电化学膨胀计

仪器信息网电化学膨胀计专题为您提供2024年最新电化学膨胀计价格报价、厂家品牌的相关信息, 包括电化学膨胀计参数、型号等,不管是国产,还是进口品牌的电化学膨胀计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学膨胀计相关的耗材配件、试剂标物,还有电化学膨胀计相关的最新资讯、资料,以及电化学膨胀计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

电化学膨胀计相关的厂商

  • 上海硼森化学科技有限公司成立于2015年,位于上海市奉贤区奉旺路393号奉城工业区内。公司主营产品为实验室连续化学反应器(微通道反应器)、实验室连续化学管理平台,实验室仪器设备,工业级微通道反应器、工业级管式反应器等,主营业务还包括连续化技术服务等。公司致力于合成实验室的自动化、智能化和信息化,为提高合成实验室工作效率、改善实验室工作环境而努力。
    留言咨询
  • 天津市兰标电子科技发展有限公司及所属天津市兰力科化学电子高技术有限公司,是与中国科学院,中国科技大学共同合作的高科技企业,是科技部和天津市科委认定的天津市高新技术企业和软件企业,是我国第一家生产电化学分析系统(工作站)的专业厂家其中,LK98系列电化学分析系统,微量元素分析仪器是国家"九.五"重点攻关项目,填补了国内空白 列入科技部2000年国家火炬计划 连续多年列为教育部"211工程"世界银行贷款中标产品 承担着"十.五"期间国家"863计划"多个攻关项目,唯一被国际权威科学杂志SCI、EI等认可的仪器. LK98系列微量元素分析仪是经过国家技术监督局和药品监督管理局认定的产品,该仪器能检测铜,铅,锌,镉,钙,镁,铁,硒等60多种金属及数百种有机物,广泛应用于医院,卫生防疫防病中心,质量监督检验部门,高校和科研部门的微量元素分析.公司热忱欢迎国内外的专家、学者及有识之士与我们进行广泛的合作与交流,携手共同发展!本公司奉行"用户至上"的原则,实行质量承诺.为用户提供免费软件升级定期组织技术培训.本公司可按用户要求制作非标准电化学仪器,更欢迎与用户合作研究,开发和生产新型仪器和科研装置.您的满意就是我们的工作!
    留言咨询
  • 我公司常年生产销售:橡胶止水带,中埋式橡胶止水带,中置式橡胶止水带,遇水膨胀橡胶止水带,外贴式橡胶止水带,背贴式橡胶止水带,钢边橡胶止水带,丁基橡胶钢板止水带,PVC塑料止水带,橡胶止水片,三元乙丙橡胶止水带,闸门水封,止水橡皮,P型止水带,遇水膨胀止水条,丁基橡胶腻子片,双组份聚硫密封胶(膏),双组份聚氨酯密封胶(膏),止水胶,遇水膨胀止水胶,单组份聚氨酯密封胶,聚乙烯闭孔泡沫板,注浆管,塑料胶泥, 聚氯乙烯胶泥,桥梁支座,网架橡胶支座,板式橡胶支座,桥梁伸缩缝,各种异型橡胶板,橡胶垫块,GB柔性填料;SR塑性填料,三元乙丙橡胶防渗保护盖片,氯丁橡胶棒,PVC棒,底胶,面板坝止水材料,水泥基渗透结晶型防水涂料,透水软管,塑料盲沟,排水盲沟,土工布,土工膜,防水板及各种土工材料.本公司经营各种工程用止水材料,免费提供各种工程止水材料报价.
    留言咨询

