乙基己酸锆

仪器信息网乙基己酸锆专题为您提供2024年最新乙基己酸锆价格报价、厂家品牌的相关信息, 包括乙基己酸锆参数、型号等,不管是国产,还是进口品牌的乙基己酸锆您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙基己酸锆相关的耗材配件、试剂标物,还有乙基己酸锆相关的最新资讯、资料,以及乙基己酸锆相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

乙基己酸锆相关的资料

乙基己酸锆相关的论坛

  • 7.9 GC法测定头孢孟多酯钠中的2-乙基己酸

    7.9  GC法测定头孢孟多酯钠中的2-乙基己酸

    【作者】 崔锋; 窦爱兰;【机构】 山西省药品检验所; 山西省药品检验所 太原030001; 太原030001;【摘要】 建立气相色谱法测定头孢孟多酯钠中2-乙基己酸的含量。色谱柱为DM-FFAP石英毛细管柱(30 m×0.32 mm×0.5μm);选用正己酸作内标物。采用FID检测,检测器温度为250℃;进样口温度为200℃;柱温170℃。2-乙基己酸的线性范围为0.15~0.73 mg/mL(r=0.9990);平均回收率为98.99%;RSD小于2%(n=6)。本法可用于头孢孟多酯钠的质量控制。 http://ng1.17img.cn/bbsfiles/images/2012/07/201207181215_378453_1761902_3.jpg

  • 光谱仪器光路计算以及机械结构计算设计书籍

    谁有关于光谱仪器光路计算以及机械结构计算设计方面的书籍啊?求推荐一本。比如介绍光路设计中各种光学镜子间尺寸是如何得到的和个光学镜子的几何尺寸是如何得到的书籍,还有单色器机械结构方面的设计比如狭缝宽度等等。求推荐一本书籍就是从设计角度出发。尤其是光学和机械方面介绍的比较详细的。

