高温沉积系统

仪器信息网高温沉积系统专题为您提供2024年最新高温沉积系统价格报价、厂家品牌的相关信息, 包括高温沉积系统参数、型号等,不管是国产,还是进口品牌的高温沉积系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温沉积系统相关的耗材配件、试剂标物,还有高温沉积系统相关的最新资讯、资料,以及高温沉积系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

高温沉积系统相关的厂商

  • 济南盛阳高温材料有限公司是一家在高温材料产业内多元化发展的高新技术企业。盛阳高温在济南高新区、淄博各拥有一个现代化的生产基地,生产陶瓷纤维、耐火棉、高温吊顶模块、陶瓷纤维纸、高温浇注料、陶瓷纤维毯等产品,年生产能力达到10000吨,是墙体材料协会指定大型试点企业之一。盛阳高温在平顶隧道窑、冶金装置、石油化工工艺、建材窑炉、有色金属、高温防护、新材料、航天科技、电厂节能和超高温技术等领域的研发一直处于国内外先进水平,绝大部分已形成了具有竞争实力的规模产业。
    留言咨询
  • 400-860-5168转4180
    上海续波光电技术有限公司是一家专业从事高性能薄膜沉积及处理设备、光电材料及软件、金刚石合成及应用、激光等离子体仿真和诊断等产品及服务进口的技术贸易服务型公司。公司至今已与法国、德国、英国、瑞士、意大利、美国、加拿大、日本、俄罗斯等国家的多家企业建立了战略合作关系,并服务于国内从事微电子、半导体、光学、纳米技术等领域的研究所和大学。公司从事领域及产品主要包括:加速器质谱仪:第三代14C加速器质谱仪系统(AMS),包括全套可兼容第三代石墨化系统AGE3、气动压样装置PSP、铁制分配器FED、管密封装置TSE、气体电离探测器GID、气体接口系统GIS、碳酸盐处理系统CHS2、同位素比质谱仪IRMS。薄膜制备及处理:磁控溅射仪(magnetron sputtering system)、电子束蒸镀设备(E-beam Evaporation system)、离子束溅射沉积(IBS system)、化学束外延镀膜(CBE/GSMBE)、分子束外延设备(MBE)、离子减薄仪(Ion Milling)、超高真空多功能镀膜设备、高精密光学镀膜设备(Optical Coating system)、刻蚀机(RIE, RIEB)、超导约瑟夫森结制备(Josephson Junction, Qubits)、DLC类金刚石镀膜设备。金刚石制备及应用:纳米晶金刚石制备设备、热丝化学气相沉积(HFCVD)、CVD单晶金刚石合成设备、CVD光学级金刚石窗口合成、微波等离子化学气相沉积(MPCVD)、工具级金刚石涂层制备(tool coating)、金刚石单晶/多晶掺杂(single crystal diamond and doping)、CVD金刚石单晶及其应用、高温高压金刚石单晶(HPHT diamond)、金刚石抛光设备(diamond polishing)、激光切割设备(laser cutting)、钻石净度及切工评定仪器;高能密度物理:辐射流体力学模拟、原子光谱分析软件、多维碰撞辐射软件、三维热辐射CAD软件、状态方程和不透明度、原子物理数据库;微波干涉仪、金刚石靶丸、超高功率输出窗口;激光等离子体气体/固体靶、粒子加速器源、激光等离子体加速器及应用(无损测试)激光器与设计:固体激光器设计软件(Solid-state Laser)、光纤激光器设计软件(Fiber laser)、半导体激光器设计软件(Semiconductor laser)、激光镜面镀膜设备(Lasers coating system)、高功率激光输出窗口(High power output window)、高功率激光热沉片(Heat Sink)、高功率钻石激光器(Diamond Laser)、金刚石窗口镀增透膜(AR coating service);磁场分布测量:微霍尔阵列磁场相机(1D/3D)、大面积磁场分布测量解决方案、永磁转子表磁测量解决方案,多功能表磁测试平台
    留言咨询
  • 400-860-5168转3569
    NANO-MASTER INC(那诺-马斯特股份有限公司)前身是NANO-MASTER USA(那诺-马斯特美国),该公司是NANO-MASTER S.A.,France(法国那诺-马斯特有限公司)于1992年在美国所创立的全资子公司,是一家国际领先的缺陷检测和高速镀层测量的计量公司。自从1993年开始Birol Kuyel博士全面接管NANO-MASTER,USA(那诺-马斯特美国)并正式更名。NANO-MASTER(那诺-马斯特)自2001年开始设计开发薄膜应用方面的设备,正式面世的系统依次是磁控溅射、PECVD、晶圆/掩模版清洗系统…。应用领域涵盖了半导体、MEMS、光电子学、纳米技术和光伏等。我们的设备包含用于二氧化硅、氮化硅、类金刚石和CNT沉积的PECVD,用于InGaN、AlGaN生长的PA-MOCVD,溅射镀膜(反应溅、共溅 、组合溅),热蒸发和电子束蒸发,离子束刻蚀和反应离子刻蚀,原子层沉积,兆声清洗以及光刻胶剥离等。不到十年的时间内NANO-MASTER(那诺-马斯特)已经发展成为全球薄膜设备的供应商,已售出的几百套设备分布于20多个不同国家的大学、研发中心和国家重点实验室。Birol Kuyel博士作为NANO-MASTER(那诺-马斯特), Inc.的主席和CEO,其背景涵盖了宽广的技术领域,包含高温等离子物理、流体学、Si3N4 薄膜沉积和特性描述、X射线源开发、DUV源开发、DUV步进和扫描光刻设备开发、光刻运营成本建模(SEMATECH)等,目前拥有9项专利技术,并发表过大量的学术论文。NANO-MASTER(那诺-马斯特)聘用技术熟练并具有良好教育背景的设计和制造工程师、应用工程师、服务工程师、技术支持人员,使得公司拥有一流的服务团队。作为薄膜工艺的设备提供商,我们的目标是提供高品质的服务并始终位维持最高水平的集成度。为更好服务大中华区(包含中国大陆,香港,台湾和澳门)的业务, NANO-MASTER(那诺-马斯特)于2015年4月份在香港正式成立NANO-MASTER CHINA(那诺-马斯特中国),并在中国大陆设有专门的服务办公室,提供销售和售后技术服务。
    留言咨询