电化学膨胀计相关的仪器

  • ECD- 3 Nano 锂电池电化学膨胀仪ECD-3 Nano纳米级电化学膨胀仪可测量5纳米以下的位移信号, 如此高分辨率得以开拓电化学膨胀新的研究领域。 例如,准两电极过程像锂离子电池中的SEI膜形成或金属表面钝化层的电化学驱动的增长, 可能会成为未来的热膨胀研究的重要课题。ECD- 3 Nano纳米级电化学膨胀仪的核心是一个电化学池,此电化学池可密封锁紧,以保证与外界环境的绝对隔离。内侧的两电极被硬玻璃熔块隔开并固定。上部的 (工作) 电极被薄金属膜密封,通过它将微小的高度变化信息传递给传感器,到达测量的目的。典型配置标准配置:ECD-3-nano纳米电化学膨胀仪是质子电化学研究的重要装备(膨胀仪池体、传感器和直流电压输出范围-10 + 10 V的传感器控制器),集成的USB数据记录器。升级包:用黄金部件取代不锈钢部件,从而使膨胀计兼容水溶液电化学研究。ECD-3 Nano纳米级电化学膨胀计主要特点100和250微米变化范围量程, ≤5纳米的分辨率测试不同的电极类型bound films:(直径10毫米,厚达1毫米),无粘结剂粉末或单晶/谷物通过更换部件可以兼容质子以及水溶液电化学的试验。(金或不锈钢1.4404,PEEK、和三元乙 丙橡胶密封垫)最少只需要约1毫升电解质在长期实验下,有超高的信号稳定性(漂移≤20纳米/小时)容易组装,便于搬运和坚固耐用 固定负载工作电极(130克)。同时可满足负荷改变的要求。温度范围广泛,-20 + 70°C,需结合温度控制模块化设计,拆卸组装方便。可以很容易的放在手套箱,温度室里,或特别设计的空间里。技术参数230 mm x 100 mm x 110 mm(高度x宽度x深度)重量:2.5公斤电极-10毫米直径,厚度最大1.0毫米有机电化学(可选含水的),电解质体积3毫升高精度电容传感器系统分辨率≤5纳米,最大测量变化范围 到250μm线性度全部范围的0.1%直流输出电压-10 + 10 v
    留言咨询
  • ECD-4 nano Electrochemical Dilatometer ECD-4 nano 锂电池电化学膨胀计/电化学纳米膨胀仪测量电池在质子和水电解质中高度的的变化,位移分辨率≤5 nmECD- 4 Nano ECD- 4Nano电化学纳米级膨胀计 ECD-4 Nano型电化学纳米级膨胀计可测量5纳米以下的位移信号, 如此高分辨率得以开拓电化学膨胀新的研究领域。 例如,准二维电极过程像锂离子电池中的 SEI 膜形成或金属表面钝化层的电化学驱动的增长,可能会成为未来的热膨胀研究的重要课题。ECD- 4 Nano电化学纳米膨胀计的核心是一个电化学池,此电化学池可密封锁紧,以保证与外界环境的绝对隔离。内侧的两个电极被硬玻璃熔块隔开并固定。上部的 (工作) 电极被薄金属膜密封,通过它将微小的高度变化信息传递给传感器,到达测量的目的。典型配置标准配置:ECD-4-nano膨胀计是质子电化学研究的重要装备(膨胀计池体、传感器和直流电压输出范围-10 + 10 V的传感器控制器),集成的USB数据记录器。升级包:用黄金部件取代不锈钢部件,从而使膨胀计兼容水溶液电化学研究。ECD-4 Nano型电化学纳米级膨胀计主要特点 500和250微米变化范围量程, ≤5纳米的分辨率 测试不同的电极类型bound films:(直径10毫米,厚达1毫米),无粘结剂粉末或单晶/谷物 通过更换部件可以兼容质子以及水溶液电化学的试验。(金或不锈钢1.4404,PEEK、和三元乙丙橡胶密封垫) 最少只需要约0.2毫升电解质 在长期实验下,有超高的信号稳定性(漂移≤20纳米/小时) 容易组装,便于搬运和坚固耐用 固定负载工作电极(130克)。同时可满足负荷改变的要求。 温度范围广泛,-20 + 80°C,需结合温度控制 模块化设计,拆卸组装方便。可以很容易的放在手套箱,温度室里,或特别设计的空间里。技术资料 149 mm x 64 mm x 67 mm(高度x宽度x深度) 重量:2.0公斤 电极- 10毫米直径,厚度最大1.0毫米 有机电化学(可选含水的),电解质体积0.2毫升 高精度电容传感器系统 分辨率≤5纳米,最大测量变化范围 到250μm 线性度 全部范围的0.1% 气体压力传感:0 to 3 bar 使用温度:-20 to 80° C 直流输出电压-10 + 10 v
    留言咨询
  • ECD-3 Electrochemical Dilatometer ECD-3锂电池电化学膨胀计测量电池在质子和水电解质中高度的的变化,位移分辨率≤50 nm ECD-3锂电池 电化学膨胀计是测量电池/电极膨胀和收缩的精密仪器,它的范围可以到达纳米到微米级别。ECD-3锂电池电化学膨胀计特别针对锂离子电池和其他插入式电极的研究。可在有机以及水溶液电解质溶液中使用。ECD-3 电化学膨胀计是专家们 累积10 年以上的工作经验而在这一领域的取得的研究结果。ECD-3 的核心是一个电化学池,此电化学池可密封锁紧,以保证与外界环境的绝对隔离。内侧的两个电极被硬玻璃熔块隔开并固定。上部的 (工作) 电极被薄金属膜密封,通过它将微小的高度变化信息传递给传感器,到达测量的目的。高分辨率位移传感器可以检测到几秒钟内发生的从20纳米的变化,也可以检测到在几天中的达500微米的变化。通过调整重量可以很简单的调整工作电极上的负载。 典型配置标准配置:ECD-3膨胀计时质子电化学研究的重要装备(膨胀计池体、传感器和直流电压输出范围-10 + 10 V的传感器控制器),集成的USB数据记录器。升级包:用黄金部件取代不锈钢部件,从而使膨胀计兼容水溶液电化学研究。ECD-3 特点500微米变化范围量程,分辨率 ≤50纳米测试不同的电极类型bound films:(直径10毫米,厚达1毫米),无粘结剂粉末或单晶/谷物通过更换部件可以兼容质子以及水溶液电化学的试验。(金或不锈钢1.4404,PEEK for cell housing、和三元乙丙橡胶密封)小池体体积(最少只需要约1毫升电解质)在长期实验下,有超高的信号稳定性(漂移≤100纳米/小时)容易组装,便于搬运和坚固耐用固定负载工作电极(130克)。温度范围广泛,-20 + 70°C,需结合温度控制模块化设计,拆卸组装方便。可以很容易的放在手套箱,温度室里,或特别设计的空间里。技术参数尺寸:230 x 100 x 110 mm (高x宽x深)重量:1.5公斤电极- 10毫米直径,厚度最大1.0毫米有机电化学(可选含水的),电解质体积1毫升高精度线性传感器系统分辨率≤50纳米,最大测量变化范围 到500微米线性度 全部范围的0.15%直流输出电压-10 + 10 vECD-3 电化学膨胀计组成(如下图):1.ECD-3 dilatometer ECD3-00-0025-A, assembled2.Box ECD-3 ECE1-00-0006-E, assembled3.ECD sensor cable ECE1-00-0036-A4.ECD cell cable ECE1-00-0033-F, assembled5.Power supply 15W/24V DC ELT90456.Power supply adapter ELT90787.USB cable typ A/B (2.0 m) ELT9167
    留言咨询