乙基己酸锆相关的方案

乙基己酸锆相关的资讯

  • 用于植物油快速质控的自动计算法以及品质鉴定
    Peter J. Lee、Yoji Ichikawa、Roger R. Menard和Alice J. Di Gioia沃特世公司,美国马萨诸塞州米尔福德市引言植物油是食品、化妆品和个人护理品的重要成分,主要来自于世界各地的22种油料作物。生产加工、贮存、运输和销售各环节都对植物油的质量起着至关重要的作用。偶发事件和故意事件均会导致植物油的交叉污染。现已颁布了包括315/93/EEC、2568/91/EEC、EC 333/2007和EC 640/2008在内的多部法规,要求鉴定植物油的品质,并避免污染,从而保障公共健康和公平交易1。 为了确保产品质量,满足法规要求并维护公司最有价值的资产&mdash &mdash 品牌形象,植物油公司对植物油的生产过程,从原料到成品全过程进行监控。目前,植物油分析主要依靠气相色谱法(GC)和高效液相色谱法(HPLC)。气相色谱法要求在分析前进行衍生化,这既耗时又费力2。为了实现完全分离,普通的高效液相色谱法要求使用卤代溶剂或使用会使运行时间更长的非卤代溶剂3-6,。自卤代溶剂被认识到具有致癌作用后,卤代溶剂的使用在大多数实验室受到了限制。因此,人们对用于植物油质量控制和品质鉴定更有效的分析工具的需求日渐增加。 ACQUITY UPLC系统是新一代液相色谱平台。使用UPLC/PDA/ELSD/质谱检测器,可以更快进行筛选、在不使用卤代溶剂7-10条件下对植物油的表征建立高分离度的方法。只需一次进样,超高效液相色谱(UPLC)系统就能得到多种类型的数据,产生重现好的指纹图谱数据,鉴别甘油三酸酯的组分,并评估植物油氧化和分解程度。与普通的高效液相色谱相比,超高效液相色谱缩短了分析时间,减少了溶剂用量,并能从一次进样中提供更高分离度并带有更多信息的色谱图。因此,超高效液相色谱法的性价比更高。本技术文献描述了用于植物油质控和品质鉴定的更为高效的系统解决方案,即使用UPLC和EmpowerTM 2软件的用户自定义字段的计算功能,自动定量并报告植物油样品是否符合用户设定的质控标准。此方案不再需要人工计算,从而避免了可能的人为误差并能够快速而准确地报告关键信息。掌握了准确、及时的结果,决策者就能提高交货效率和产量,即减少不合格产品,避免产品召回,并最大限度地减少责任诉讼。本文的实验部分提供了关于自定义字段计算的例子,并附有其详细步骤。实验样品准备:食用油,购买自当地的食品杂货店。用2-丙醇将食用油样品稀释为6 mg/ml的溶液,以备分析之用。超高效液相色谱条件:超高效液相色谱系统: ACQUITY UPLC,PDA检测器软件: Empower 2PDA参数:检测波长: 195-300nm采样率: 20 pts/s过滤响应速度: 快超高效液相色谱参数:色谱柱: ACQUITY BEH C18 2.1 x 150 mm弱洗脱: 2-丙醇(每次洗脱用量:500 &mu L)强洗脱: 2-丙醇(每次洗脱用量:500 &mu L)充填洗脱: 10%的CH3CN水溶液(每5分钟)流动相A: CH3CN流动相B: 2-丙醇柱温: 30° C进样量: 2 &mu L(满环定量)梯度条件:时间 (min) 流速 (mL/min) %B 曲线0 0.15 10 &mdash 22 0.15 90 6平衡色谱柱和UPLC系统条件:时间 (min) 流速 (mL/min) %B 曲线 0 0.13 100 &mdash 18 0.13 10 1121.5 0.7 10 1124.5 0.15 10 1125 0.15 10 11说明:运行样品组之前,先进一针空白试样2-丙醇;该检测值被用作PDA 3D谱图的空白扣除。用于鉴定特纯天然橄榄油A质量的质控 标准:为了便于演示,我们从纯天然橄榄油A的典型色谱图中选取六个峰。选择其中的一个峰作为标记峰,其余的峰为指示峰。&ldquo 峰面积比(指示峰面积除以标记峰面积)± 3xSTDEV&rdquo 用作指示峰的质控标准。1. 指示峰3O(峰面积OOL/标记峰面积)0.84或0.86,则合格;否则不合格。2. 指示峰OOL(峰面积OOL/标记峰面积)1.18或1.21,则合格;否则不合格。3. 指示峰LLO(峰面积LLO/标记峰面积)0.39或0.41,则合格;否则不合格。4. 指示峰LLL(峰面积LLL/标记峰面积)0.039或0.045,则合格;否则不合格。5. 指示杂质峰(杂质峰面积/标记峰面积)0.42,则合格;否则不合格。创建计算峰面积比自定义字段的步骤11 :1. 点击&ldquo 配置系统&rdquo ,进入配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所需的项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口(图1)。5. 在字段类型中选取&ldquo 峰&rdquo ,在数据类型中选取&ldquo 实数(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo 打开&ldquo 选择来源&rdquo 窗口,如图2所示。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;不要勾选&ldquo 全部或没有&rdquo 以及&ldquo 丢失峰&rdquo 选项;点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口,如图3所示。7. 将面积/IS[面积]输入至字段中;点击&ldquo 下一步&rdquo ,打开&ldquo 数值型参数&rdquo 窗口(使用默认值)。8. 点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。9. 输入新的字段名(例如,此处所用的字段名是&ldquo Ratio _IS&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。10. 点击&ldquo 完成&rdquo ,这样就创建了一个名为&ldquo Ratio_IS&rdquo 的自定义字段,用于计算峰面积比,如图4所示。创建自定义字段并根据特定指示峰面积比的标准确定&ldquo 合格&rdquo 或&ldquo 不合格&rdquo 的步骤如下:1. 点击&ldquo 配置系统&rdquo ,打开配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所选择的工作项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口,如图1所示。