强啡肽片段

仪器信息网强啡肽片段专题为您提供2024年最新强啡肽片段价格报价、厂家品牌的相关信息, 包括强啡肽片段参数、型号等,不管是国产,还是进口品牌的强啡肽片段您都可以在这里找到。 除此之外,仪器信息网还免费为您整合强啡肽片段相关的耗材配件、试剂标物,还有强啡肽片段相关的最新资讯、资料,以及强啡肽片段相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

强啡肽片段相关的资料

强啡肽片段相关的论坛

  • 【求助】DNA片段分析,求专家。

    我的一个朋友学生物的,最近正发愁如何对DNA片段进行液相分析。问了下,DNA片段是人工合成的,所以基体并不复杂,目的是通过对目标物的测定,表征之前的生物过程效果(内切什么的),分子量3000左右。由于自己对生物学方面知识薄弱(早已忘记了DNA分子化学结构为何、有何基团),没有提出意见。回来查了一下。首先看到的是Transgenomic公司wave商品名的DNA分离分析系统。看了下介绍,原来所谓的“分子桥”就是离子对色谱法。对于阴离子(磷酸基团PKA1为1-2)的核酸片段,通过加入三乙基胺醋酸盐,与之形成离子对,通过三乙基胺的疏水性与C18作用,形成保留,然后用乙腈洗脱,似乎没什么专利的内容。后来发现,关键在于那根特别的C18链的DNA分析柱,“无孔多苯乙烯-二乙烯基苯 (PS-DVB)共聚物微球(3微米)与C18形成稳定的固相”。疑问1:这种非硅胶基质的C18柱有何神奇之处?硅胶基质的C18为能不能做(估计不能,要不就不是专利了)?(硅胶表面的硅羟基会不会和DNA有什么反应)疑问2:有孔与无孔,对于这种大分子有何不同?孔径方面要选多大的,120A的会堵柱子么?疑问3:wave仪器的柱温为50-80度之间,分别应对非变性,部分和全部变性。这里的变性为何?一般柱温箱和C18的柱子柱温上限为多少?文献方面,看到一些用强阴离子交换(SAX)做的。tris-HCl缓冲系统,pH控制在9。此时DNA片段挂在SAX柱上。然后通过NaCl梯度淋洗(Cl-竞争?),洗脱下DNA分子片断。自己并不懂离子色谱。疑问1:SAX柱怎么使用和维护?需要注意什么?硅胶基质的和聚合物基质相比除了pH耐受性外有何不同?疑问2:为何选用NaCl淋洗?淋洗完后,挂在柱上的季胺上的Cl-怎么办?疑问3:此方法与那个wave相比,优点和缺点为何?其实疑问有很多,就不一一列出了,希望有经验的前辈多多发言,不吝赐教,小生感激涕零。

  • 【讨论】有关DNA片段的分析方法 (求达人)

    我的一个朋友学生物的,最近正发愁如何对DNA片段进行液相分析。问了下,DNA片段是人工合成的,所以基体并不复杂,目的是通过对目标物的测定,表征之前的生物过程效果(内切什么的),分子量3000左右。我问了下他现在怎么做的,回答流动相是三乙胺醋酸盐、乙腈。由于自己对生物学方面知识薄弱(早已忘记了DNA分子化学结构为何、有何基团),没有提出意见。回来查了一下。首先看到的是Transgenomic公司wave商品名的DNA分离分析系统。看了下介绍,原来所谓的“分子桥”就是离子对色谱法。对于阴离子(磷酸基团PKA1为1-2)的核酸片段,通过加入三乙基胺醋酸盐,与之形成离子对,通过三乙基胺的疏水性与C18作用,形成保留,然后用乙腈洗脱,似乎没什么专利的内容。后来发现,关键在于那根特别的C18链的DNA分析柱,“无孔多苯乙烯-二乙烯基苯 (PS-DVB)共聚物微球(3微米)与C18形成稳定的固相”。疑问1:这种非硅胶基质的C18柱有何神奇之处?硅胶基质的C18为能不能做(估计不能,要不就不是专利了)?(硅胶表面的硅羟基会不会和DNA有什么反应)疑问2:有孔与无孔,对于这种大分子有何不同?孔径方面要选多大的,120A的会堵柱子么?疑问3:wave仪器的柱温为50-80度之间,分别应对非变性,部分和全部变性。这里的变性为何?一般柱温箱和C18的柱子柱温上限为多少?(我印象中柱温箱好像就是50度)文献方面,看到一些用强阴离子交换(SAX)做的。tris-HCl缓冲系统,pH控制在9。此时DNA片段挂在SAX柱上。然后通过NaCl梯度淋洗(Cl-竞争阴离子?),洗脱下DNA分子片断。疑问1:SAX柱怎么使用和维护?需要注意什么?硅胶基质的和聚合物基质相比除了pH耐受性外有何不同?疑问2:为何选用NaCl淋洗?淋洗完后,挂在柱上的季胺上的Cl-怎么办?疑问3:此方法与那个wave相比,优点和缺点为何?其实疑问有很多,就不一一列出了,希望有经验的前辈多多发言,不吝赐教,小生感激涕零。