高温沉积系统相关的仪器

  • 1 产品概述: 化合物半导体沉积系统是一类专门用于制备化合物半导体材料的设备,这些材料通常由两种或多种元素组成,如GaAs、GaN和SiC等。这些材料因其独特的高功率、高频率等特性,在信息通信、光电应用以及新能源汽车等产业中占据重要地位。2 设备用途:化合物半导体沉积系统的主要用途包括:晶圆制备:通过外延生长技术,在衬底上沉积高质量的化合物半导体薄膜,用于制造高性能的半导体器件。芯片设计与制造:支持化合物半导体器件的设计与制造过程,包括射频功率放大器、高压开关器件等。光电器件:用于制造太阳电池、半导体照明、激光器和探测器等光电器件。微波射频:在移动通信、导航设备、雷达电子对抗以及空间通信等系统中,化合物半导体沉积系统用于制造射频功率放大器等核心组件。3. 设备特点化合物半导体沉积系统通常具备以下特点:高精度与均匀性: 沉积均匀性:能够实现晶圆级的高沉积均匀性,确保薄膜厚度和质量的一致性。 精确控制:通过调节沉积参数,如温度、压力、气体流量等,可以精确控制薄膜的化学成分、形貌、晶体结构和晶粒度。多功能性: 多种沉积方法:支持化学气相沉积(CVD)、物理气相沉积(PVD)等多种沉积方法,满足不同材料和器件的制备需求。 多种薄膜材料:能够沉积金属薄膜、非金属薄膜、多组分合金薄膜以及陶瓷或化合物层等多种薄膜材料。高温与低温兼容性: 高温沉积:部分设备能够在高温下工作,确保薄膜的结晶质量和纯度。 低温辅助:采用等离子或激光辅助技术,可以降低沉积温度,保护基体材料不受高温损伤。高效与自动化: 高吞吐量:通过优化设计和自动化控制,提高生产效率,降低生产成本。 自动装载与卸载:部分设备配备自动卫星装载系统,实现样品的自动装载与卸载,提高操作便捷性。4 设备参数:用于在 150/200 mm 衬底(Si/Sapphire/SiC)上进行高级 GaN 应用 间歇式反应器的成本优势与单晶圆反应器独特的轴对称晶圆上均匀性相结合,在以下方面:o Wafer Bow (威化弓)o 层厚、材料成分、掺杂剂浓度o 组件产量暖吊顶通过晶圆提供最低的热通量o 由于垂直温度梯度最小,晶圆曲率最小o 允许使用标准厚度的硅晶片通过客户特定的衬底腔设计优化晶圆温度配置8x150 毫米5x200 毫米
    留言咨询
  • 碳化硅沉积系统 400-860-5168转5919
    1产品概述: 碳化硅沉积系统是一种专门用于生产碳化硅(SiC)材料的设备,它采用化学气相沉积(CVD)或其他相关技术,在特定条件下将碳和硅元素以气态形式引入反应室,并通过化学反应在基底上沉积形成碳化硅薄膜或晶体。该系统在半导体、光伏、新能源汽车等行业中具有广泛应用,是制备高性能碳化硅器件的关键设备之一。2设备用途: 半导体行业:用于制备碳化硅基功率器件,如MOSFET、肖特基二极管等,这些器件在电动汽车、光伏逆变器、轨道交通等领域具有重要应用。 光伏行业:在光伏逆变器中使用碳化硅功率器件可以提高太阳能转化效率,降低系统成本。 新能源汽车:碳化硅功率器件在电动汽车的电机控制器、电池管理系统等关键部件中发挥着重要作用,有助于提高车辆性能、降低能耗。3.设备特点化合物半导体沉积系统通常具备以下特点:高精度与均匀性: 碳化硅沉积系统能够实现高精度的沉积控制,确保薄膜或晶体的厚度、成分和结构的均匀性。 这对于提高器件的性能和可靠性至关重要。多功能性: 系统支持多种沉积方法和工艺参数调整,以满足不同材料和器件的制备需求。 可以制备出具有不同电阻率、热导率等特性的碳化硅材料。