Cheng Ma1,2*1 Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China2 National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China3 Shimadzu China Innovation Center, Beijing, China4 College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
  • 常用超纯水术语表
    常用超纯水术语表——梅特勒-托利多为您整理电除盐相关术语什么是离子?离子分为两类:阳离子和阴离子。阳离子带正电荷,包括纳离子(Na+),,钙离子(Ca2+),镁离子(Mg2+).。阴离子带负电荷,包括氯离子(Cl-),硫酸根离子(SO42--),,碳酸氢离子(HCO3-)。 如何去除水中的离子?通过一系列化学反应去除水中的离子。这些反应在水中通过离子交换树脂床时发生。在阳离子交换树脂表面含有氢离子(H+),用来交换阳离子。在阴离子交换树脂表面含有氢氧根离子(OH-),用来交换阴离子。这两个交换的最终产品是H+ 和OH-,生成水分子。 离子交换当阳离子和阴离子交换树脂后,发生化学反应,因为这些反应可能不完全,因此只能达到中等程度的离子交换。 混床反应当阳离子和阴离子交换树脂混合在一起时,可发生完全反应,同时交换阳离子和阴离子,生成不含离子的水。 如何测量离子?通过同轴2-电极测量电导率或电阻率。电流通过离子分子作为电流通路通过水。离子越少,电流越小。这样样品电导率更低,电阻率更高。水温也会影响电导率/电阻率。Thornton电极和仪表自动进行温度补偿以确保测量精度。反渗透相关术语渗透在了解反渗透之前,首先要了解渗透。在自然渗透过程中,水通过半透膜从较低浓度的溶液渗透到盐度较高的溶液,直到半透膜两边的浓度相同(图2). 反渗透反渗透需要外加压力来实现自然渗透过程的逆转。当在盐溶液侧加上压力,水透过半透膜(图解3)。 反渗透膜 反渗透膜的表面是一个多微孔薄层,可拦截杂质,只让水分通过。该膜可截留细菌,热原和85%-95%的无机固体物。多价离子比单价离子更容易被截留。分子量大于300的有机固体也被膜截留,但溶解气体能通过。通过百分比衡量反渗透下同效率。。出水的纯度依赖于进水的纯度。反渗透出水的纯度比给水的纯度高许多(图解4)。 排水大部分(50-90%)的给水没有通过膜,而是流过膜表面,不断冲洗膜表面,并带走无机和有机固体至排水口。这一部分被称为“排水”。 给水因素给水因素影响膜的性能和寿命,包括以下几点:压力:给水压力影响反渗透出水的量和纯度。低给水压力导致低的出水流量和低的出水纯度.pH:给水pH范围是很重要的。当给水呈碱性,酸性或不稳定时,建议使用耐受pH.朗格利尔饱和指数(LSI):朗格利尔饱和指数用于表示在滤膜表面形成水垢的趋势。需要测量给水的温度,总无机固体,钙硬度和碱度,pH。如果LSI指数计算结果是正的,建议在反渗透系统前安装软化器.游离氯和细菌醋酸纤维素滤膜需要游离氯,防止细菌生长和膜损坏。相反,聚酰胺和薄膜会被游离氯损坏。使用聚酰胺和薄膜时通过活性炭去除游离氯.温度:滤膜的性能是基于给水在25°C情况下的。25°C以下,每减少1°C,出水产量减少3%。当给水总是低于25°C时,建议混合热水和冷水,使温度升到25°C。给水温度高于35°C会损坏滤膜.水污泥指数:SDI测量超微末微粒及堵塞滤膜的趋势。一定压力下的水通过滤膜片过滤,并采样一段时间。水流速度和总量用于决定指数值.浊度:浊度用于测量阻挡光线的悬浮超微末微粒. 蒸馏相关术语 蒸馏的净化是水纯化工艺中效果最显著的。蒸馏能有效去除大部分无机固体,所有沸点大于水(100°C)的有机物和所有细菌和热原。气体和其他有机物不能通过蒸馏去除。他们和氢离子和氧离子拥有相同的形态变化,只能在蒸馏前或蒸馏后通过其他技术去除。蒸馏的优势?蒸馏的净化功能是单一形式的水纯化工艺中最显著的。蒸馏能有效去除大部分无机固体,所有沸点大于水(100°C)的有机物,所有细菌和热原。气体和其他有机物不能被蒸馏去除。他们和氢离子和氧离子经历相同的形态变化,能在蒸馏前或蒸馏后通过其他技术去除。