  • 纱条不均种类和产生原因,不同片段长度的不匀对面的影响是怎样的?

    纱条不均种类和产生原因,不同片段长度的不匀对面的影响是怎样的? 种类:长片段不匀,短片段不匀 长片段不匀,主要由清棉和前纺工序造成,若长片段周期性不匀率高,在织物上会出现明显的横条竖纹,对布面影响较大。 短片段不匀,主要由细纱的牵伸机构所造成,短片段不匀周期性不匀率严重时,几个粗节或细节在布面在布面上并列汇聚的概率较多,容易形成阴影或云斑,对布面影响很大。

强啡肽片段相关的方案

  • 人强啡肽(Dyn)检测试剂盒
    人强啡肽(Dyn)检测试剂盒人强啡肽(Dyn)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人强啡肽(Dyn)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人强啡肽(Dyn)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人强啡肽(Dyn)抗原、生物素化的人强啡肽(Dyn)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人强啡肽(Dyn)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • STING抑制剂片段筛选
    由NanoTemper和药明康德子公司Crelux合作完成的STING抑制剂片段筛选案例。包括阳性化合物TSA实验验证STING蛋白结合活性,片段化合物单点筛选及亲和力排序实验。
  • 人凝血酶原片段F1+2(F1+2)检测试剂盒
    人凝血酶原片段F1+2(F1+2)检测试剂盒人凝血酶原片段F1+2(F1+2)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人凝血酶原片段F1+2(F1+2)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人凝血酶原片段F1+2(F1+2)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人凝血酶原片段F1+2(F1+2)抗原、生物素化的人凝血酶原片段F1+2(F1+2)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人凝血酶原片段F1+2(F1+2)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。