高温与稳定性: 碳化硅沉积过程通常需要在高温条件下进行,系统需要具备稳定的高温控制能力和良好的热传导性能。 高温环境有助于促进化学反应的进行和碳化硅晶体的生长。4 设备参数: 运行4个系统,用于150/200 mm SiC工艺开发 由德国弗劳恩霍夫研究所(Fraunhofer Institute)提供支持的全面材料表征能力 通过碳化硅工艺演示/开发和培训为客户提供支持 150 mm和200 mm– 支持双晶圆尺寸 – 为您的未来投资提供保障 市场上高的晶圆产量/ m2
    留言咨询
  • 台式三维原子层沉积系统ALD原子层沉积(Atomic layer deposition, ALD)是通过将气相前驱体脉冲交替的通入反应器,化学吸附在沉积衬底上并反应形成沉积膜的一种方法,是一种可以将物质以单原子膜形式逐层的镀在衬底表面的方法。因此,它是一种真正的纳米技术,以控制方式实现纳米的超薄薄膜沉积。由于ALD利用的是饱和化学吸附的特性,因此可以确保对大面积、多空、管状、粉末或其他复杂形状基体的高保形的均匀沉积。 美国ARRADIANCE公司的GEMStar XT系列台式 ALD系统,在小巧的机身(78 x56 x28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。GEMStar XT全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计, 使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅实现在 8英寸基体上膜厚的不均匀性小于1%,而且更适合对超高长径比的孔径结构等3D结构实现均匀薄膜覆盖,可实现对高达1500:1长径比微纳深孔内部的均匀沉积。GEMStar XT 产品特点:■ 300℃ 铝合金热壁,对流式温度控制■ 175℃ 温控150ml前驱体瓶,200℃ 控输运支管■ 可容纳多片4,6,8英寸样品同时沉积■ 可容纳1.25英寸/32mm厚度的基体■ 标准CF-40接口■ 可安装原位测量或粉末沉积模块等选件■ 等离子体辅助ALD插件■ 多种配件可供选择GEMStar XT 产品型号:GEMStar -4 XT:■ 大4英寸/100 mm基片沉积■ 单路前驱体输运支管, 4路前驱体瓶接口■ 不可升为等离子体增强ALDGEMStar -6/8 XT:■ 大6英寸(150mm)/8英寸(200mm)基片沉积■ 双路前驱体输运支管, 8路前驱体瓶和CF-40接口■ 可升为等离子体增强ALDGEMStar -8 XT-P:■ 大8英寸/200mm基片沉积■ 双路前驱体输运支管, 8路前驱体瓶和CF-40接口■ 装备高性能ICP等离子发生器13.56 MHz 的等离子源非常紧凑,只需风冷,高运行功率达300W。■ 标配3组气流质量控制计(MFC)控制的等离子气源线,和一条MFC控制的运载气体线,使难以沉积的氧化物、氮化物、金属也可以实现均匀沉积。GEMStar NanoCUBE:* 大100 mm 立方体样品 沉积* 单路前驱体输运支管, 2路前驱体瓶接口* 主要用于3D多孔材料,以及厚样品的沉积丰富配件:多样品托盘:* 多样品夹具,样品尺寸(8", 6", 4")向下兼容。* 多基片夹具,多同时容纳9片基片。 温控热托盘:* 可加热样品托盘,高温度500℃,可实现热盘-热壁复合加热方式。粉末沉积盘: 臭氧发生器: 真空进样器(Load Lock) 晶振测厚仪 前驱体瓶: 前驱体加热套:
    留言咨询