电化学膨胀计相关的资讯

  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.

电化学膨胀计相关的方案

  • 天津兰力科:膨胀石墨电极的制备及用于色氨酸电化学检测的研究
    以化学氧化法制备了膨胀石墨,再以石蜡作为粘合剂制备了膨胀石墨电极,该电极兼备电化学传感器和富集待测物分子,缩短传质过程时间的特点。优化了测定条件,在此基础上建立了一种直接测定色氨酸的电分析方法。结果表明:在0. 02~0. 12 mmol/L范围内,电极响应与色氨酸浓度呈良好的线性关系,检出限为2. 0 ×10 - 7 mol/L, RSD为2. 4%。该电极具有良好的选择性,除酪氨酸外,浓度高达5. 0 mmol/L (色氨酸浓度的100倍)的其它8种氨基酸在电极上均没有可测的响应。用该电极测定了医用氨基酸注射液中色氨酸的含量,结果与标称值相符。对色氨酸在膨胀石墨电极表面的富集原因和反应机理进行了初步探讨。
  • 岩石侧向约束膨胀仪做岩石的膨胀率测定方法
    适用于岩石的膨胀率测定。岩石与水进行物理化学反应后随时间变化而产生体积增大现象,增大后的体积与岩石原体积的比率即为岩石的膨胀率。
  • 采用激光干涉法测试量块的热膨胀系数
    本文介绍了一种在室温附近测试各种量块和其它相似形状材料的高精度热膨胀系数测试仪器的研究开发。量块热膨胀所引起的长度变形通过一个差分平面镜干涉仪进行测量,采用特殊的干涉相位检测技术来补偿极化混合带来的非线性误差,再结合电子相位计可以实现纳米量级的精度。由于是在真空中进行量块热膨胀测量,从而无需进行空气折射率补偿。对于导热系数较高的被测试样,缓慢的辐射热交换使得试样上的温度梯度很小并具有很好的热平衡稳定性。在所获得典型的10~30℃温度之间热膨胀测试曲线,其线性和二次方热膨胀系数都等于在20℃参考温度时的热膨胀系数。本文对此激光干涉法热膨胀仪的测量不确定进行了详细分析,而且此测量不确定度也通过国际比对得到了验证。

电化学膨胀计相关的资料

电化学膨胀计相关的试剂

电化学膨胀计相关的论坛

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 膨胀罐有哪几种分类

    膨胀罐的主要分类有哪几种,对于这一个问题,南京捷登流体设备有限公司的小编通过文章介绍膨胀罐的类型,让客户更好的了解产品。结构膨胀罐有哪几种分类膨胀罐—由罐体、气囊、进/出水口及补气口四部份组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无需自己加气。原理膨胀罐的工作原理:当外界有压力的水进入膨胀罐气囊内时,密封在罐内的氮气被压缩,根据波义耳气体定律,气体受到压缩后体积变小压力升高,直到膨胀罐内气体压力与水的压力达到一致时停止进水。当水流失压力减低时膨胀罐内气体压力大于水的压力,此时气体膨胀将气囊内的水挤出补到系统。分类膨胀罐分为气囊式和隔膜式两种,前者在使用的过程中水与罐体内壁完全不接触,所以杜绝了生锈和水质的二次污染,是2010年至今市场上的主流产品,无论国内还是国外大部分都是采用气囊式;隔膜式膨胀罐是早期第一代的产品,工作时有一半的罐体内壁直接与水接触,容易锈蚀,严重影响其使用寿命,隔膜式膨胀罐已经淡出市场。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

