氢化辛可宁

仪器信息网氢化辛可宁专题为您提供2024年最新氢化辛可宁价格报价、厂家品牌的相关信息, 包括氢化辛可宁参数、型号等,不管是国产,还是进口品牌的氢化辛可宁您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氢化辛可宁相关的耗材配件、试剂标物,还有氢化辛可宁相关的最新资讯、资料,以及氢化辛可宁相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氢化辛可宁相关的资料

氢化辛可宁相关的论坛

  • 氢化油的危牢

    氢化油食品:速食店用来炸薯条、炸鸡肉的油几乎都是氢化油;超市里的包装西点如蛋糕、饼干、冰淇淋等食品也大多用氢化油。氢化油多应用在超市、速食店和西式快餐店,用其炸出的薯条、鸡肉,做出蛋糕、饼干、冰淇淋不易被氧化(变质)且风味好。但油脂的饱和度增加,将比动物饱和脂肪酸更不利健康,会加快动脉硬化,增加人类心血管病患病率。有调查表明,人造黄油摄入量越多,患心脏病的危险性就越大。此外,氢化油还会增加血液黏稠度和凝聚力,使人容易产生血栓;孕期或哺乳期妇女食用氢化油过多,还会影响胎儿。[img]https://ng1.17img.cn/bbsfiles/images/2022/02/202202181316102144_8060_1642069_3.png[/img]

  • 【原创】带你了解“植物奶油”(氢化油)

    【原创】带你了解“植物奶油”(氢化油)

    http://ng1.17img.cn/bbsfiles/images/2010/11/201011081110_258052_1641058_3.jpg 氢化油,也被叫做“植物奶油”“植物黄油”“植脂末”。目前,在面包、奶酪、人造奶油、蛋糕和饼干等食品焙烤领域广泛使用。氢化油产生大量反式脂肪酸,增加心血管疾病、糖尿病等风险,世界各国已纷纷限制,但中国却在大规模、无限制地使用。(据11月7日央视)  在饼干、蛋糕、麦片、方便面等包装上,都印刷着含有氢化植物油,却没有标注上具体含量。也就是说,我每天都在吃含氢化油的食品,却不知道吃了多少。可见,要拆除健康炸弹的隐忧,关键之处是尽快制定食品标准,限制氢化油的含量。  氢化油与食品添加剂一样,属于额外的东西,对于食品本身来讲,并没有提高其营养价值,只是增加食品的美味可口,丰富了我们的味觉。这是食品工业化的伟绩,也是为迎合消费者的食欲,从而采用化学方法改变食品成分。科学本来就是把双刃剑,是益是害,要看怎么运用了。氢化油诞生百年来,由于其应用广泛,使食物变得更加松软酥脆,一直受到消费者的青睐,而发现其潜存的危害性,也是最近十来年的事。  氢化油对健康主要有四个方面的危害:增加血液黏稠度和凝聚力,促进血栓形成;提高低密度脂蛋白胆固醇,促进动脉硬化;增加糖尿病的发病率;影响婴幼儿和青少年正常的生长发育,并可能对中枢神经系统发育产生不良影响。氢化油会产生大量反式脂肪酸,据健康专家介绍,一般的脂肪吃在身体里7天就代谢了,而反式脂肪吃在身体里50天才可以代谢,这就是为什么洋快餐会导致肥胖的原因。  如同其它对健康有危害的东西一样,总是在经过一段时间后才被发现。氢化油的危害性,经过媒体的报道,应该会引起消费者的警觉心。但是,受到现代社会生活方式影响,消费者与食品加工生产之间有隔膜,根本不了解也弄不懂,食品里面到底含有哪些有害成分。这就需要依赖于食品监管部门,由它们为消费者把关,通过制定严格的食品标准,限制有害成分的含量。  食品安全危机的案例,我们已经遭遇过许多次,心理承受力亦被锻炼成世界一流水平。氢化油属于潜藏的健康炸弹,其危害性并不显眼,甚至因美味而俘获无数消费者。因此,对于拆除氢化油的危害性,除了制定含量标准外,还需采取多种辅助手段,包括普及健康知识、宣传健康饮食习惯、全程监管氢化油生产企业等等。这项健康工程,需要尽快启动,不能再拖延时日,以免造成更大的健康危机。12楼:《经济半小时》报道34楼:卫生部正评估植物奶油风险 婴幼儿食品禁用42楼:我国居民的反式脂肪酸人均摄入量在0.6克左右,远低于欧美国家的水平。