高温沉积系统相关的资讯

  • 基于多天线耦合技术的微波等离子体化学气相沉积系统,完美实现大尺寸金刚石制备
    化学气相沉积是使几种气体在高温下发生热化学反应而生成固体的方法,等离子体化学气相沉积是通过能量激励将工作物质激发到等离子体态从而引发化学反应生成固体方法。因为等离子体具有高能量密度、高活性离子浓度、故而可以引发在常规化学反应中不能或难以实现的物理变化和化学变化,且具有沉积温度低、能耗低、无污染等优点,因此等离子体化学气相沉积法得到了广泛的应用。微波等离子体也具有等离子体洁净、杂质浓度低的优点,因而微波等离子体化学气相沉积法(MPCVD)成为制备高质量金刚石的优先方法,也是目前有发展前景的高质量金刚石(单晶及多晶)沉积方法之一。MPCVD设备反应腔示意图金刚石具有优异的力学、电学、光学、热学、声学性能,在众多领域具有广泛的用途。而这些用途的实现在很大程度上依赖于高取向和单晶金刚石以及大面积透明金刚石膜。由于金刚石生长过程中普遍存在缺陷以及难以获取大面积范围内均匀温度场等参数,导致金刚石的取向发生改变,使高取向和单晶金刚石以及大面积透明金刚石膜的获得十分困难。因此,目前金刚石研究面临的大挑战和困难是如何制备优质单晶、多晶金刚石样品。 德国iplas公司基于 CYRANNUS® 多天线耦合技术,解决了传统的单天线等离子技术的局限。CYRANNUS® 技术采用腔外多天线设置,确保等离子团稳定生成于腔内中心位置,减少杂质来源,提高晶体纯度(制备的金刚石单晶纯度可达VVS别以上)。MPCVD系统可合成饰钻石 同时稳定的微波发生器也易于控制,可以在10mbar到室压范围内激发高稳定度的等离子团,大限度的减少了因气流、气压、气体成分、电压等因素波动引起的等离子体状态的变化,从而确保单晶生长的持续性,为合成大尺寸单晶金刚石及薄膜提供了有力保证。 MPCVD系统可合成优质大尺寸金刚石薄膜 MPCVD同样适用于平面基体,或曲面颗粒的其它硬质材料如Al2O3,c-BN的薄膜沉积和晶体合成。德国iplas公司凭借几十年在等离子技术领域的积累,可以为用户提供高度定制的设备,满足用户不同的应用需要。相关产品链接 微波等离子化学气相沉积系统 http://www.instrument.com.cn/netshow/SH100980/C184528.htm
  • 十一种化学气相沉积(CVD)技术盘点
    CVD(化学气相沉积)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。化学气相沉积法是传统的制备薄膜的技术,其原理是利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,而在基体上形成薄膜。化学气相沉积包括常压化学气相沉积、等离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积等。不过随着技术的发展,CVD技术也不断推陈出新,出现了很多针对某几种用途的专门技术,在此特为大家盘点介绍一些CVD技术。等离子体增强化学气相沉积(PECVD)等离子体增强化学气相沉积是在化学气相沉积中,激发气体,使其产生低温等离子体,增强反应物质的化学活性,从而进行外延的一种方法。该方法可在较低温度下形成固体膜。例如在一个反应室内将基体材料置于阴极上,通入反应气体至较低气压(1~600Pa),基体保持一定温度,以某种方式产生辉光放电,基体表面附近气体电离,反应气体得到活化,同时基体表面产生阴极溅射,从而提高了表面活性。在表面上不仅存在着通常的热化学反应,还存在着复杂的等离子体化学反应。沉积膜就是在这两种化学反应的共同作用下形成的。激发辉光放电的方法主要有:射频激发,直流高压激发,脉冲激发和微波激发。等离子体增强化学气相沉积的主要优点是沉积温度低,对基体的结构和物理性质影响小;膜的厚度及成分均匀性好;膜组织致密、针孔少;膜层的附着力强;应用范围广,可制备各种金属膜、无机膜和有机膜。【市场分析】上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇高密度等离子体化学气相淀积(HDP CVD)HDP-CVD 是一种利用电感耦合等离子体 (ICP) 源的化学气相沉积设备,是一种越来越受欢迎的等离子体沉积设备。HDP-CVD(也称为ICP-CVD)能够在较低的沉积温度下产生比传统PECVD设备更高的等离子体密度和质量。此外,HDP-CVD 提供几乎独立的离子通量和能量控制,提高了沟槽或孔填充能力。但是,HDP-CVD 配置的另一个显著优势是,它可以转换为用于等离子体刻蚀的 ICP-RIE。 在预算或系统占用空间受限时,优势明显。听起来可能很奇怪。但是这两种类型的工艺确实可以在同一个系统中运行。虽然存在一些内部差异,例如额外的气体入口,但两种设备的核心结构几乎完全相同。在HDP CVD工艺问世之前,大多数芯片厂普遍采用PECVD进行绝缘介质的填充。这种工艺对于大于0.8微米的间隔具有良好的填孔效果,然而对于小于0.8微米的间隙,PECVD工艺一步填充具有高的深宽比的间隔时会在间隔中部产生夹断和空洞。在探索如何同时满足高深宽比间隙的填充和控制成本的过程中诞生了HDP CVD工艺,它的突破创新之处在于,在同一个反应腔中同步地进行沉积和刻蚀工艺。微波等离子化学气相沉积(MPCVD)微波等离子化学气相沉积技术(MPCVD)适合制备面积大、均匀性好、纯度高、结晶形态好的高质量硬质薄膜和晶体。MPCVD是制备大尺寸单晶金刚石有效手段之一。该方法利用电磁波能量来激发反应气体。