5. 在字段类型中选择&ldquo 峰&rdquo ,在数据类型中选取&ldquo 布尔(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 选择来源&rdquo 窗口。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;选择&ldquo 全部或没有&rdquo 选项,在弹出窗口中点击&ldquo 是&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口。7. 将以下公式输入至字段中:GTE(3O[Ratio_IS],0.841)E(3O[Ratio_IS],0.859])*EQ(Name,&ldquo 3O&rdquo )+NEQ(Name,&rdquo 3O&rdquo )*-1*500008. 点击&ldquo 下一步&rdquo ,打开&ldquo 翻译定义&rdquo 窗口,如图5所示。9. 在&ldquo 0&rdquo 旁边,输入&ldquo 不合格&rdquo ;在&ldquo 1&rdquo 旁边,输入&ldquo 合格&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。10. 输入一个名称(例如,此处使用的是&ldquo Oly_OOO&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。11. 点击&ldquo 完成&rdquo ,这就创建了一个名为&ldquo Oly_OOO&rdquo 的自定义字段用于检验峰面积比(OOO峰面积除以标记峰面积)是否符合指示峰OOO的质控标准,如图6所示。重复进行第1-8步,以确定其余的指示峰是否合格:对于指示峰OOL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(OOL[Ratio_IS],1.18)E(OOL[Ratio_IS],1.21])*EQ(Name,&ldquo OOL&rdquo )+NEQ(Name,&ldquo OOL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_OOL&rdquo ,创建字段&ldquo Oly_OOL&rdquo ,以检验峰面积比(OOL峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLO,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLO[Ratio_IS],0.39)E(LLO[Ratio_IS],0.41])*EQ(Name,&ldquo LLO&rdquo )+NEQ(Name,&ldquo LLO&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_LLO&rdquo ,创建字段&ldquo Oly_LLO&rdquo , 以检验峰面积比(LLO峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLL[Ratio_IS],0.039)E(LLL[Ratio_IS],0.045])*EQ(Name,&ldquo LLL&rdquo )+NEQ(Name,&ldquo LLL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_ LLL&rdquo ,创建字段&ldquo Oly_ LLL&rdquo , 以检验峰面积比(LLL峰面积除以标记峰面积)是否符合质控标准。对于杂质指示峰,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GT(Impurity[Ratio_IS],0.42)*EQ(Name,&rdquo Impurity&rdquo )+NEQ(Name,&ldquo Impurity&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_Impurity&rdquo ,创建字段&ldquo Oly_ Impurity&rdquo ,以检验峰面积比(杂质峰面积除以标记峰面积)是否符合质控标准。本方法用定时组功能计算杂质峰的总和:1. 在&ldquo 编辑处理方法&rdquo 窗口中,选择&ldquo 定时组&rdquo 标签,如图7所示。2. 在&ldquo 名称&rdquo 字段中输入杂质名称,在&ldquo 开始时间&rdquo 字段中输入&ldquo 3&rdquo ,在&ldquo 结束时间&rdquo 字段中输入&ldquo 13.6&rdquo 。3. 勾选&ldquo 不包括已知峰&rdquo 字段。在处理方法中标记选定的标记峰和指示峰:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 组分&rdquo 标签。2. 将保留时间为9.81 min的峰名称改为IS,在&ldquo 峰标签&rdquo 字段中输入&ldquo 标记峰&rdquo ,如图8所示。3. 将保留时间为13.79 min的峰名称改为3L,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLL&rdquo 。4. 将保留时间为14.85 min的峰名称改为2LO,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLO&rdquo 。5. 将保留时间为15.87 min的峰名称改为2OL,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOL &rdquo 。6. 将保留时间为16.85 min的峰名称改为OOO,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOO&rdquo 。在处理方法中创建命名组的步骤:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 命名组&rdquo 标签。2. 在&ldquo 名称&rdquo 栏中输入3O、LLL、LLO、OOL和Oly,如图9所示。3. 分别将OOO、3L、2LO、2OL和IS从&ldquo 单峰组分&rdquo 拖至各自相应的命名组中,如图9所示。创建合格或不合格报告模板的步骤:1. 