表木栓醇相关的仪器

  • 功能特点:1. 经典Galvanic原电池测量原理,0.1ppb检测下限2. “绝对零点”,极低的漂移量、更好的稳定性—1816DO为关键蒸汽监测提供连续高精度溶解氧测量3. Galvanic电极的快速响应可实现灵敏,选择性,可靠且可验证的测量,针对1ppb以下的测量提供足够的保证4. 电极独特的“保护环”抵消了电解液中的溶解氧,确保每次都能从高浓度迅速返回低浓度的读数5. 操作极其简单:覆膜式溶氧电极维护方便,每月一次的自动标定,5分钟内即可返回正常测试状态6. 高品质的不锈钢流通池设计,防止外部氧气通过双屏蔽结构进入内部干扰测量7. 1816DO提供1000组数据以进行快速趋势分析8. 配合可选的不锈钢流路面板,使得仅在数分钟中即可完成安装,并将仪表投入运行领域:电力、造纸、石化应用:锅炉给水、超纯水、凝结水、除氧器除水订购信息:
    留言咨询
  • 1816DO 纯水溶氧表 400-860-5168转4710
    功能特点:●经典Galvanic原电池测量原理,0.1ppb检测下限 ●“低零点”,极低的漂移量、更好的稳定性—1816DO为关 键蒸汽监测提供连续高精度溶解氧测量●Galvanic电极的快速响应可实现灵敏,选择性,可靠且可验证 的测量,针对1ppb以下的测量提供足够的保证●电极独特的“保护环”抵消了电解液中的溶解氧,确保每次都 能从高浓度迅速返回低浓度的读数●操作极其简单:覆膜式溶氧电极维护方便,每月一次的自动标 定,5分钟内即可返回正常测试状态 ●高品质的不锈钢流通池设计,防止外部氧气通过双屏蔽结构进 入内部干扰测量 ●1816DO提供1000组数据以进行快速趋势分析 ●配合可选的不锈钢流路面板,使得仅在数分钟中即可完成安 装,并将仪表投入运行领 域:电力 造纸 石化 应 用:锅炉给水 超纯水 凝结水 除氧器除水订货信息订货号描述1816DO低浓度溶解氧分析仪,含不锈钢流通池,维护套件,带有10英尺线缆的溶氧电极,115/230VAC 电源1816FP便携式316不锈钢流路面板,包括入口阀门,流量计及相应接头。181621低浓度溶解氧电极,10英尺电极线线缆181622维护套件,包括溶氧膜套,O-型垫圈及电解液。
    留言咨询
  • 自动分析未稀释的超纯化学品prepFAST SE 超纯化学品自动加标系统(半导体应用)提供了以注射器样品输送为特点的超纯化学品自动化精确加标,可以配置多种选项,以适应最具挑战性的半导体级化学分析。带惰性PTFE平台的超清洁氟碳自动进样器集成式、排气式外壳,具有三面通道,可提供清洁的样品环境高精度注射器驱动的样本采集和输送
    留言咨询