由于是无极放电,等离子体纯净,同时微波的放电区集中而不扩展,能激活产生各种原子基团如原子氢等,产生的离子的最大动能低,不会腐蚀已生成的金刚石。通过对MPCVD沉积反应室结构的结构调整,可以在沉积腔中产生大面积而又稳定的等离子体球,因而有利于大面积、均匀地沉积金刚石膜,这一点又是火焰法所难以达到的,因而微波等离子体法制备金刚石膜的优越性在所有制备法中显得十分的突出。微波电子回旋共振等离子体化学气相沉积(ECR-MPCVD)在MPCVD中为了进一步提高等离子体密度,又出现了电子回旋共振MPCVD(Electron Cyclotron Resonance CVD,简称ECR-MPCVD)。由于微波CVD在制备金刚石膜中的独有优势,使得研究人员普遍使用该方法制备金刚石膜,通过大量的研究,不仅在MPCVD制备金刚石膜的机理上取得了显著的成果,而且用CVD法制备的金刚石膜也广泛的用于工具、热沉、光学、高温电子等领域的工业研究与应用。超高真空化学气相沉积(UHV/CVD)超高真空化学气相沉积(UHV/CVD)是制备优质亚微米晶体薄膜、纳米结构材料、研制硅基高速高频器件和纳电子器件的关键的先进薄膜技术。超高真空化学气相沉积技术发展于20世纪80年代末,是指在低于10-6 Pa (10-8 Torr) 的超高真空反应器中进行的化学气相沉积过程,特别适合于在化学活性高的衬底表面沉积单晶薄膜。石墨烯就是可以通过UHV/CVD生产的材料之一。与传统的气相外延不同,UHV/CVD技术采用低压和低温生长,能够有效地减少掺杂源的固态扩散,抑制外延薄膜的三维生长。UHV/CVD系统反应器的超高真空避免了Si衬底表面的氧化,并有效地减少了反应气体所产生的杂质掺入到生长的薄膜中。在超高真空条件下,反应气分子能够直接传输到衬底表面,不存在反应气体的扩散及分子间的复杂相互作用,沉积过程主要取决于气-固界面的反应。传统的气相外延中,气相前驱物通过边界层向衬底表面的扩散决定了外延薄膜的生长速率。超高真空使得气相前驱物分子直接冲击衬底表面,薄膜的生长主要由表面的化学反应控制。因此,在支撑座上的所有基片(衬底)表面的气相前驱物硅烷或锗烷分子流量都是相同的,这使得同时在多基片上实现外延生长成为可能。低压化学气相沉积(LPCVD)低压化学气相沉积法(Low-pressure CVD,LPCVD)的设计就是将反应气体在反应器内进行沉积反应时的操作压力,降低到大约133Pa以下的一种CVD反应。LPCVD压强下降到约133Pa以下,与此相应,分子的自由程与气体扩散系数增大,使气态反应物和副产物的质量传输速率加快,形成薄膜的反应速率增加,即使平行垂直放置片子片子的片距减小到5~10mm,质量传输限制同片子表面化学反应速率相比仍可不予考虑,这就为直立密排装片创造了条件,大大提高了每批装片量。以LPCVD法来沉积的薄膜,将具备较佳的阶梯覆盖能力,很好的组成成份和结构控制、很高的沉积速率及输出量。再者LPCVD并不需要载子气体,因此大大降低了颗粒污染源,被广泛地应用在高附加价值的半导体产业中,用以作薄膜的沉积。LPCVD广泛用于二氧化硅(LTO TEOS)、氮化硅(低应力)(Si3N4)、多晶硅(LP-POLY)、磷硅玻璃(BSG)、硼磷硅玻璃(BPSG)、掺杂多晶硅、石墨烯、碳纳米管等多种薄膜。热化学气相沉积(TCVD)热化学气相沉积(TCVD)是指利用高温激活化学反应进行气相生长的方法。广泛应用的TCVD技术如金属有机化学气相沉积、氯化物化学气相沉积、氢化物化学气相沉积等均属于热化学气相沉积的范围。热化学气相沉积按其化学反应形式可分成几大类:(1)化学输运法:构成薄膜物质在源区与另一种固体或液体物质反应生成气体.然后输运到一定温度下的生长区,通过相反的热反应生成所需材料,正反应为输运过程的热反应,逆反应为晶体生长过程的热反应。(2)热解法:将含有构成薄膜元素的某种易挥发物质,输运到生长区,通过热分解反应生成所需物质,它的生长温度为1000-1050摄氏度。(3)合成反应法:几种气体物质在生长区内反应生成所生长物质的过程,上述三种方法中,化学输运法一般用于块状晶体生长,分解反应法通常用于薄膜材料生长,合成反应法则两种情况都用。热化学气相沉积应用于半导体材料,如Si,GaAs,InP等各种氧化物和其它材料。高温化学气相沉积(HTCVD)高温化学气相沉积是碳化硅晶体生长的重要方法。HTCVD生长碳化硅晶体是在密闭的反应器中,外部加热使反应室保持所需要的反应温度(2000℃~2300℃)。高温化学气相沉积是在衬底材料表面上产生的组合反应,是一种化学反应。它涉及热力学、气体输送及膜层生长等方面的问题,根据反应气体、排出气体分析和光谱分析,其过程一般分为以下几步:混合反应气体到达衬底材料表面;反应气体在高温分解并在衬底材料表面上产生化学反应生成固态晶体膜;固体生成物在衬底表面脱离移开,不断地通入反应气体,晶体膜层材料不断生长。中温化学气相沉积(MTCVD)MTCVD硬质涂层工艺技术,在20世纪80年代中期就已问世,但在当时并没有引起人们的重视,直到20世纪90年代中期,世界上主要硬质合金工具生产公司,利用HTCVD和MTCVD技术相结合,研究开发出新型的超级硬质合金涂层材料,有效地解决了在高速、高效切削、合金钢重切削、干切削等机械加工领域中,刀具使用寿命低的难高强度题才引起广泛的重视。目前,已在涂层硬质合金刀具行业投入生产应用,效果十分显著。MTCVD技术沉积工艺如下。沉积温度:700~ 900℃;沉积反应压力:2X103~2X104Pa;主要反应气体配比: CH3CN:TiCl4:H2=0.01:0.02:1;沉积时间:1一4h。