强啡肽片段相关的资讯

  • 【实验视频】使用nanoDSF技术进行片段化合物库筛选
    实验背景Fragment-based drug discovery(FBDD),是先导化合物发现的主流方法之一。它利用核磁共振技术(NMR)、X-射线单晶衍射(X-ray)以及热迁移分析(TSA) 等方法筛选出与靶蛋白有弱相互作用的小分子片段,之后基于其结构信息对活性片段进行优化,进而得到更高活性的先导化合物进行新药的研发。在筛选小分子片段时,NMR能在接近生理条件的溶液中获得结合部位信息以及Kd,但其缺点为只能检测比较小的蛋白,且样品消耗量大。X-ray则需要先制备蛋白晶体,并且蛋白晶体和其在溶液中的构象可能会有差异。此外,这两种方法都需要非常昂贵的设备,通常只能在专用的平台由专业操作人员协助开展实验。TSA(Thermal shift assay)通过检测蛋白的熔解温度Tm变化来进行蛋白结合配体的筛选,其检测速度快,实验门槛低。因此我们可以先使用TSA进行初级筛选,之后结合NMR或X-ray进行验证。TSA的主要技术有染料法以及无标记的nanoDSF技术。在之前的文章中我们已经介绍过这两种技术的原理及对,小编今天将和大家分享荷兰癌症研究所(NKI)的研究人员发表在JoVE实验视频期刊基于nanoDSF技术建立的片段化合物库筛选Protocol。doi:10.3791/62469实验演示实验小贴士使用蛋白纯度大于95%的均一蛋白蛋白检测浓度通常为200μg/ml, 本文中筛选768个化合物片段消耗~12ml蛋白,仅2.5mg需要提前评估DMSO对蛋白的影响,本文中DMSO终浓度为0.2%操作演示实验小结基于此Protocol,研究人员对三种蛋白(癌症高表达蛋白 Hec1,单极纺锤体蛋白激酶1 Mps1及新冠非结构蛋白5,nsp5)进行了DSi-Poised library(768个片段)的筛选。研究人员指出使用搭载nanoDSF技术的Prometheus蛋白稳定性分析仪在进行TSA筛选时有以下优势:1样品消耗量低,要比其他方法少几个数量级2除Tm外,还可同时检测样品的聚集情况。3传统DSF方法,染料可能会干扰蛋白与配体间的结合除了无标记nanoDSF检测模块外,Prometheus蛋白稳定性分析仪还可搭载动态光散射(DLS),静态光散射(SLS)和背反射(Backreflection)模块,只需要10μl样品就可以完成均一性,热稳定性,胶体稳定性的检测。同时我们还提供自动化解决方案,便于客户进行无人值守的高通量筛选。机械臂自动上样NanoTemper用户介绍荷兰癌症研究所(NKI)成立于1913年,是荷兰唯一的专业癌症中心,一直以来也肩负着国际化科学与临床专业知识、发展及培训中心的重要角色。该中心位于阿姆斯特丹,提供荷兰国内最佳的癌症治疗,并曾推动了多项科学突破。(图片来源百度)[1] Ahmad M , Fish A , Molenaar J , et al. Nano-Differential Scanning Fluorimetry for Screening in Fragment-based Lead Discovery[J]. Journal of Visualized Experiments, 2021(171).
  • 环保大比武精彩片段集锦
    环保大比武精彩片段集锦(一)&mdash &mdash 赛前准备篇 公司全动员 各地勤备战 严把质量关 整装齐待发 环保大比武精彩片段集锦(二)&mdash &mdash 领导关注篇 环境监测司魏司长等领导来我公司进行实地调研 魏司长亲自坐镇,指挥大比武现场布置及仪器摆放 万本太总工视察会场 吴晓青部长视察大比武决赛场地及仪器 老领导督查比赛现场 环保大比武精彩片段集锦(三)&mdash &mdash 赛场风采篇 参赛队员入场 部委领导致辞参赛队员代表及裁判员代表宣誓
  • 从人类基因组草图到完全图谱 ——论基因组重复片段研究
    从人类基因组草图到完全图谱——论基因组重复片段研究作者:李东卫,张玉波(中国农业科学院农业基因组研究所,“岭南现代农业”广东省实验室,深圳 518120)2001年发表的人类基因组草图并没有包含全部的基因组序列,直到二十年后,科学家们才正式宣布完成了人类全序列基因组图谱,这其中主要的技术障碍就是重复片段的测序工作。重复片段(segmental duplications,SDs)是指广泛存在于基因组中的大于1 kb且序列相似性超过90%以上的大片段。它们可以通过基因组重排及拷贝数变异产生新基因和驱动进化,其大量存在于子端粒中,并与哺乳动物细胞复制性衰老以及癌症等重要生物学过程密切相关,一直以来备受科学家关注。但是其序列特点使得常规的测序技术难以完全准确测出全部序列,是基因组组装工作的一个难点。人类基因组全图谱的完成将重复片段在生物体进化、延缓衰老、疾病治疗等方面的研究提供基础。本文将就重复片段的重要性,研究的技术难点,研究现状以及未来展望等方面展开论述。重复片段的重要性重复片段是基因组中序列高度相同的大片段,具有广泛的结构多样性。它们占人类参考基因组(T2T-CHM13)中的7.0%,长度为218 Mbp[2 ],在中心体及子端粒区域富集高达10倍。中心体所包含的5个典型重复为:α卫星,β卫星,CER卫星,γ卫星,CAGGG重复,以及重复子4。子端粒所包含的典型重复为:端粒相关重复(TAR)以及传统的(TTAGGG)n重复[4 ]。重复片段可以介导染色体重排,使常染色体和异染色体之间通过同源重组产生镶嵌类型的重复的染色质[5 ]。在最近新鉴定的人类重复片段中,Mitchell R等预测了182个新的候选蛋白编码基因,并使用T2T-CHM13基因组重构了重复基因(TBC1D3,SRGAP2C,ARHGAP11B),这些基因在人额皮质增生中具有重要作用,揭示了重复片段结构在人和他们近亲物种之间的巨大进化差异[6 ]。大量的染色体子端粒区含有重复片段[8 ]。复制性衰老被认为是一种抗癌机制,限制细胞增殖。长寿的有机体经历更多的细胞分裂,因此具有更高的产生肿瘤的风险。端粒酶能够增加端粒的长度,促进癌细胞不断增殖,因此长寿动物体细胞倾向于抑制端粒酶的活性,从而抑制肿瘤发生的风险[10 ]研究难点:大片段长度、多拷贝数、序列高度相似 重复片段的大的片段长度,多拷贝数以及序列的高度相似是长期以来其研究的难点。各种测序技术的发展致力于解决这个问题。重复片段长度范围是1到400 kb [12 ]。而且,标准的长读段校正工具,例如MUMmer 或Minimap2不能够有效的捕捉低相似的重复片段,也经常将重复片段与其它调控元件混淆[14 ],为重复片段的研究带来机遇。尤其是PacBio的HiFi读段,具有长读段的同时还具有较高的准确度。但是,很多重复片段的长度要比HiFi读段的平均长度要长,因此很难完全准确的进行组装[3 ]。染色体重排,尤其是染色质断裂常发生在高GC区域[16 ]。同时,在T2T-CHM13基因组基础上,Mitchell R等首次进行了全基因组重复片段的研究。与当前人类参考基因组(GRCh38)鉴定的167 Mbp复制片段相比,鉴定了更多的(218 Mbp)非冗余重复片段(图2 a, b)。新发现91%的重复片段能更好地代表人的拷贝数,通过与非人灵长类基因组相比,前所未有的揭示了人类和其它近亲在重复片段结构中的杂合性以及广泛的进化差异[17 ]。