表木栓醇相关的耗材

  • 安捷伦 标样汽油样品中的乙醇18900-60640
    气相色谱定性标样说明部件号模拟蒸馏定性标样 沸点校准样品 1 号5080-8716低沸点校准样品 220 号5080-8768沸点校准样品 320 号5080-8769PolyWax 500,1 g,净重5188-5316PolyWax 655,1 g,净重5188-5317石油化学品定性标样汽油样品中的乙醇18900-60640天然气样品5080-8756变压器气体样品5080-8759炼厂气样品5080-8755参比汽油 1 号,第 2 批5060-9086其他定性标样镍催化剂测试样品19354-60510镍催化剂重新填充5080-8761MIDI 系统校准标样19298-60500
  • 安捷伦 GC/MS 标样 G3440-85035 血醇分析仪乙醇校准试剂盒
    GC/MS 分析仪标样试剂盒部件号 :G3440-85035血醇分析仪乙醇校准试剂盒GC/MS 分析仪标样试剂盒 的二氯甲烷溶液, 4 x 1 mL5190-0472农药分析仪测试样品溶液,20 种农药的丙酮溶液,浓度 10 礸/mL,5 x 1 mL5190-0468 说明部件号GC/MS 半挥发性化合物分析仪校验混合物5190-04733 合 1 环境样品分析仪 Solvents plus 校验混标G3440-05012GC/MS 农药分析仪内标样品,菲-d10,浓度 1000 μg/mL 农药校验标样,100 礸/L,3 x 1 mL5190-0494GC/MS 毒理学校验混合物 5190-0471残留溶剂修方订法 467,2A 类,1 x 1 mL5190-0492 残留溶剂修订方法 467,2B 类低浓度5190-0513残留溶剂修订方法 467,2B 类,1 x 1 mL5190-0491 残留溶剂修订方法 467,2C类,1 x 1 mL5190-0493残留溶剂修订方法 467,第 1 类5190-0490用于生物柴油分析的丁三醇内标 #15982-0024用于生物柴油分析的甘油三葵酸酯内标 #25982-0025农药保留时间锁定标准溶液, 三种农药的正己烷溶液,浓度 10 礸/mL,3 x 1 mL5190-1441 甘油校准标样试剂盒,5 x 1 mLG3440-85028甘油酯的 THF 溶液标样,1 x 2 mLG3440-85018 FAME 保留时间标样甲苯溶液,5 x 2 mLG3440-85027十九酸甲酯甲苯溶液标准品 5 x 10 mLG3440-85026 Solvents-plus 检测混标,3 x 2 mLG3440-85012变压器油气体分析仪校验混标,17 L SCOTTY 气瓶G3440-85007PAH 分析仪校验标样,5 x 2 mLG3440-85009 C6 至 C12 正构烷烃混标,3 x 2 mLG3440-85013天然气分析仪校验混标,14 L SCOTTY 气瓶G3440-85017 氘代十七烷酸甲酯的十二烷溶液,3 x 2 mLG3440-85029血醇分析仪乙醇校准试剂盒G3440-85035 血醇分析仪多组分醇类校准试剂盒G3440-85036
  • 安捷伦 GC/MS 标样 G3440-85036 血醇分析仪多组分醇类校准试剂盒
    GC/MS 分析仪标样试剂盒部件号 :G3440-85036血醇分析仪多组分醇类校准试剂盒GC/MS 分析仪标样试剂盒说明部件号GC/MS 半挥发性化合物分析仪校验混合物5190-04733 合 1 环境样品分析仪 Solvents plus 校验混标G3440-05012GC/MS 农药分析仪内标样品,菲-d10,浓度 1000 μg/mL 的二氯甲烷溶液, 4 x 1 mL5190-0472农药分析仪测试样品溶液,20 种农药的丙酮溶液,浓度 10 礸/mL,5 x 1 mL5190-0468农药校验标样,100 礸/L,3 x 1 mL5190-0494GC/MS 毒理学校验混合物5190-0471残留溶剂修方订法 467,2A 类,1 x 1 mL5190-0492残留溶剂修订方法 467,2B 类低浓度5190-0513残留溶剂修订方法 467,2B 类,1 x 1 mL5190-0491残留溶剂修订方法 467,2C类,1 x 1 mL5190-0493残留溶剂修订方法 467,第 1 类5190-0490用于生物柴油分析的丁三醇内标 #15982-0024用于生物柴油分析的甘油三葵酸酯内标 #25982-0025农药保留时间锁定标准溶液, 三种农药的正己烷溶液,浓度 10 礸/mL,3 x 1 mL5190-1441甘油校准标样试剂盒,5 x 1 mLG3440-85028甘油酯的 THF 溶液标样,1 x 2 mLG3440-85018FAME 保留时间标样甲苯溶液,5 x 2 mLG3440-85027十九酸甲酯甲苯溶液标准品 5 x 10 mLG3440-85026Solvents-plus 检测混标,3 x 2 mLG3440-85012变压器油气体分析仪校验混标,17 L SCOTTY 气瓶G3440-85007PAH 分析仪校验标样,5 x 2 mL G3440-85009C6 至 C12 正构烷烃混标,3 x 2 mLG3440-85013天然气分析仪校验混标,14 L SCOTTY 气瓶G3440-85017氘代十七烷酸甲酯的十二烷溶液,3 x 2 mLG3440-85029血醇分析仪乙醇校准试剂盒G3440-85035血醇分析仪多组分醇类校准试剂盒G3440-85036

表木栓醇相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制