金属有机化合物化学气相沉积(MOCVD)MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族、Ⅱ-Ⅵ副族化合物半导体以及它们的多元固溶体的薄层单晶材料。通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用直流加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。MOCVD适用范围广泛,几乎可以生长所有化合物及合金半导体,非常适合于生长各种异质结构材料,还可以生长超薄外延层,并能获得很陡的界面过渡,生长易于控制,可以生长纯度很高的材料,外延层大面积均匀性良好,可以进行大规模生产。激光诱导化学气相沉积(LCVD)LCVD是利用激光束的光子能量激发和促进化学气相反应的沉积薄膜方法。在光子的作用下,气相中的分子发生分解,原子被激活,在衬底上形成薄膜。这种方法与常规的化学气相沉积(CVD)相比,可以大大降低衬底的温度,防止衬底中杂质分布截面受到破坏,可在不能承受高温的衬底上合成薄膜。与等离子体化学气相沉积方法相比,可以避免高能粒子辐照在薄膜中造成损伤。根据激光在化学气相沉积过程中所起的作用不同可以将LCVD分为光LCVD和热LCVD,它们的反应机理也不尽相同。光LCVD是利用反应气体分子或催化分子对特定波长的激光共振吸收,反应分子气体收到激光加热被诱导发生离解的化学反应,在合适的制备工艺参数如激光功率、反应室压力与气氛的比例、气体流量以及反应区温度等条件下形成薄膜。光LCVD原理与常规CVD主要不同在于激光参与了源分子的化学分解反应,反应区附近极陡的温度梯度可精确控制,能够制备组分可控、粒度可控的超微粒子。热LCVD主要利用基体吸收激光的能量后在表面形成一定的温度场,反应气体流经基体表面发生化学反应,从而在基体表面形成薄膜。热LCVD过程是一种急热急冷的成膜过程,基材发生固态相变时,快速加热会造成大量形核,激光辐照后,成膜区快速冷却,过冷度急剧增大,形核密度增大。同时,快速冷却使晶界的迁移率降低,反应时间缩短,可以形成细小的纳米晶粒。除以上提到的薄膜沉积方法外,还有常压化学气相沉积(APCVD)等分类技术。
  • 原子层沉积系统研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 122" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " 原子层沉积系统 /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " 中科院物理研究所 /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 联系人 /p /td td width=" 175" p style=" line-height: 1.75em " 郇庆 /p /td td width=" 159" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 192" p style=" line-height: 1.75em " qhuan_uci@yahoo.com /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 & nbsp □通过小试 & nbsp □通过中试 □可以量产 /p /td /tr tr td width=" 122" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 526" colspan=" 3" p style=" line-height: 1.75em " √技术转让 & nbsp √技术入股 & nbsp □合作开发& nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/1d453046-e68e-4e65-ab38-25f533935dee.jpg" title=" ALD.jpg" width=" 350" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 261px " / /p p style=" line-height: 1.75em " & nbsp br/ /p p style=" line-height: 1.75em " & nbsp & nbsp 原子层沉积(ALD)技术,由于采取自限性的生长模式,因此可以在原子尺度上调控沉积薄膜的厚度,从而形成具有优异的台阶覆盖性和平整性,并可用于制备高深宽比材料和对多孔纳米材料进行修饰。我们自行研制的ALD系统与市场上现有商业化产品相比,具有如下特点:1)复杂完善的管路气路,在自制控制器和软件的配合下,可高度自动化完成生长过程;2)全金属密封,适于各种类型反应;3)圆筒型反应腔体,最高烘烤温度达到350℃,前驱体及载气利用率高;4)特殊设计的样品台,适用于包括粉末样品在内的各类基底;5)可选配四极质谱和石英膜厚检测仪,对反应过程实时监控。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp ALD是一项简单和实用的技术,在微电子、太阳能电池、光子晶体以及催化等许多领域都有广泛的应用前景。我们目前研发的系统主要针对科研应用,国内每年需求量在数十台至上百台。 /p /td /tr /tbody /table p br/ /p