点击&ldquo 方法&rdquo 标签,选择一份报告,右击该报告;选择&ldquo 打开&rdquo ,以显示&ldquo 编辑报告方法&rdquo 窗口。2. 在&ldquo 编辑报告方法&rdquo 窗口中选择&ldquo 新建&rdquo ,打开&ldquo 新方法/组&rdquo 窗口。3. 选择&ldquo 创建新报告方法&rdquo ,勾选&ldquo 使用报告方法/组向导&rdquo 选项;然后点击&ldquo 确定&rdquo ,打开&ldquo 报告方法模板向导&rdquo 。4. 选择&ldquo 单个报告&rdquo ,然后点击&ldquo 下一步&rdquo ,打开&ldquo 新方法向导&rdquo 窗口。5. 在报告类型中选择&ldquo 单个&rdquo ,然后点击&ldquo 完成&rdquo ,显示一个报告方法模板。6. 在色谱图上右击,选择&ldquo 属性&rdquo ,打开&ldquo 色谱图属性&rdquo 窗口(图10)。7. 选择&ldquo 峰标签&rdquo ,勾选&ldquo 仅使用峰标签&rdquo ,然后点击&ldquo 确定&rdquo 。8. 右键单击&ldquo 表&rdquo ,选择&ldquo 属性&rdquo ,打开&ldquo 表属性&rdquo 窗口。9. 选择&ldquo 峰&rdquo 标签,勾选&ldquo 峰组&rdquo 。10. 点击&ldquo 表&rdquo 标签,然后在树形结构中点击所需的峰。双击每个指示峰,以将相应的自定义字段添加到结果表格中,如图11所示。11. 点击&ldquo 确定&rdquo ,输入该报告模板的名称(例如,此处显示的名称是&ldquo 特级天然橄榄油质控报告&rdquo ),然后在工具栏中点击&ldquo 保存&rdquo 。结果和讨论不使用卤代溶剂做流动相的普通高效液相色谱法很难分离植物油的主要组分&mdash &mdash 甘油三酸酯。图12为普通高效液相色谱法(2根5&mu m粒径颗粒填充的150mm长的C18柱,蒸发光散射检测器ELSD)得到的大豆油的典型色谱图,使用乙腈和二氯甲烷作为流动相,实现该分离需要60多分钟。由于二氯甲烷在240nm以内具有紫外吸收,这会干扰甘油三酸酯的紫外吸收(最大波长吸收值约210nm),因此使用蒸发光散射检测器(ELSD)进行检测。ACQUITY UPLC系统的设计特点是使用小颗粒装填技术的高效色谱柱,以进行更快速、更灵敏和更高分离度的分离。UPLC的溶剂传送系统能承受高达15,000 psi的背压,因此能够使用2-丙醇等高黏度溶剂进行植物油分析。由于2-丙醇对植物油的溶解性好12、低毒,透射度限制低,便于对甘油三酸酯进行紫外检测,因此2-丙醇被选作强洗脱液。图13为关于同一大豆油样品的10张叠加的紫外色谱图说明UPLC法的重现性,此分离使用1.7&mu m粒径的2.1 x 150mm的 BEH C18色谱柱,乙腈/2-丙醇作为流动相,整个运行时间缩短为22分钟。图12和图13比较,具有相似的甘油三酸酯峰型,但UPLC法具有更高的分离度,更短的运行时间。数据表明不使用致癌溶剂作为流动相,使用 UPLC分离植物油中的组分具有明显优势。用于植物油分析的乙腈/2-丙醇流动相的UPLC系统可使用PDA、ELSD和MS检测器,不像其他用于普通高效液相色谱法的溶剂。一次进样便可得到多种数据类型,并可以产生可重现的指纹图谱数据7,通过质谱法鉴别甘油三酸酯组分10,并用PDA多波长扫描测定植物油的氧化程度8。目前已知植物油具有特征的甘油三酸酯比,这对植物油指纹图谱5-8的鉴别很有用。如图14-16所示,核桃油、葡萄籽油、芝麻油、特级天然橄榄油A、特级天然橄榄油B、榛子油、茶籽油、玉米油、加拿大低酸油、高油酸葵花籽油和普通葵花籽油的紫外色谱图证实,每种油样品都具有独特的色谱类型,即相对峰强度。为了高效使用峰强度比进行品牌质控和质量鉴定,Empower 2软件的自定义字段计算功能可根据用户设定的质控标准自动将原始色谱数据转换为合格或不合格报告。以特级天然橄榄油A为例说明该改进的方法。图17为特级天然橄榄油A的叠加紫外色谱图和峰面积。甘油三酸酯的峰面积从最强峰(OOL)到最弱峰(LLL)其RSD值(n=6)0.9%。共有20多个可见峰,任一峰都能被用作标记峰或指示峰,用以计算峰面积比。为了便于讨论,将之前确定的甘油三酸酯的峰OOO、OOL、LLO和LLL选作指示峰10,将仅出现在橄榄油产品中、通过紫外检测观察到的保留时间为9.8分钟的强峰选作标记峰13。由于大多数廉价的蔬菜油和降解油具有很多保留时间低于13.6分钟的其它强峰9,因此可用定时组功能(图7)创建杂质指示峰,以监测是否存在污染。该杂质指示峰是指标记峰之外的保留时间介于3-13.6分钟的所有峰的总和。通过创建自定建自定义字段&ldquo Ratio_IS&rdquo (图4),可用Empower 2软件自动计算峰面积比(指示峰面积除以标记峰面积)。表1总结了峰面积比的结果以及STDEV值。&ldquo 峰面积比± 3xST-DEV&rdquo 被用作每个指示峰的质控标准。由于地理和其它种植条件的差异,植物油的某一特定类型会存在差异。该数值在比较其它植物油样品是否符合基于特定油品的质控标准方面具有极大的价值。现在,Empower 2软件能够使用自定义字段计算、命名组、定时组和报告模板(如图6、7、9、10和11所示),根据特级天然橄榄油A的质控标准,自动计算并报告样品合格与否的结果。图18为特级天然橄榄油A的典型Empower质控报告。该报告表明所有指示峰均符合质控标准。Empower软件的这些高级功能避免了人工计算步骤,因此能避免可能出现的人为误差。昂贵的特级天然橄榄油通常会被掺入廉价橄榄油和其它植物油(例如大豆油和榛子油)。图19为一份特级天然橄榄油B的报告。所有指示峰均表明该特级天然橄榄油B未通过根据特级天然橄榄油A制定的质控标准。在该色谱图中存在保留时间13.6 min的额外峰,这些数据清楚地表明两种品牌的橄榄油样品存在差异,并证实并非所有市售的特级天然橄榄油的品质都相同。图20为一份掺入9%榛子油的特级天然橄榄油A的报告。所有指示峰均表明该掺假样品不符合质控标准。而且,根据特级天然橄榄油A制定的同一质控标准也应用于分析其它植物油(图14-16),同样掺入1%大豆油或1%玉米油的特级天然橄榄油A,均不合格。之前描述的是使用UPLC-TOF和集成软件工具检测橄榄油掺假的化学计量方法14。本技术文献为植物油质控和品质鉴定提供了可供选择的另一种解决方案。本方法可完全自动地获取并处理数据,从而生成明确的合格或不合格报告。结论具有Empower 2 软件的ACQUITY UPLC系统能不需要衍生化和卤化溶剂,且能快速分析植物油样品并进行品质鉴定。UPLC系统得出的数据具有良好的重现性、精确性和准确性,而且简单易懂。