图2 T2T-CHM13中新鉴定的染色体内(a)与染色间(b)的重复片段[1 ]。利用重复片段解析衰老机制未来可期新组装的T2T-CHM13的拷贝数比GRCh38高9倍,因此它能更好的呈现人类拷贝数变异。通过鉴定新基因的拷贝数变异,可筛选相应的药物治疗靶点。例如,CHM13鉴定到LPA、MUC3A、FCGR2基因的拷贝数变异与疾病相关[1]。此外,对于尚具争议的疾病标志基因,例如乳腺癌中ESR1 基因[18],可以通过CHM13对其进行分子进化分析,进而鉴定其突变和扩增,确定其在乳腺癌中的作用。尽管端粒作为抗衰老靶标已研究多年,但是端粒长短变化与复制性衰老的关系仍不清楚。细胞减数分裂过程中端粒变短的机制是什么?重复片段拷贝数变异与端粒变短有无相关性?很多研究已证明端粒酶具有延长端粒长度的作用,具体的机制是什么?这些问题因此前端粒不能被准确测序而长期未解决。现在,人类基因组完全图谱已基本实现,相信这些谜团会很快解开。未来可以根据人类年龄增长过程中端粒重复片段的拷贝数变异,解析其抗衰老的机制。通过人为干预其拷贝数,可能用于探索生命的极限。1. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AM et al.Segmental duplications and their variation in a complete human genome. bioRxiv.2021:2021.2005.2026.445678.2. Prodanov T, Bansal V.Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Research.2020 48(19).3. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE.Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome research.2001 11(6):1005-1017.4. Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL.Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome research.2003 13(3):369-381.5. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M.Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome research.2013 23(11):1763-1773.6. Young E, Abid HZ, Kwok PY, Riethman H, Xiao M.Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS genetics.2020 16(1):e1008347.7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al.Initial sequencing and analysis of the human genome. Nature.2001 409(6822):860-921.8. Seluanov A, Chen ZX, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V.Telomerase activity coevolves with body mass not lifespan. Aging Cell.2007 6(1):45-52.9. Bromham L.The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos T R Soc B.2011 366(1577):2503-2513.10. Shay JW.Role of Telomeres and Telomerase in Aging and Cancer. Cancer discovery.2016 6(6):584-593.11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R et al.Segmental duplications and copy-number variation in the human genome. American journal of human genetics.2005 77(1):78-88.12. Hartasanchez DA, Braso-Vives M, Heredia-Genestar JM, Pybus M, Navarro A.Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol.2018 10(11):2899-2905.13. Numanagic I, Gokkaya AS, Zhang L, Berger B, Alkan C, Hach F.Fast characterization of segmental duplications in genome assemblies. Bioinformatics.2018 34(17):i706-i714.14. Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE.Long-read sequence and assembly of segmental duplications. Nature methods.2019 16(1):88-94.15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J et al.Towards complete and error-free genome assemblies of all vertebrate species. Nature.2021 592(7856):737-+.16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, AltemoseN, Uralsky L, Gershman A et al.The complete sequence of a human genome. bioRxiv.2021:2021.2005.2026.445798.17. Zhu Y, Liu X, Ding X, Wang F, Geng X.Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology.2019 20(1):1-16.18. Tabarestani S, Motallebi M, Akbari ME.Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer? Iranian journal of cancer prevention.2016 9(4):e6565.