高温沉积系统相关的方案

  • 2205双相不锈钢沉积氯化钠之高温腐蚀
    本文研究表面沉积2mg/cm2氯化钠的2205双相不锈钢(2205DSS)在500vppmNaCl(g)流动气氛加热炉内550~850℃下之高温腐蚀. 只做学术交流,不做其他任何商业用途!版权归原作者所有!
  • 氦质谱检漏仪脉冲激光沉积系统 PLD 检漏
    脉冲激光沉积系统 PLD脉冲激光沉积系统 Pulsed laser deposition 是制备高通量多晶薄膜, 外延薄膜和多层异质结构和超晶格结构的物理气相沉积设备, 通常需要保证本底真空度达到 10-8mbar, 同时高真空环境对系统配置的 RHEED 及温控系统等关键设备的寿命也至关重要.
  • 天津兰力科:稀土化学沉积数据库系统设计与应用研究
    在科技日新月异的今天,新材料的发展水平已经成为衡量一个国家高科技水平和综合国力强弱的重要标志,化学镀是在材料领域中发展起来的一类新兴技术,化学沉积钻基合金不需要电流,可在各种基体材料上沉积以及具有优异的磁学性能,但它存在镀液稳定性差、沉积速度和均镀能力不理想等问题。由于稀土元素在电镀、表面化学热处理中能有效提高镀液稳定性、沉积速度和渗速,可以改善材料的可焊性、硬度和耐磨性等功能特性作用,所以展开了稀土元素介入化学沉积钻基合金的尝试。稀土元素介入化学沉积钻基合金是一个具有良好发展前景的研究方向,为了加速其实际应用的步伐,对在试验过程中获得大量数据,以中文VisualFoxPro6.O为工具,开发出化学沉积数据库系统应用软件。该软件系统分别建立了镀覆工艺、显微硬度和磁学性能三个数据库。以此为基础,开发了六个应用模块,分别为文件管理模块、编辑处理模块、数据管理模块、图片管理模块、打印管理模块、退出系统模块。通过该软件,我们可以方便的管理所有的试验数据。根据试验数据,用数值分析的方法进行数据处理,拟合出试验数据的近似函数表达式。用正交表对基础配方进行分析,得到最佳配方,并进行相应方差分析 用样条函数和最小二乘法分析镀覆工艺试验数据,绘制出三次样条函数和三次近似多项式的图形,获得化学沉积速度最大时各因素浓度所在的区间。本文的研究是对试验数据处理的一种探讨,为稀土化学沉积数据库系统的建立探索出一条途径,为获得最佳的钻基合金镀层性能奠定了基础,具有较大的理论和现实意义。

高温沉积系统相关的资料

高温沉积系统相关的试剂

高温沉积系统相关的论坛

  • 【求助】求助:测量土壤和沉积物中主量元素土壤消解的方法?

    我要测沉积物和土壤中的主量元素(K,Ca,Na,Mg,Fe,Al,Si),之前用的是高温密闭消解方法。称的0.1g土样,加的1ml的HNO3,2mlHF,烘箱190度24小时。可是最后有白色絮状沉淀,不知道是什么东西?那位大师告诉我测主量元素一般用什么消解方法啊?着急啊,,,实验都拖了快一个月了不剩感激啊

  • 【金秋计划】+海洋沉积物检测常规指标有哪些?

    [back=linear-gradient(to right, rgba(111, 75, 250, 0.12), rgba(111, 75, 250, 0.12)) center bottom / 100% 12px no-repeat]海洋沉积物检测常规指标[/back]主要包括以下几类: 重金属:包括铜、铅、锌、镉、铬、汞、砷等,这些重金属是常见的污染物,对海洋生物和人类健康构成威胁。 石油类:石油污染是海洋污染的一个重要来源,包括石油烃等。 DDT和多氯联苯:这些有机污染物对海洋生态系统有长期影响。 硫化物和有机碳:这些指标反映了沉积物的有机污染程度。 粒度:沉积物的粒度分布对其物理性质和生态功能有影响。 总磷和总氮:这些指标反映了沉积物的营养化程度,过高的磷和氮含量可能导致富营养化问题。 色(嗅、结构)、大肠菌群、粪大肠菌群、病原体:这些指标反映了沉积物的卫生状况,对人类健康有影响。 氧化还原电位:反映了沉积物的氧化还原状态,对沉积物中的生物和化学反应有影响。 此外,根据不同的监测目的,还可能包括其他特定的监测项目和时间频次。例如,近岸海洋沉积物的例行监测中,除了上述常规指标外,还包括总磷、总氮等必测项目,以及选测项目如废弃物、色(嗅、结构)、大肠菌群、粪大肠菌群、病原体、氧化还原电位、沉积物类型等。这些指标的选择和监测频率的确定,旨在全面评估海洋沉积物的质量状况,以及其对海洋环境和人类健康的影响。