分离速度比普通高效液相色谱法快三倍,所消耗的溶剂量减少8倍,所产生的有害废物也减少8倍;从而能够节省成本,提高安全性。ACQUITY PDA检测器能产生高分离度和高重现性的数据,这有助于轻松建立用于制定每种品牌植物油的质控和品质鉴定标准的指纹图谱数据。借助Empower 2软件的自定义字段计算功能,关键的产品质控数据可从原始数据中准确得出并根据用户设定的标准快速传送,有效地出具简单易懂的合格或不合格报告。决策者能根据这些重要信息及时做出决定,从而提高生产率。使用本UPLC方法,植物油公司能够轻松自信地鉴定产品的品质和质量。与植物油产品纯度方面利益相关的其他行业,例如化妆品公司、个人护理品公司和食品公司,也将从本方法中受益。参考文献1. http://www.fediol.org/5/pdf/legislation.pdf2. VG Dourtoglou et al. JAOCS, Vol.80, No.3: 203-208, 2003.3. LCGC, The Application Notebook, Sept 1, p51, 2006.4. A J Aubin, C B Mazza, D A Trinite, P McConvile. Analysis of Vegetable Oils byHigh Performance Liquid Chromatography Using Evaporative Light ScatteringDetection and Normal Phase Eluents. Waters Corporation, No. 720002879EN,2008.5. P Sandra et al J Chromatogr. A 974: 231-241, 2002.6. International Olive Oil Council standard method COI/T.20/Doc. No. 20 2001.7. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 1):Olive Oil Quality & Adultration. Waters Corporation, No. 720002025EN, 2007.8. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 2)Olive Oil Quality & Adultration. Waters Corporation, No. 720002026EN, 2007.9. P J Lee, and A J Di Gioia. ACQUITY UPLC/ELS/UV: One Methodology for FFA,FAME and TAG Analysis of Biodiesel. Waters Corporation, No. 720002155EN,2007.10. P J Lee and A J Di Gioia. Characterization of Tea Seed Oil for Quality Controland Authentication. Waters Corporation, 720002980en, 2009.11. Empower\help\Custom Field Calculation.12. F O Oyedeji et al Characterization of Isopropanol Extracted Vegetable Oils. JApplied Sci. 6: 2510-2513, 2006.13. The marker (Oly) peak at 9.8 min was well detected by UV but had weak MSresponse with APCI positive ionization mode. According to the SQD MS spectra,the marker peak is not a triglyceride. High resolution mass spectrometers withexact mass capabilities are needed in order to properly elucidate its chemicalstructure. However, it is not necessary to have peak identification for this QCand authentication methodology.14. P Silcock and D Uria. Characterization and Detection of Olive Oil AdulterationsUsing Chemometrics. Waters Corporation No. 720002786en, 2008.
  • 微软“量子计算重大进展”被撤稿,自曝删改不利数据
    微软赞助的研究被Nature撤稿了,而且还是2021年“第一撤”。原本被物理学界视为颠覆量子计算技术的成果,不过是论文作者删改数据得来的结论,根本靠不住。而被发现的原因,竟是作者团队内部人员的“秘密举报”。原来,这篇论文于2018年登上Nature,不久后,团队中某人就做出一个“大胆之举”:将实验原始数据透露给已经离开团队的“师兄”。“师兄”很快发现,真实的实验结果,不但不能支持结论,而且完全相悖!于是他们毫不犹豫地选择向Nature捅出真相。论文被举报始末2018年3月28日,受雇于微软的荷兰代尔夫特理工大学教授Leo Kouwenhoven,领导他的研究团队在Nature上发表了名为Quantized Majorana conductance(量化的马约拉纳电导)的论文。论文声称,在纳米线发现了被称为“天使粒子”的马约拉纳费米子(Majorana Fermion)存在的有力证据。而如果这种粒子存在,那么就通过操控这种有诸多优点的粒子,实现一种全新的量子计算机。可以说,这篇论文的结论直接关乎微软量子计算路线的未来。微软量子计算部门的官网至今还写着对这项技术的憧憬。但是,2019年11月24日,论文其中一位作者将整个研究的完整数据,打包发给了团队之外的两个人:匹兹堡大学的物理学教授谢尔盖弗罗洛夫(Sergey Frolov)和澳大利亚新南威尔士大学的文森特穆里克(Vincent Mourik)。经过比对,他们发现,关键实验数据与论文中完全对不上,本文的结论,根本不能成立。于是他们开始怀疑论文公布的数据是经过修改剪切的(cut)。2020年4月29日,Nature对这篇论文表达了“编辑关注”。