氢化辛可宁相关的方案

  • 华谱科仪S6000液相色谱分析注射用氢化可的松琥珀酸钠
    本文参照2020版《中国药典》对注射用氢化可的松琥珀酸钠中有关物质进行分析。从分析结果可知,氢化可的松琥珀酸钠峰的保留时间为17.95分钟,17-氢化可的松琥珀酸钠峰相对氢化可的松琥珀酸钠峰的相对保留时间为0.73,氢化可的松峰相对氢化可的松琥珀酸钠峰的相对保留时间约1.21,理论板数按氢化可的松琥珀酸钠峰计算大于3000,氢化可的松琥珀酸钠峰与氢化可的松峰之间的分离度大于4.0。
  • 使用配备 MSIS 附件的 Agilent 5110 SVDV ICP-OES 同时测定鱼样品中的氢化物和非氢化物元素
    食品中各种元素(包括营养元素、微量元素和有毒元素)的检测是一类应用广泛的分析,对于确保这些产品的质量控制非常重要。配备氢化物发生附件的 ICP-OES 通常用于测定食品中可形成氢化物的元素,与传统雾化技术相比,其性能更高,检测限更低。但是,同时测定氢化物 和非氢化物元素的分析更耗时,也更复杂。本研究使用传统进样系统在一 次分析中同时测定 Cd、Cr、Cu、Ni、Fe、Pb 和 Zn 等元素。然后,在安装氢 化物发生附件的情况下测定 As、Se、Hg 和 Sn 等可形成氢化物的元素。对于日常需要同时分析样品中可形成氢化物的元素和不可形成氢化物的元素 的实验室而言,在两种进样系统之间切换造成了大量的时间损失。安捷伦多模式进样系统 (MSIS) 是一套灵活的进样系统,可安装在 ICP-OES 上,用于氢化物和非氢化物元素的检测。该系统可在三种模式下运行:传统雾化模式、氢化物发生模式和双重模式。在双重模式下运行时,可同时测定氢化物和非氢化物元素,省去了复杂、耗时的进样系统更换过程,且不影响灵敏度,缩短了仪器停机时间。
  • 氢化物发生法分析水环境中的锑
    ZA3000 系列在使用氢化物发生法时,BKG 校正也是采用偏振塞曼法的。准确的BKG校正和稳定的基线可实现1μg/L 以下的低浓度检测。自然水域中,河水里大约含有1μg/L,海水里大约有0.2μg/L 的锑。本文采用氢化物发生法分析河水中的低含量的锑元素,操作简单,重现性良好,分析结果可靠。