强啡肽片段相关的仪器

  • Blue Pippin全自动核酸片段回收系统 Blue Pippin 回收的片段范围:50bp-50kp 样品通量:1-5个样品 回收效率:50-80% 创新的技术 Pippin Prep系统包括一次性的5泳道预制胶电泳槽,一个带有DNA荧光检测光路单元(非紫外)的电泳平台。 运行中,软件通过实时光路检测,和参考泳道中的DNA ladder进行比对,确定已经设置回收长度范围的DNA片段到达洗提泳道(elution channel)的准确时间 通过电极切换,打开洗提泳道,使目标片段进入洗提通道的回收室中,从而实现回收。然后电极再次切换,洗提泳道关闭,剩余的DNA分子进入原先的分离泳道(separation channel)。 自动化核酸片段回收 VS传统切胶回收手工切胶回收Pippin Prep/Blue Pippin 几个小时的手工操作 几分钟的手工操作 回收的核酸片段大小不精确 精确回收指定大小范围的核酸片段 存在小分子量(LMW)污染 去除小分子量(LMW)污染 30-50%的回收效率 50-80%的回收效率 回收中、小核酸片段 可以回收大的核酸片段 应用范围 下一代测序,亚克隆,转基因等等 小分子量或者大分子量的核酸片段回收 大小很近的核酸片段的区分回收 珍贵的微量样品中的核酸片段回收
    留言咨询
  • Pippin Prep全自动电泳和核酸片段回收系统 Pippin Prep 回收片段范围:50bp-8kp 样品通量:1-5个样品 回收效率:50-80% 创新的技术 Pippin Prep系统包括一次性的5泳道预制胶电泳槽,一个带有DNA荧光检测光路单元(非紫外)的电泳平台。 运行中,软件通过实时光路检测,和参考泳道中的DNA ladder进行比对,确定已经设置回收长度范围的DNA片段到达洗提泳道(elution channel)的准确时间 通过电极切换,打开洗提泳道,使目标片段进入洗提通道的回收室中,从而实现回收。然后电极再次切换,洗提泳道关闭,剩余的DNA分子进入原先的分离泳道(separation channel)。 自动化核酸片段回收 VS传统切胶回收 手工切胶回收Pippin Prep/Blue Pippin 几个小时的手工操作 几分钟的手工操作 回收的核酸片段大小不精确 精确回收指定大小范围的核酸片段 存在小分子量(LMW)污染 去除小分子量(LMW)污染 30-50%的回收效率 50-80%的回收效率 回收中、小核酸片段 可以回收大的核酸片段 应用范围 下一代测序,亚克隆,转基因等等 小分子量或者大分子量的核酸片段回收 大小很近的核酸片段的区分回收 珍贵的微量样品中的核酸片段回收
    留言咨询
  • Agilent 5200、5300 和 5400 片段分析仪系统获得可靠的核酸分析结果安捷伦片段分析仪系统采用多种独特的功能设计,能够消除常见的质量控制瓶颈。这些独特功能包括更高的仪器可用性、灵活可靠的操作以及自定义分析,助您更快获得核酸样品的摩尔浓度和序列长度。片段分析仪系统采用自动化并行毛细管电泳,为各种应用(包括 NGS 文库和 cfDNA QC)提供核酸质量控制。简单的样品前处理、自动化操作以及直观的分析软件有助于实现高效准确的测量。流畅的工作流程有助于减轻用户压力并提高分析效率。片段分析仪系统为各种类型的用户提供了众多工作流程优势。无论您每天运行十几个还是数百个样品,都能体验到该仪器以用户为中心的直观设计。简单的设置和编程能够让您有效利用时间– 无人值守运行让分析人员腾出更多时间专注于其他工作– 两种凝胶可实现不同应用之间的无缝切换– 单次样品稀释简化了分析的准备工作– 无需每日进行阵列处理以及室温下稳定的试剂,zui大限度减少手动操作时间通过灵活的选项轻松应对工作流程变化– 通过选择更短或更长的阵列,zui大限度提高每个样品的分析速度或分辨率– 在分析运行期间能够编程其他样品盘,zui大限度缩短等待时间– 直观的软件可更改队列中分析的优先级– 延长分析的分离时间,可实现更彻底的样品分析通过高质量数据鉴定适合您应用的样品– RNA 质量指标 (RQN) 以及基因组 DNA 质量指标 (GQN) 消除了主观质量要求– 可靠的弥散条带分析可提供准确的摩尔浓度计算结果– 清晰的结果,分辨率高达 3 bp– 宽动态范围,DNA 和 RNA 起始浓度范围跨越两个数量级NGS、PCR、cfDNA 等众多应用需要准确的核酸评估以确保获得zui佳性能。无论是第yi步验证样品质量、在工作流程中确定片段分子量、还是确证结果,您都需要为所有应用采取高效可靠的质量控制方法。借助各种试剂盒,您能通过片段分析仪在一台仪器中实现对各种应用的评估。片段分析仪系统利用定性和定量 DNA 试剂盒评估各种 DNA 样品亚型。定性 DNA 试剂盒是片段分析的理想选择,可准确分离大、小片段并进行相对定量分析。使用定量试剂盒可分离和评估各种分子量的样品,小到小 DNA 片段大到高分子量基因组 DNA。片段分析仪系统可通过各种试剂盒定性和定量分析 DNA 和 RNA 样品,如质粒、基因组 DNA、总RNA,小 RNA、CRISPR 编辑、大 DNA 片段等。定量试剂盒可测定样品分子大小(bp 或 nt)和浓度。同样,定性 DNA 试剂盒可准确分离样品片段并提供相对定量分析。片段分析仪系统可使用 RNA 试剂盒分析各种样品类型。提供可用于评估从 microRNA 到总 RNA 样品的各种试剂盒。每个试剂盒的浓度范围跨越两个数量级,zui大限度减少了样品前处理所需的稀释。
    留言咨询