“编辑关注”说明中指出,论文作者提醒编辑,数据处理方式有潜在问题,可能对结论有影响,提醒读者不要使用论文相关结果。之后,论文启动撤回程序。2021年1月,论文作者团队又发表了名为Large zero-bias peaks in InSb-Al hybrid semiconductor-superconductor nanowire devices的文章。这是结合了实验完整数据的论文,并讨论了真实结果的意义。但并未解释为何之前修改数据。2021年2月,弗罗洛夫等人在推特贴出了论文数据存在人为剪辑的证据:对比图中,上方是实验原始数据,下方是论文中的数据。在论文图2量子化马约拉纳电导峰中,原数据右侧量子化零偏峰值和峰分裂部分直接被删掉了。而这一部分数据恰与论文结论相悖。同时,论文中还“选择性”剪掉了不支持核心结论的电荷跳跃,只保留了7个看上去能形成明显零偏峰的电荷跳跃。对于质疑,作者曾回复弗罗洛夫等人说,剪切实验数据图片,是为了美观(for aesthetics)。后来,在2021年3月8日发布的撤稿声明中,团队承认了之前对原论文中的电荷跳跃相关数据进行了“不必要的修正”。△原文中被修正过的电荷跳跃相关数据而重复实验后得到的真实结果表明,重新绘制的实验数据,包括之前没有减掉的,各点都在2-sigma(95%)误差外。所以不能宣称观察到量化的马约拉纳电导。撤稿声明的最后,团队为科学严谨性不足表达了歉意。2018年的文章研究了什么?早在2005年微软就开始研究量子计算技术,当时还悄悄成立了“Station Q”实验室。但之后,却眼看着IBM、Google和Intel等竞争对手纷纷建造了具有多个量子比特的量子计算机,说微软不急,不太可能。一般来说,量子计算的量子比特信息是存储在局域,局域的噪音会对信息产生影响,使量子叠加态迅速坍缩。在拓扑量子计算中,人们定义了一种特殊的粒子,几个粒子在时间空间上进行交换,它们的轨迹就相当于在绳子上打不同的结,从而代表着不同的信息。信息的存储只依赖于交换顺序而不依赖于交换的具体路径,所以拓扑量子计算对局部的微扰是免疫的,从根本上解决退相干难题。马约拉纳费米子就是这样一种粒子,它的反粒子就是它本身(马约拉纳对称性),这种性质能够保证量子化不受隧道耦合中无序、相互作用和变化的影响。微软相中了这么一条“一步到位”的量子计算机路线。但是,要产生并观测马约拉纳费米子是非常困难的。微软决定押注荷兰代尔夫特理工大学的物理学家Leo Kouwenhoven,之前他在这个方向上的研究十分有名。2016年,公司聘请了Kouwenhoven,责成他在代尔夫特校园内创建微软实验室。2018年,论文发表时,团队声称,发现了被称为“天使粒子”的马约拉纳费米子(Majorana Fermion)存在的证据。具体到实验中,电传输的隧道谱,例如差分电导中的零偏峰(ZBP),就是识别马约拉纳费米子的主要工具。通过测量,论文最终中给出的实验结果完美支持了理论预期,并且在改变磁场、隧道耦合等参数的情况下,ZBP仍然保持恒定。由此,团队认为他们成功证明了马约拉纳费粒子的存在。△原文中量化的马约拉纳电导平台这项研究成果发布后,引起了众多物理学家的关注,被视为量子计算机的关键突破,为今后实现拓扑量子计算奠定了基础。谷歌学术显示,3年来,这篇论文已经被引用400多次。微软,实现“迎头赶上IBM、谷歌等老对手,五年内拥有一台商用量子计算机”的计划,似乎更有把握了 。但发表不久,团队改动实验数据的行为就被揭发了,内部“吹哨人”举报,同门前辈“发难”还记得前面说过,“有人”透露了实验原始数据吗?据最早拿到证据的谢尔盖弗罗洛夫和文森特穆里克两人说,文件是由论文的一个作者发给他们的,但“吹哨人”具体是谁,没有透露。而弗罗洛夫和穆里克两人,其实与代尔夫特理工大学、研究团队所在实验室,以及团队领导渊源已久。谢尔盖弗罗洛夫在2008~2012年间,就在代尔夫特理工大学的Kouwenhoven组做博士后。另一位文森特穆里克,2010~2015年间也在代尔夫特理工读博士,研究方向正是马约拉纳-费米子。所以这一次的撤稿事件,是团队内部“吹哨人”,向同实验室的前辈透露真实数据情况,再由这两位前辈向师门“发难”。研究被质疑后,代尔夫特理工大学委托了四位外部专家,开始对这一事件调查。就在周一,官方公布了调查结果。结论是,研究人员不是有意误导,只是“过于沉浸在兴奋中”(caught up in the excitement of the moment),因而选择了符合自己期望的数据。但是原论文的问题到底是如何发生的,报告中没有给出完整明确的解释。另一边,微软负责量子计算的副总裁在一份声明中称,撤稿是研究中的一个挫折,公司对开发量子计算机的方法仍然充满信心。而论文作者就问题主动提醒Nature编辑的做法非常好,值得学术界学习.论文的共同一作,分别是来自中国的学者张浩、Liu Chun Xiao,以及荷兰学者Saša Gazibegović。荷兰学者Saša Gazibegović,量子物理硬件工程师,埃因霍芬理工大学博士,现在已经进入光刻机巨头ASML工作。Liu Chun Xiao,本科毕业于复旦大学物理系,在马里兰大学获得博士学位。目前仍然在代尔夫特理工大学做博士后。张浩,本科毕业于北京大学物理系,在杜克大学取得博士学位。目前在清华大学物理系做副教授。被撤稿的论文,是他在代尔夫特理工大学做博士后时的研究。张浩除了是本文一作,还是共同通讯作者。Nature在3月10日发表的官方文章中提到,他们曾经询问过张浩和Kouwenhoven教授,如何评价其他科学家列出的质疑证据,但没有得到回复。目前,无论是学校、Nature、还是微软方面,没使用诸如“造假”、“学术不端”等措辞。但在正式撤稿声明发布后,谢尔盖弗罗洛夫表达了自己的声音:这是科学! 要认真研究,不清楚的,要问什么。如果从这次事件中不吸取教训,我们就没有未来。论文原址:https://www.nature.com/articles/nature26142学者质疑举证:https://twitter.com/spinespresso/status/1357111565242220545撤稿声明:https://www.nature.com/articles/s41586-021-03373-xNature回顾评论:https://www.nature.com/articles/d41586-021-00612-z2019年论文作者介绍本研究的相关演讲(中文):https://www.msra.cn/zh-cn/news/features/ai-talk-hao-zhang本文来自微信公众号:量子位(ID:QbitAI) ,作者:关注前沿科技
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。