氢化辛可宁相关的资讯

  • 清华女神颜宁离开清华加盟普林斯顿大学,为何?
    p   日前,清华大学校方证实,清华大学教授颜宁已接受美国普林斯顿大学邀请,受聘该校分子生物学系雪莉· 蒂尔曼终身讲席教授的职位,将于近期前往就任该教职。 /p p   2007年10月,颜宁在普林斯顿完成博士后训练后,受聘清华大学医学院,成为当时清华最年轻的教授和博士生导师。在清华的10年里,颜宁取得了非常多的科研成果,作为通讯作者在Nature、 Science和Cell三大最顶尖的国际期刊上发表科研论文高达17篇,另外还入选了长江学者特聘教授、国家杰青获得者、中国青年女科学家奖、赛克勒国际生物物理奖、2016-2017年度 “影响世界华人大奖” 提名等数十项荣誉。 /p p   在清华大学完成本科学习,在普林斯顿大学完成博士及博士后研究的颜宁,为何在任教清华后又受聘普林斯顿?对于“双一流”建设中的清华大学,这又意味着什么?记者就此采访清华校方及颜宁本人。 /p p strong   清华大学:有助于将中国学术思想、教育理念传播到国际学术舞台 /strong /p p   清华大学相关负责人首先证实了这一消息。该负责人表示,颜宁经本人慎重考虑并与学院和学校仔细沟通,已决定接受美国普林斯顿大学分子生物学系雪莉· 蒂尔曼终身讲席教授的职位,将于近期前往就任该教职。他透露,在聘期内,颜宁将在普林斯顿大学继续从事高水平学术研究和人才培养工作,也会保持与清华的联系,在符合两校规范的情况下,安排出时间在清华继续从事一定的科研和教学工作,推动两校和中美两国间学术交流与合作的进一步深化和提高。 /p p   高水平创新人才是创新型国家建设的宝贵资源,也是世界各国高度关注、积极争取的重要力量。近年来,随着清华大学逐渐成为世界一流高校的一分子,该校培养的博士毕业生受聘于海外高水平大学正式教职的情况已日益多见,在职教师被包括美国麻省理工学院、普林斯顿大学在内的世界名校聘为长聘或讲席教授的情况也时有发生。这位负责人说,这些事例一定程度上反映了我国高等教育发展进入了新阶段,世界一流大学对包括清华大学在内的国内高校的学术研究和人才培养水平有较高认可,清华大学有一批优秀学者已达到国际一流大学教师的水平,其中的杰出者更是达到了世界名校的讲席教授水准。 /p p   以颜宁为代表的青年科学家赴世界顶尖高校任教,将对处在“双一流”建设中的中国高校,产生什么影响?该负责人直言,这是国际高层次人才流动的正常现象。清华对此保持开放、乐观和积极的态度。“近年来,我国大学师资水平不断提升,与国际一流大学师资流动更加频繁,合作日益紧密,像姚期智、施一公等从普林斯顿回到清华,带动了清华相关学科的发展,加强了中美两国科研等领域的合作。颜宁选择再次回到普林斯顿大学,我们相信,这有助于将中国的学术思想、教育理念和清华的学术风格传播到国际学术舞台,产生更大的影响。” /p p strong   颜宁:换一种环境,希望能够在科学上取得新突破 /strong /p p   对于颜宁来说,这同样是一个不容易的决定。她告诉记者:“因为过去10年我在清华大学获得了极好的支持。清华有优秀的学生,有给我动力和压力的优秀又友好的同事,有给我全力支持的学校和学院管理部门等等。在这些无与伦比的软硬件支持下,我取得的科研成果甚至超过了自己回清华之初的预期。” /p p   为何离开?颜宁用“居安思危”解释:“我生怕自己在一个环境里待久了,可能故步自封而不自知。换一种环境,是为了给自己一些新的压力,刺激自己获得灵感,希望能够在科学上取得新的突破。” /p p   “另一方面,清华大学和普林斯顿大学都是我的母校,能够在这两所让我骄傲的母校任教是我一直以来的理想。我很开心10年前清华大学向我伸出了橄榄枝,两年前普林斯顿大学也同样向我伸出了橄榄枝,让我得以梦想成真。我也会凭着对清华的热爱,尽己所能,促进普林斯顿等国外一流学府与清华的交流合作。这也是我在这个阶段回报母校的一种方式。” /p p strong   清华十年,发表17篇最顶尖论文 /strong /p p   颜宁1996至2000年在清华大学生物系攻读本科,后赴美国普林斯顿大学分子生物学系攻读博士学位,师从施一公教授,从事细胞凋亡研究,2004年12月通过博士论文答辩。2005年获得由《科学》杂志评选的“青年科学家奖(北美地区)”。2007年10月,在普林斯顿完成博士后训练后,受聘清华大学医学院,成为当时清华最年轻的教授和博士生导师。 /p p   在清华大学的10年间,颜宁主要运用结构生物学和生物化学手段,致力于与重要疾病相关的跨膜运输蛋白的结构与机理的系统研究,带领其研究团队取得了一系列具有国际影响的原创性基础科研成果,包括解析了国际上攻坚几十年的葡萄糖转运蛋白(GLUTs)高分辨率晶体结构,以及具有重要生理和病理功能的电压门控钠离子和钙离子通道的三维结构,其中葡萄糖转运蛋白结构已经被国际经典的生物化学最新版教材收入。 /p p   2009年以来,颜宁作为通讯作者在Nature、 Science和Cell三大国际期刊上发表科研论文17篇,培养7名博士生 其研究成果在2009和2012年被《科学》年度十大进展引用 2016年,颜宁被《自然》评为十位“中国科学之星”之一。 /p p style=" TEXT-ALIGN: center" img title=" 01.jpg" style=" HEIGHT: 365px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201705/noimg/021874af-1d49-4b95-9f7c-55c7ae545706.jpg" width=" 500" height=" 365" / /p p style=" TEXT-ALIGN: center" img title=" 02.jpg" style=" HEIGHT: 379px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201705/noimg/a76c579c-a9fb-4408-81d4-71d73708ea20.jpg" width=" 500" height=" 379" / /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" 03.jpg" style=" HEIGHT: 313px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201705/noimg/e474a07d-871b-4e14-96ab-8d25e734420d.jpg" width=" 500" height=" 313" / /p p strong   2014年演讲:象牙塔里的波澜壮阔更让人刻骨铭心 /strong /p p   以下是2014年7月颜宁为清华大学学生所作的毕业演讲,让我们重温一下这位女神教授走出又回归清华园的心路历程。 /p p style=" TEXT-ALIGN: center" strong 象牙塔里的波澜壮阔更让人刻骨铭心 /strong /p p   亲爱的同学们,尊敬的老师们、家长们: /p p   今天在座的同学们来自于几十个不同的专业,即将面对迥然不同的事业与人生道路。作为一个过去近二十年基本没有走出过象牙塔、思维方式相对简单、人生见识相对单薄的我,能和你们讲什么呢?过去两周于我而言可比写学术论文要痛苦的多。苦思冥想,干脆就把我走出又回归清华园这十几年的心路历程、过去的感悟与未来的“野心”与大家分享。抛砖引玉,希望你们站在人生如此一个重要转折点的时候,也花几分钟想一想未来十年、二十年、五十年的自己。 /p p   不知是否有人和我一样,从孩提时代,就困惑于人存在的意义。人来自自然、回归自然,代代相传,意义何在?我选择生物系的原因之一也是想窥探生命的奥秘。可是当我在大学系统地从分子水平认识生命之后,这个问题不但没有解决,反而让我更加困惑。突然有一天,我豁然开朗:只有有意识的人类才能问出这个关于“存在意义”的问题 那么也只有有意识的人类才能定义“存在意义”。所以,“人生意义”本就是一个主观命题。随着时代的发展,个人的背景与际遇不同,每个人对于这个命题的定义也会大相径庭,从而决定了追求目标、人生道路也大不同。 /p p   14年前的今天,恰好是我离开清华园的日子。当时的我对于未来的事业选择其实是一片茫然。但有一个原则却让我受用至今,那就是:努力做到最好,让选择权掌握在自己手中。 /p p   一个月后,我奔赴大洋彼岸,进入位于美国东岸的普林斯顿大学。2004年,我获得了分子生物学博士学位。如果说90年代的清华赋予我的是心怀天下的责任感,那么21世纪的普林斯顿则将我彻底拉入科学的殿堂。清华与普林斯顿都入选了世界最美的十所校园,清华庄重大气,普林斯顿优雅淡定。 /p p   在普林斯顿,穿着不修边幅给你上课的可能是诺奖得主、资深院士,你在咖啡厅小憩坐在对面的也可能是美国总统的科学顾问。在那里,不论是本科生还是诺奖得主,你完全感受不到人与人之间的高低贵贱,每个人都是一派怡然自得,却又有一份这个大学特有的我行我素、桀骜不驯。在这种环境下,你会很安心地做自己、很专注地做自己的事情 浮躁很容易就被挡在物理上并不存在的学校围墙之外。 /p p   在普林斯顿第一年,我突然发现,教科书里那些高贵冷艳的知识原来就是身边的这些貌似随和的老先生老太太们创造的 研究生课程都没有教科书,而一律是用经典或前沿的原创论文做教材,所以我们上课就是在回顾着科学史的创造。当我们进了实验室,自己竟然也已变成了人类知识的创造者、科学史的缔造者。有了这种认知,我的追求目标也逐渐演化为:发现某些自然奥秘,在科学史上留下属于自己的印迹。 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20170509093857.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/343a7e8a-7a18-4878-99da-2afcd031a4a3.jpg" / /p p style=" TEXT-ALIGN: center" strong 颜宁在普林斯顿大学实验室里 /strong /p p   当我定义了这样一种人生意义,也同时意味着选择了一种自由自在的生活方式,一种自找麻烦的思维方式,和一种自得其乐的存在方式。我完完全全痴迷于这个小天地:会为能够与大自然直接对话而心满意足,会为透过论文跨越时空与先贤讨论而兴高采烈,会为一点点的进展和发现带来的成就感而壮怀激烈。当然,这个过程里也少不了挫折和麻烦。 /p p   让我给大家讲一个清华园里发生的小故事,让大家看看象牙塔里的波澜壮阔。 /p p   我2007年刚回清华的时候,给自己确立了几个明确的攻坚课题,前不久做出来的葡萄糖转运蛋白是其中之一,还有另外一个也非常有意义的课题,叫做电压门控钠离子通道,它对于我们神经信号的传递至关重要。长话短说,一转眼到了2011年,我们经过之前几年的探索,终于获得了一个细菌同源蛋白的晶体,结构解析已近在咫尺,就差最后一次收集重金属衍生数据了。为此我们准备了大量晶体,保存在可以维持低温摄氏零下170度的液氮预冷罐中,寄到日本同步辐射,准备收集数据。 /p p   接下来,就是我永远不会忘记的日子,2011年7月11日。如果你们去查日历,那是星期一,在中国看到《自然》新论文上线的日子。我本来应该早上6点出门去机场,在5点55分的时候,我打开了《自然》在线,第一篇文章直接砸得眼睛生痛,因为这篇文章的题目就是《一个电压门控钠离子通道的晶体结构》,也就是说,我们被别人超越了。我们一直说科学上只有第一,没有第二。现在真真正正不可能是第一了,惨败!我把论文打印出来,交到做这个课题的张旭同学手里时,她立即泪崩。可是,晶体还在日本等着我们。于是一切按照原定计划,我们飞赴日本。 /p p   一路奔波,晚上7点赶到实验线站的时候,那里的工作人员一脸凝重地对我说:“颜教授,你们寄过来的低温罐似乎出了问题”。我心里一沉,这意味着晶体可能出了大问题,这可是我们过去三个多月的心血结晶啊!在刚刚承受了被超越的打击之后,这个事故可真是“屋漏偏逢连夜雨”。 /p p   所幸我们做事一向未雨绸缪,随身还带了很多晶体,于是就地开始重新泡重金属,第二天早上到了正式收数据的时候,果然,寄送过来的晶体全部阵亡,无一可用。然而,就当我们花了十几个小时,即将绝望之际,前一天晚上刚刚处理好的一颗晶体给了我们需要的所有数据—质量是如此之好,以致在收完数据一个小时之内,我们就解出了结构!此时,发表论文的课题组还没有从数据库释放结构信息,所以于我们而言,是第一次看到了这类蛋白的原子结构,对过去四年依旧是一个完美收官!那一刻,根本不会顾及还能发什么样的论文,心里充满的只有这前后巨大反差带来的狂喜。 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20170509093905.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/4a9664fa-7df0-4367-b65f-dd937c21d0e5.jpg" / /p p style=" TEXT-ALIGN: center" strong 颜宁在做实验室 /strong /p p   而故事还没有结束,就当我在凌晨三点打开邮箱,准备给实验室成员立即布置后续工作的时候,发现了一封来自美国霍华德休斯医学研究所的邮件,通知我,经过初选,我在全球800名申请人中过关斩将,成为进入“霍华德休斯国际青年科学家”第二轮候选的55人之一,邀请我于11月赴美参加最后的角逐。那一刻,我脑子里瞬间显出这两句:“屋漏偏逢连夜雨,柳暗花明又一村”。2011年7月11日早上5点55分到13日凌晨3点钟,这45个小时,于我和我的学生们而言真可谓惊心动魄,犹如坐过山车。也正因为此,这个过程远比一帆风顺的任何其他课题都来得刻骨铭心。 /p p   但这依旧不是故事的最终结尾。因为这个课题,我有幸与我此前崇拜了将近10年的偶像级科学家、2003年诺贝尔化学奖得主MacKinnon教授合作,在与他的交流中受益匪浅,也终于圆了我在研究生时代想要与他一起工作的夙愿。更重要的是,我们的结构呈现出与已经发表的论文很不相同的状态,经过分析阐释,我们的这些新结果也在10个月之后发表于《自然》。我还提出了一个电压门控通道感受膜电势的全新模型,直到现在,我们仍然在创造新方法、构建新工具对这个模型进行验证。 /p p   你看,这就是科学研究的魅力:不向前走,你根本不能轻易定义成功或者失败。总有那么多的不确定、那么多的意外惊喜在等着你!这种经历、这种感觉,真的会让人上瘾! /p p   回首从步入清华园至今的18年,我非常感恩:母校塑造了我健康向上的人格,生活在和平年代,衣食无忧 有亲人的疼爱,师长的支持,好友的信任,学生的依赖 而得益于经济发展,国家有能力支持基础科研。我感谢时代、国家和母校给我的机遇与馈赠 也更深刻地理解个人对于母校和国家的责任,我相信这其实也是渗入每一位清华人骨髓的使命感。 /p p   对于我们的母校,我们在座的所有人生逢其时,肩负着把她建设成为世界一流大学的责任。在我的心目中,当清华培养出来的一大批年轻人,以及一大批从清华起步的年轻人成为世界一流学者的时候,当我们的若干工作对人类的科学史、文明史产生持续影响的时候,我们就可以骄傲地宣称:清华是世界一流大学。我们和你们遇到了前所未有的机遇,有这个条件、有这个能力,用自己具体的行动来实现这个并非遥不可及的目标。我希望每一位同学都能记住:如果今天你认为我们的母校还不是世界一流大学,那么就让我们通过每个人的努力共同把她变为世界一流大学! /p p   亲爱的同学们,这一刻,看着你们,我与你们一样激动。你们的未来有无数种可能,但是每个人的人生只有一次。在现在这个信息爆炸、计划跟不上变化的年代,希望每一位清华人用你的初心去探索你的人生意义,努力认识你自己,做你自己,坚守内心的选择,坚定地为实现你的人生意义而勇敢、专注地行动。我衷心祝愿每一位同学收获自己的精彩人生,书写你认为最重要的历史!(部分内容来源:新华社) /p