电化学膨胀计相关的耗材

  • 电化学基础课程
    课程描述:电化学技术应用在我们生活与学习的方方面面。各种电池的应用,金属的腐蚀,就连部分生物技术例如血糖的监测都应用到了电化学技术。为了让本科生对电化学测试技术有一个更加成熟全貌的认识,我们Gamry公司专门设计了这套课程,课程所需所有的设备和用品(不包括化学试剂)都可从我们公司得到。这个电化学的实验课程设计为20个学生的一个学期的长期班。课程中包含的实验方法:l 循环伏安l 计时电流/计时电量l 脉冲伏安l 溶出伏安l 对乙酰氨基酚的检测l DigiElch数字模拟l 微电极l 葡萄糖测定l 电化学聚合l 交流阻抗l 腐蚀课程中的具体实验设置l 循环伏安法l 电极活性面积测定l 比较脉冲技术l 通过溶出伏安法进行离子的定量测定l 检测对乙酰氨基酚l 循环伏安法数据模拟l 微电极l 碳酸饮料中葡萄糖的检测l 单体的电化学聚合l 电化学阻抗谱l 不同PH下的低碳钢腐蚀课程设备与配件配置:表一基础包(为20个学生准备)——990-00441配件数量产品编号配件数量产品编号电化学工作站Interface 1000T1992-00115DigiElch学生版6个月许可1987-00099低碳钢样品30820-00005学生版手册20988-00049Ag/AgCl参比电极1930-00015教师版手册1988-00050铂工作电极1932-00003Dr. Bob反应池1990-00193铂微电极1932-00009电极打磨工具1990-00195微搅拌棒1935-00065Euro反应池1990-00196碳丝网印刷电极36935-00120EIS模拟电池1990-00419铂丝网印刷电极60935-00122用于丝网印刷电极脱落研究的电路板1990-004204 mm透明容器1972-00065电路板与透明容器的适配器1990-00421 表二继续教学更新包(为20个学生准备)——990-00440配件数量产品编号配件数量产品编号低碳钢样品30820-00005铂丝网印刷电极60935-00122Ag/AgCl参比电极1930-00015DigiElch学生版6个月许可1987-00099碳丝网印刷电极36935-00120学生版手册20988-00049 *更多详细资料请联系我们
  • 用于电化学研究的先进软件 NOVA
    用于电化学研究的先进软件 订货号: NOVANOVA 是设计为通过 USB 接口控制所有 Autolab 仪器的软件包。由电化学家针对电化学而设计,集成了超过二十余年的用户体验和最新的 .NET 软件技术,NOVA 使您的 Autolab 恒电位仪/恒电流仪拥有更强性能和灵活性。NOVA 提供了以下的独特功能:功能强大且灵活的程序编辑器重要实时数据一目了然强大的数据分析和绘图工具集成化控制外围仪器,诸如万通 LQH 液体处理设备
  • 夏芮 电化学拉曼配件 电解池
    电化学拉曼光谱池 产品介绍此款光谱池设计工作于在水溶液体系和常温常压条件。如果用户想将光谱池用于有机体系,需先测试有机体系下光谱池是否漏液,是否会导致O-圈溶胀,用户须对可能造成的仪器和光谱池损坏负全责。此光谱池也不适用于需加热升温、通气体或者液体流动体系的实验。本装置已经内置了对电极(铂丝),工作电极需配备专用的电极套才能使用,建议购买已装配好的工作电极,由于不同厂家电极规格和均匀性会有所不同,如需购买电极自行装配,请务必提供精确的电极外径尺寸(建议配备CHI标准电极),以便得到最优匹配。出厂时工作电极和窗片之间的距离已经默认固定为0.5mm,对应的旋钮表面到工作电极表面的距离为13.0mm,用户无需调节。如对电极与窗片之间的距离有特殊要求,可通过取下电极套上的垫片(每个垫片厚度为0.25mm)减少厚度,也可通过调节电极套上的旋钮来调节。该光谱池溶液用量在2.5-3.5ml之间,建议的加液量为3ml。可以直接用移液枪通过参比电极转接口加液。为防止参比电极处积留气泡,加液时请保持出气口畅通,防止液体堵住气孔,造成加液不畅。加好溶液后插入装配好的参比电极部件,并轻轻旋上盖子密封。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制