乙基己酸锆相关的仪器

  • 2-乙基咪唑产品名称:2-乙基咪唑英文名称:2-Ethylimidazole中文别名 2-乙基-1H-咪唑 CAS NO:1072-62-4分子式C5H8N2分子量96.13040外观白色至微黄色结晶含量99.0%用 途:2-乙基咪唑主要用于仪器、仪表、各种电器部件、化工机械、车辆和 工业方面的粘接、包封、涂压和层压以及用于环氧树脂中温固化剂,参考用量2-5phr。 固化条件70-85℃/3h。包 装:25公斤纸板桶(35×50)内衬双层塑料袋。运输贮存:应贮于阴凉、干燥、通风处。在运输中应轻装轻卸,防止内包装破裂。
    留言咨询
  • 中文名称2-(二乙醇胺基)乙磺酸英文名称BES中文别名N,N-二(2-羟乙基)-2-氨基乙磺酸 2-(二乙醇氨基)乙磺酸 N,N-(2-羟乙基)-2-氨基乙磺酸(BES) N,N-双(2-羟乙基)-2-氨基乙磺酸 BES 双乙基钠盐 N,N-双(2-羟乙基)-3-氨基乙磺酸CAS RN10191-18-1EINECS号233-465-5分 子 式C6H15NO5S分 子 量213.252用途:用作生物缓冲剂我公司关于订购说明:1、质优价廉,量大从优,欢迎您的订购;2、物流信息:快递、汽车物流等;3、其他服务:如您对产品服务及技术指标有特殊要求,请及时通知我方;欢迎新老客户前来洽谈!订购流程:电话询单议价→签订合同→打款订货→安排发货→物流跟踪→货物送达→客户验收(7天产品质量异议期,15天产品数量异议期)→货物验收确认服务宗旨:竭诚提供 产品,售后服务客户满意 。我公司产品出厂前均由质检部检验合格方可出货,质量有保证特别说明:1,产品价格会受到季节性波动影响,具体价格请客户来电核实2,产品都是完整包装,需拆分少量时价格会稍微提高3,大货急需的客户还请提前来电,我公司提前给您备货4,收货后请仔细确认完整性无损再签收,按该产品执行标准验收,如有产品不符,我们包退包换
    留言咨询
  • 量子计算机 400-860-5168转2623
    5 量子位超导量子计算机专为大学和研究实验室量身定制的 5 量子位超导量子计算机。l 我们提供价格实惠的 5 量子比特超导量子计算机 作为交钥匙解决方案,无缝集成 QPU、低温恒温 器、控制电子设备和软件集成。全套设备可在您 所在位置实现全面、安全的控制。在众多物理平台中,超导量子硬件非常适合在保 持连通性的同时扩展量子比特的数量并提高其保 真度,因此成为 NISQ(嘈杂中尺度量子)时代 的首选技术,具有容错路线图。这是一种基于现 有微波电子专业知识建立量子程序的简单且经济 高效的方法。用户可以使用 5 量子比特本地量子计算机做什么? l 本地量子计算机允许用户物理访问硬件和量子计算堆栈的所有层。他们将 了解校准如何影响测量结果、对门操作进行基准测试以及表征退相干性, 这是可扩展量子计算机的主要障碍之一。 l 他们可以连接外围设备(如示波器)来监控脉冲波形,并了解脉冲如何实 现量子门并产生所需的量子态。 l 学生可以研究 transmon 量子比特的物理行为,并探索其用于量子信息存 储和快速量子控制的多级性质,而不受高抽象级云访问的限制。 l 可以执行许多简单的量子算法。 出于教育和研究目的,学习如何使用真实的量子设备而不是模拟器有什么优势? l 本地量子计算机对于获得当前技术发展阶段(称为 NISQ(噪声中型量子) 计算机)的实践经验至关重要。在具有内置纠错功能的成熟量子计算机问世 之前,学生和研究人员必须掌握各种技术来处理真实的量子系统。 l 对于学生来说,这包括通过微波脉冲直接操纵量子比特和在硬件实验中研究 量子系统的基本特性来获得实践技能。 l 在动手实验课程中,学生可以全面了解量子计算机所有组件的当前运行方式。
    留言咨询