  • ThalesNano和德克萨斯大学推出了适合全球高校的本科氢化实验课程
    旨在为全球的学院重新引入氢化教学实验,今天ThalesNano 和O'Brien集团在Arlington德克萨斯大学宣布完成了开发安全和科学有趣的氢化实验课程。该课程被设计成完全使用 ThalesNano 的 H-Cube® 和 H-Cube Tutor&trade 连续流动氢化反应系统,这个 H-Cube 连续流动氢化反应系统能消除使用氢气的危险和易燃催化剂的危险。这样就导致氢化反应不只是停留在大多数本科实验教学大纲中,从今天起 H-Cube 连续流动氢化反应系统 可以作为常规实验室类的一部分。 最初 ThalesNano 提供的中英文课程可允许教育工作者通过多媒体和传统课程介绍氢化反应,然后在 H-Cube 连续流动氢化反应系统上直接进行几个工业上普遍的氢化和氢解的反应。 阿灵顿德克萨斯大学的Chris O'Brien教授评论说:&ldquo 在UTA,我们很长时间都希望在本科生实验室中教授氢化反应技术,但出于安全的考虑令我们一直无法执行此想法。多亏了 H-Cube 连续流动氢化反应系统,研究生和本科学生在好几年前就已经能够熟练操作 H-Cube 连续流动氢化反应系统和氢化反应。基于这么多年的经验,我们提出了一门正式的氢化反应课程,我们认为其他学校也可以很轻松地接受。令人兴奋的是可以看到更多的 H-Cube 连续流动氢化反应系统 在教育体系中使用,很公平地说有 H-Cube 连续流动氢化反应系统实践经验的毕业生将在申请工作时占有优势。&rdquo &ldquo ThalesNano承认学术界在帮助建立创新性的技术作为新的行业标准中所发挥的重要性&rdquo ,Laszlo Urge博士, ThalesNano公司首席执行官说,&ldquo 这项倡议预计将对教育工作者产生巨大的吸引力,正如 H-Cube 连续流动氢化反应系统 的系列产品不只是重新把氢化实验引入到了教学实验室,而且也将带给他们流动化学的实践经验。众所周知,流动化学当前在化学合成工业中正呈现出快速增长的趋势。&rdquo Official ThalesNano website: www.thalesnano.com Official ThalesNano contact email: flowchemistry@thalesnano.com Official website: www.pynnco.com Contact Information: 美国培安公司 地址:朝阳区吉庆里14号佳汇国际A202 Email: sales@pynnco.com, Tel:010-65528800
  • 清华大学校长陈吉宁或履新环保部部长
    第一财经日报记者从有关渠道得到的消息称,清华大学校长、环境保护部科学技术委员会副主任陈吉宁或履新环境保护部部长。   现任环保部部长周生贤出生于1949年12月,现年65岁,已到退休年龄。2005年12月,周生贤出任国家环境保护总局局长、党组书记。2008年3月任中华人民共和国环境保护部部长、党组书记。   陈吉宁多年来担任国家环境咨询委员会委员、环境保护部科学技术委员会副主任、中国环境科学学会副理事长,以及中国土木工程学会水工业分会理事长。   履历显示,陈吉宁于1981年9月清华大学土木与环境工程系学习,1986年7月毕业,获学士学位 1986年9月清华大学环境工程系攻读硕士学位 1988年10月赴英国布鲁耐尔大学生物化学系攻读博士学位 1989年7月英国帝国理工医学院土木系攻读博士学位,1993年获博士学位 1992年12月英国帝国理工医学院博士后 1994年12月英国帝国理工医学院助理研究员 1998年3月回清华大学任教,任环境工程系副主任 1999年7月任清华大学环境科学与工程系主任。   陈吉宁长期致力于环境系统分析方面的研究工作,将系统分析的方法和工具应用于环境工程、规划、管理和政策研究,特别是如何解决复杂环境问题的综合性评估及其中的不确定性问题。组织、承担和参与了多项国家攻关、重大专项、基础研究以及国际联合科研项目等。   近年来,陈吉宁承担了多项国家重大专项、&ldquo 973&rdquo 攻关和省部级及国际合作项目。2001年和2004年他先后主持了国家环保局&ldquo 辽河流域 十五 环境规划&rdquo 和&ldquo 全国面源污染控制政策框架与行动方案&rdquo 2000年至2005年主持或参与了国家科技部&ldquo 滇池流域面源污染控制技术研究&rdquo 和&ldquo 污水回用技术、政策和规划研究&rdquo 等重大研究工作。   陈吉宁还是国际预测环境变化专家组成员、国际水协议程委员会委员,以及环境未来国际顾问委员会委员等多个国际专业学会和中国环境学会环境技术分会主任等多个国内学会的主任委员、副主任委员以及理事,是多个国内外学术期刊编委。   &ldquo 陈校长任务艰巨,不过也是扭转形势的好时期。&rdquo 在得悉这一消息后,有环保业内人士表示,环保由专家而非政客主政,可以干实事而非喊口号。&ldquo 这几年,喊着新道路,年年超指标,环境危机却不期而至。平心而论,这八年对于环保来说是失去的八年。&rdquo   一位环保业内人士也表示,陈吉宁会是&ldquo 一位勇挑重担、改革创新的部长&rdquo ,值得期待。