强啡肽片段相关的耗材

  • 大片段试剂盒,500
    用于片段分析仪系统的大片段试剂盒可以对大片段 DNA、弥散条带、长读长 NGS 文库和单分子测序进行自动化质量和数量分析。DNA 分子量、质量和浓度的简单分析可加快决策制定,改进工作流程。 在长读长 NGS 文库的 QC 工作流程中有若干个质量保证步骤。重要的样品 QC 检查点包括:用于降解的起始 DNA、确保正确分子量测定的剪切 DNA,以及用于分子量测定和定量分析的最终长读长 NGS 文库。 较宽的浓度范围 — 每个试剂盒有针对特定 DNA 片段和弥散条带的不同起始浓度范围可靠的分子量测定 — 适用于大 DNA 片段和长读长 NGS 文库的试剂盒,有助于确保最大 50 kb 的准确精密的分子量测定低样品量 — 仅需 2 µL 样品,可最大程度减少 QC 步骤的样品损失
  • 大片段试剂盒,1000
    用于片段分析仪系统的大片段试剂盒可以对大片段 DNA、弥散条带、长读长 NGS 文库和单分子测序进行自动化质量和数量分析。DNA 分子量、质量和浓度的简单分析可加快决策制定,改进工作流程。 在长读长 NGS 文库的 QC 工作流程中有若干个质量保证步骤。重要的样品 QC 检查点包括:用于降解的起始 DNA、确保正确分子量测定的剪切 DNA,以及用于分子量测定和定量分析的最终长读长 NGS 文库。 较宽的浓度范围 — 每个试剂盒有针对特定 DNA 片段和弥散条带的不同起始浓度范围可靠的分子量测定 — 适用于大 DNA 片段和长读长 NGS 文库的试剂盒,有助于确保最大 50 kb 的准确精密的分子量测定低样品量 — 仅需 2 µL 样品,可最大程度减少 QC 步骤的样品损失
  • 安捷伦 AdvanceBio 聚集体及片段分析
    Agilent AdvanceBio SEC 色谱柱能够简单快速而准确地进行 mAb 聚集体定量和片段分析。AdvanceBio SEC 提供 2.7 和 1.9 µm 两种不同填料粒径。这些创新的体积排阻色谱柱由安捷伦设计和制造,可实现高分离度和高效分离,同时具有稳定可靠的性能。不同色谱柱、不同批次以及不同实验室均可获得一致结果,确保方法可以跨部门和地区转移,有助于消除不确定性。AdvanceBio SEC 1.9 µm 色谱柱经过特别设计,旨在改善使用 HPLC 和 UHPLC 分离 mAb 聚集体和片段的分离度,同时提高分离速度。经过优化的亚 2 微米填料为单分散状态,并通过独特的亲水键合化学改性,提供重现性和稳定性,防止次级相互作用和蛋白质吸附。 AdvanceBio SEC 200 Å 1.9 µm 色谱柱旨在满足各部门对定性和定量关键质量属性 (CQA) 分析和方法转移的需求。

强啡肽片段相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制