乙基己酸锆相关的耗材

  • P1064 HP64 计算机可控高重复率微芯片 MOPA 激光器 1064.2 nm 150-300ps
    内容总览P1064 HP64 计算机可控高重复率微芯片 MOPA 激光器P1064 HP64 计算机可控高重复率微芯片 MOPA 激光器 1064.2 nm 150-300ps,P1064 HP64 计算机可控高重复率微芯片 MOPA 激光器 1064.2 nm 150-300ps产品特点 100ps-300ps 脉冲持续时间, 10 - 100 kHz 重复率 Max. 平均功率超过 600 mW 单横向和纵向模式 光纤耦合或自由空间输出 通用参数参数可定制参数、单位HP64波长1064.2 nm (+/- 0.3 nm )触发输出光学/电气光谱宽度(FWHM)≤ 0.08 nm (+/- 0.02 nm)谱形高斯分布脉冲持续时间 (FWHM),工厂固定150 – 300 psMax. 平均功率 600 mW脉冲重复率,可调10– 100 kHz光束形状圆形M2≤ 1.4偏振线性寿命≥ 2000 h预热时间≤ 10 min平均功率变化,12 小时(标准差)≤ 5 %脉冲幅度变化+/- 5 %脉冲能量变化+/- 5 %时序抖动 500 ns光输出空间光/光纤耦合尺寸140 x 95 x 75 mm 公司简介筱晓(上海)光子技术有限公司成立于2014年,是一家被上海市评为高新技术企业和拥有上海市专精特新企业称号的专业光学服务公司,业务涵盖设备代理以及项目合作研发,公司位于大虹桥商务板块,拥有接近2000m² 的办公区域,建有500平先进的AOL(Advanced Optical Labs)光学实验室,为国内外客户提供专业技术支持服务。公司主要经营光学元件、激光光学测试设备、以及光学系统集成业务。十年来,依托专业、强大的技术支持,以及良好的商务支持团队,筱晓的业务范围正在逐年增长。目前业务覆盖国内外各著名高校、顶级科研机构及相关领域等诸多企事业单位。筱晓拥有一支核心的管理团队以及专业的研发实验室,奠定了我们在设备的拓展应用及自主研发领域坚实的基础。主要经营激光器/光源半导体激光器(DFB激光器、SLD激光器、量子级联激光器、FP激光器、VCSEL激光器)气体激光器(HENE激光器、氩离子激光器、氦镉激光器)光纤激光器(连续激光器、超短脉冲激光器)光学元件光纤光栅滤波器、光纤放大器、光学晶体、光纤隔离器/环形器、脉冲驱动板、光纤耦合器、气体吸收池、光纤准直器、光接收组件、激光控制驱动器等各种无源器件激光分析设备高精度光谱分析仪、自相关仪、偏振分析仪,激光波长计、红外相机、光束质量分析仪、红外观察镜等光纤处理设备光纤拉锥机、裸光纤研磨机 。
  • 2-(2-吡啶基)乙基硅胶
    保留机理:阴离子交换 样品基质相容性:有机或含水溶液 ? 极其适用于萃取在所有 pH 水平保持带电荷的强碱性化合物的弱阴离子交换剂 与诸如 pKa 为 9-10 的 -NH2 (丙胺基)等常规的弱阴离子交换固相萃取相不同,需要 pH ≤ 7 的环境来质子化或离子化固定相,以便于分析物的保留。通常通过增大 pH 至 11 实现固相萃取相的中和来进行洗脱。 2-(2-吡啶基)-乙基硅胶的 pKa 约为 6。因此可在 pH ≥ 7 时进行洗脱。该特性对于萃取在高 pH 环境下不稳定(如水解)的分析物非常重要,而当使用传统的弱阴离子交换剂进行洗脱时通常需要这样的高 pH 环境。 它是从组织中萃取酰基-辅酶 A 酯的理想选择。 需要更多的信息请参阅:Minkler, P.E., Kerner, J., Ingalls, S.T., Hoppel, C.L., Novel isolation procedure for short-, medium-, and long-chain acyl-coenzyme A esters from tissue, Analytical Biochemistry 376 (2008) 275–276
  • 用于二亚乙基三胺的XAD-2采样管
    用于二亚乙基三胺的NTIC涂覆的XAD-2采样管 Use for? ? NIOSH 2540 OHSA 60? ? 工作场所空气中有毒物质测定 第230部分 二亚乙基三胺 征求意见稿 填料与克重:100/50 目数:40-60 外径×长度:6×120 最小包装:100/盒

乙基己酸锆相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制