氢化辛可宁相关的仪器

  • 产品名称:柱型连续流动氢化反应装置 产品型号:FFX-1000G 产品代码:262770 反应方式:连续流动反应方式 反应容器:催化剂填充反应柱 内径5x50mm 1支 最高使用压力:小于1MPa(氢气导入压力上限) 温度调节范围:50-200℃(铝块恒温槽) 流量调节范围:液体 0.01-1.00mL/min 氢气 2-100mL/min 压力调节范围:0-0.8MPa 温度气体液体参数设定:按键输入数字显示 温度控制种类:铝块夹套控制 温度控制方法:P.I.D控制 液体泵流量控制:单柱塞泵定量送液 气体流量控制:气体流量控制器(mL/min) 液体流路:2路送液(泵、泵+进样阀) 气体流路:1路(氢气) 回收流路:1路(大气开放) 安全功能:压力传感器上限压力报警、气体流量报警、液体泵自我诊断功能(上限压力报警)、独立过升防止器、保险丝、温调器自我诊断功能(可变式上限温度、传感器异常)、保护盖 环境温度范围:5-35℃ 接液部材质:SUS316、FFKM、PEEK、FTFE、玻璃 气体连接口:外径1/16管路适配器 原料容器:玻璃瓶100mL、进样阀4.5mL以下 外部尺寸(mm):300Wx420Dx377H 电源:5A、500VAAC100V 50/60HZ产品特点:1、 小型紧凑型可以进行催化反应的流程式反应装置。对于柱型管填充的催化剂通过流动反应液。可进行不均匀的催化反应。可用于流程反应条件研究,规模扩大合成。2、 通过精密控制流程反应的各参数(反应液流量氢气流量压力柱管恒温槽的温度),实现流程式合成反应。3、 通过压力调整阀,可设定液体以及气体任何压力条件下。压力调整范围从0-0.8MPa进行调整。4、 压力、温度、流量(液体以及气体供给)的控制设定在运行中也可以更改。因为是研究连续的反应条件,可迅速进行最适化实验。5、 对于高浓度的反应液,不依靠泵,可通过注射器直接向柱管里添加。6、 通过使用机能性催化剂(PPD-60型),根据反应不同,可维持催化剂的活性,再利用。另外,能改善氢气消耗量,可以进行批式反应条件(温度、压力)和比较试验。
    留言咨询
  • minispec 碳氢化合物含氢量测定全新 ASTM* D 7171:基于脉冲时域核磁共振的国际标准方法采用时域核磁共振技术分析诸如柴油或航空煤油等碳氢化合物的含氢量。采用时域核磁共振技术测定含氢量快速、无损、无溶剂质量控制/质量保证测定支持所有官方国际标准方法(ASTM D 7171、ASTM D 3701和ASTM D 4808)利用少量市售化合物轻松完成校准最低限度试样制备高投资回报率卓越的可再现性配备改良版软件的专用分析仪 氢含量分析带来的经济效益碳氢化合物和植物油精炼通常包括加氢处理。氢消耗是精炼厂的重要成本问题,氢含量被用作精炼进度的重要指示。含氢量是诸如航空煤油和柴油等产品必须满足的技术规范之一。为了证明产品符合官方技术规范,同时尽可能降低氢用量,必须采用精确、可靠的分析方法。minispec核磁共振方法符合工艺控制对精确度、准确度和速度的要求。操作minispec不要求技术娴熟的人员。仪器设计十分稳健,维护要求很低。进行含氢量分析的其他原因含氢量越高,汽油燃烧越好,质量越高积碳、废气、热辐射等随含氢量的下降而增加 minispec校准两种校准方法可行:采用从化学品供应商处购得的纯碳氢化合物——如十二烷采用用户提供的试样和参考值 试样处理和试管直径这种方法通常采用两种试管直径:18毫米或40毫米直径试管。可提供带杆 PTFE 试管塞,用以避免试样蒸发。 哪怕在长期运行中,大多数时候都使用金属块恒温器对试样进行预加热,这仅需用电。 典型测定用时试样生成很强核磁共振信号。这可实现很高信噪比,从而将典型测定用时缩短至短短一分钟。 minispec 在石化行业的其他应用煤的总含氢量蜡/石蜡的含油量测定油页岩和油砂的含油量测定油粘度测定国际方法国际标准方法推荐使用纯碳氢化合物进行校准。最新 ASTM D 7171 方法列出了推荐校准物质及相应的含氢量值。 氢百分比含量计算由于化学式众所周知,并且物质纯度很高,亦可直接计算出化合物的含氢量。 国际方法列表ASTM D 7171 ( 2005年发布,基于脉冲核磁共振),适用于中间馏分石油产品ASTM D 4808 (轻质和中间馏分、瓦斯油和渣油)ASTM D 3701 (航空涡轮机用燃油) 通过将原来的连续波核磁共振仪器更换为脉冲核磁共振仪器minispec,可以满足甚或超出 ASTM 方法 D 3701 和 D 4808 的要求。脉冲核磁共振分析方法更快速、更灵敏、更精确,并且适用于更多应用。
    留言咨询
  • 55i 型甲烷/非甲烷碳氢化合物分析仪应用气相色谱技术实现甲烷和非甲烷碳氢化合物的完全分离和分别测量测量范围从C1到C12以上没有可能被毒化或消耗的催化剂量程可调自动点燃FID的火焰和检测火焰状态量程0-5,50,500 ppm 或 0-10,100,1000 ppm 或0-20,200,2000 ppm或0-50,500,5000ppm零点噪声0.025 ppm RMS (300秒平均时间)最低检测限0.050 ppm CH4跨漂(24小时)2%跨点分析时间(90%)约70秒精度2%读数或是50ppb(取大值)
    留言咨询