高温沉积系统相关的耗材

  • 电子显微镜专用用碳沉积
    CARBON FILL,MGIS碳沉积(多支气体注入系统专用)用于原厂电子显微镜多支气体注入系统,碳沉积(多支气体注入系统专用)是一种存放碳化合物的容器,将药品加热到一定温度,药品气化,在真空压差和可控阀门的作用下,将药品气体喷洒在样品表面,同时在离子束的诱导作用下将碳分子沉积在样品表面。以实现对样品表面形貌的保护,或对样品进行导电处理。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • 脉冲激光沉积用准分子激光器
    IPEXTM 840/860 PLD系列 脉冲激光沉积用准分子激光器Excimer Lasers for Pulsed Laser Deposition基于轻工机械最畅销的Ipex系列工业级准分子激光器,为PLD应用优化了激光器优秀的光束匀称性,脉冲到脉冲能量稳定和短脉冲持续时间在所有重复率能量恒定最长气体寿命和最低运行成本的ICONTM(在镍集成陶瓷)技术EasyClean自动光学密封,以保持填充气体,减少维护时停机时间高亮度镜头,适用于要求低光束发散或延长相干长度定制光束传输系统IPEX-840/860系列准分子激光器在脉冲激光沉积(PLD)领域展现了优异的性能、耐用性、可靠性和满足研究人员和系统集成商要求的易于集成性能。稳定性能得到可靠PLD结果:能量恒定IPEX-840/860系列激光器的指定脉冲能量从单脉冲到最大重复频率都是恒定的。这与其他有竞争力的激光器智能在地重复频率能量恒定和能量岁脉冲重复率上升而快速下降形成鲜明对比。LightMachinery的方法使PLD的工艺参数与激光重复率是一个恒量。恒定脉冲稳定性在PLD应用中,脉冲能量受一个先进的能量监视器监控,能够准确的调节放电电压和混合气体,在任何操作条件,包括PLD需要的突发脉冲,恒定输出能量。指向性恒定不变高稳定性使镜片座能够有200m-radian指向稳定性和光学维护后不需要调制光束角度光束质量稳定性IPEX-840/860系列激光器的光束强度分布被设计为边缘陡峭,顶部平坦,特别是激光管寿命的微小变化。PLD光束传输系统我们可以针对任何特定的PLD要求提供完整的激光传输系统规格 设备电源: 单相,200-240V,20A,50/60Hz冷却水:5 litres/minute,5-20℃,40-60psig激光气体:预混合气,具体请联系我们
  • HJ1315-2023土壤和沉积物19种金属元素总量的测定石墨消解仪
    《HJ1315-2023土壤和沉积物19种金属元素总量的测定 电感耦合等离子体质谱法》将于2024年6月1日正式实施。新标准中,使用微波消解法或电热消解法对样品进行消解,然后使用ICP-MS一次完成19种金属元素的同时测定,解决了土壤和沉积物中元素分析标准多、前处理方法复杂等问题。微波消解法称取0.1±0.0001g土壤样品于微波消解管中,沿内壁滴加少量试验用水润湿样品,依次加入9mL硝酸和3mL盐酸,加盖拧紧,将消解管放入微波消解仪中。参照下表升温程序进行微波消解。消解结束后冷却至室温。从微波消解仪中取出消解管,打开消解管盖子,在消解管中加入2mL氢氟酸,将消解管置于专用赶酸器上,140℃加热至内容物呈不流动的粘稠状态。取下稍冷,加入1mL高氯酸,180℃继续加热至白烟几乎冒尽,内容物呈粘稠状态。取下消解管冷却至室温,用2%硝酸溶液反复多次洗涤管内壁,洗涤液一并转入容量瓶中,用2%硝酸溶液定容至标线,混匀,待测。电热消解前处理称取0.1±0.0001g土壤样品于消解管中,依次加入10mL硝酸,5mL氢氟酸,2mL盐酸,1mL高氯酸,在石墨消解仪上加内盖,150℃加热3小时(可根据实际消解情况加长时间),升温至180℃,打开内盖进行赶酸,如有明显黑色不溶物时,需补加硝酸,继续180℃消解赶酸,待消解液呈粘稠不流动状态时,取下消解管冷却至室温,用2%硝酸溶液洗涤管壁,洗涤液一并转入容量瓶中,用2%硝酸溶液定容至标线,混匀,待测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制