氢化辛可宁相关的耗材

  • 氢化物发生器
    最佳的氢化物原子吸收法应用-我国原子吸收分析行业著名专家吴廷照教授集数十年研究的多项专有技术应用于仪器的相关部件,特别是流动注射氢化物发生器原子吸收的应用,使氢化物原子吸收法的灵敏度和检出限都达到国际最佳水平,例如测砷最佳灵敏度可达0.08ng/ml/1%( 文献指标为0.15 ), 检出限最佳可达0.06ng/ml,精密度RSD<2%。测定效率极高,按下启动键25&mdash 30S即可完成进样、测定、清洗全过程。用氢化物原子吸收 光谱法可测定痕量元素As、Se、Sb、Bi、Sn、Pb、Te、Ge、Cd、和冷原子吸收法测Hg 。仪器内装氢化物原子化器电热石英吸收管电源,自动读数接口。
  • 氢化物发生器附件 HG-A
    氢化物发生器HG-A新型氢化物发生器属流动注射型,必须与光谱仪(原子吸收分光光度计主机)配合使用,用氢化物原子吸收法设定试样中痕量砷、硒、锑、铅、锡、碲、锗、和冷原子吸收法测出定汞 。仪器简介:本产品适用于,各个厂家的原子吸收配套使用。主要特点:1.用途概述: 本型氢化物发生器属流动注射型,必须与光谱仪(原子吸收分光光度计主机)配合使用,用氢化物原子吸收法设定试样中痕量砷、硒、锑、铅、锡、碲、锗、和冷原子吸收法测出定汞 。 2.工作情况: 按起动键 ,自动定量吸入2种溶液(硼氢化钾、试样),试样和硼氢化钾溶液开始稳流流动,会合后发生反应,生成物被载气带入气液分离管,混合气(氢化物气体)进入电热石英吸收管原子化器,废液自动排出,原子吸收主机用峰面积法读数。 3.本系列发生器所拥有的优特点: 自动进液。 独特的电热石英吸收管(原子化器):装置小巧,升温快速,安装方便,温度稳定,使用寿命比火焰加热长10倍以上,免去燃料消耗,只要断电后石英管温度降下来即可迅速改变分析方法。 分析性能(灵敏度、检出限、稳定性、工作作效率)优越:灵敏度,大部分可测氢化物元素1ng/ml/1%,例如砷优于0.15 ng/ml/1%,大约相当于固体试样中0.1ppm;相对标准偏差(RSD):厂控指标小于3%。 4.注意事项 原子化器温度应调至1000℃左右。电压表显示为140-160V,环境温度会影响原子化器的温度 本仪器自使用方购买当日起保修一年。(泵管和原子化器均为易耗品,不再保修之内) 每次用完后必须在启动机器一次,并把进液管都放入纯水中进行一次进液 (自动分成5个时段进液) 本氢化物发生器工作时需要硼氢化钾和盐酸溶液。清洗机器时需要纯水清洗。正式工作前,请详细阅读说明书,并按说明书要求准备好所需各种液体。 备好所有溶液后,可开通电源,把泵头上安装的两根进液管放入试剂液中(液体中如有沉淀请过滤后再使用)此时把泵头 安装的泵管夹入塑料制的管夹中,并放入卡槽中。轻轻用力士卡槽卡入塑料夹中。此时可开通电源开关,按动起停键,机器进入设定程序中,程序设置为每周期进液5次。每运行周期时长30s,间隔时间10岁,运行时进试样液体的间隔时间为10s,是为了有充足时间将进液软管移至下一个待测试样瓶中。 本发生器采用峰面积法,积分时间为3s,间隔1s,平均3次进样取一值。RSD在2%以下。灵敏度为s=0.15 ng/ml,(仅限于As元素) 废液 氢化物气体输出口 氩(氮气)进气口 流量调节旋钮 电源总开关 启动/急停键 原子化器加热调节旋钮 原子化器供电插座 原子化器 进液管
  • LH-2A 氢化物发生器
    LH-2A 氢化物发生器HL-2A 型氢化物发生器是一种发生氢化物的装置。可与原子吸收分光光度计、氢化物原子荧光光度计、ICP-AES、ICP-MS等仪器配套使用,以一定的方式将反应产生的氢化物气体送入原子化器或ICP等离子炬进行测定。该装置可用于测定试样溶液中微量As、Sb、Bi、Se、Te、Ge、Sn、Pb、Hg等元素的测定。原子吸收法测定砷的主要技术指标如下:测定灵敏度(1%吸收对应的浓度):0.2ng/ml;精密度(相对标准偏差):小于3%;检出限(3s)0.02ng/ml;

氢化辛可宁相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制