氨基氢化茚

仪器信息网氨基氢化茚专题为您提供2024年最新氨基氢化茚价格报价、厂家品牌的相关信息, 包括氨基氢化茚参数、型号等,不管是国产,还是进口品牌的氨基氢化茚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨基氢化茚相关的耗材配件、试剂标物,还有氨基氢化茚相关的最新资讯、资料,以及氨基氢化茚相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氨基氢化茚相关的资料

氨基氢化茚相关的论坛

  • 硼氢化钠 二硫代氨基甲酸酯

    硼氢化钠与二硫代氨基甲酸酯反应时,无法产生过多的CS2,需要添加一个吸附基质与硼氢化钠反应,使得在还原二硫代氨基甲酸酯时,能产生大量的CS2,请问亲们这个吸附基质是什么?硼氢化钠与硼氢化钾在还原二硫代氨基甲酸酯时有什么区别?

  • 【原创】带你了解“植物奶油”(氢化油)

    【原创】带你了解“植物奶油”(氢化油)

    http://ng1.17img.cn/bbsfiles/images/2010/11/201011081110_258052_1641058_3.jpg 氢化油,也被叫做“植物奶油”“植物黄油”“植脂末”。目前,在面包、奶酪、人造奶油、蛋糕和饼干等食品焙烤领域广泛使用。氢化油产生大量反式脂肪酸,增加心血管疾病、糖尿病等风险,世界各国已纷纷限制,但中国却在大规模、无限制地使用。(据11月7日央视)  在饼干、蛋糕、麦片、方便面等包装上,都印刷着含有氢化植物油,却没有标注上具体含量。也就是说,我每天都在吃含氢化油的食品,却不知道吃了多少。可见,要拆除健康炸弹的隐忧,关键之处是尽快制定食品标准,限制氢化油的含量。  氢化油与食品添加剂一样,属于额外的东西,对于食品本身来讲,并没有提高其营养价值,只是增加食品的美味可口,丰富了我们的味觉。这是食品工业化的伟绩,也是为迎合消费者的食欲,从而采用化学方法改变食品成分。科学本来就是把双刃剑,是益是害,要看怎么运用了。氢化油诞生百年来,由于其应用广泛,使食物变得更加松软酥脆,一直受到消费者的青睐,而发现其潜存的危害性,也是最近十来年的事。  氢化油对健康主要有四个方面的危害:增加血液黏稠度和凝聚力,促进血栓形成;提高低密度脂蛋白胆固醇,促进动脉硬化;增加糖尿病的发病率;影响婴幼儿和青少年正常的生长发育,并可能对中枢神经系统发育产生不良影响。氢化油会产生大量反式脂肪酸,据健康专家介绍,一般的脂肪吃在身体里7天就代谢了,而反式脂肪吃在身体里50天才可以代谢,这就是为什么洋快餐会导致肥胖的原因。  如同其它对健康有危害的东西一样,总是在经过一段时间后才被发现。氢化油的危害性,经过媒体的报道,应该会引起消费者的警觉心。但是,受到现代社会生活方式影响,消费者与食品加工生产之间有隔膜,根本不了解也弄不懂,食品里面到底含有哪些有害成分。这就需要依赖于食品监管部门,由它们为消费者把关,通过制定严格的食品标准,限制有害成分的含量。  食品安全危机的案例,我们已经遭遇过许多次,心理承受力亦被锻炼成世界一流水平。氢化油属于潜藏的健康炸弹,其危害性并不显眼,甚至因美味而俘获无数消费者。因此,对于拆除氢化油的危害性,除了制定含量标准外,还需采取多种辅助手段,包括普及健康知识、宣传健康饮食习惯、全程监管氢化油生产企业等等。这项健康工程,需要尽快启动,不能再拖延时日,以免造成更大的健康危机。12楼:《经济半小时》报道34楼:卫生部正评估植物奶油风险 婴幼儿食品禁用42楼:我国居民的反式脂肪酸人均摄入量在0.6克左右,远低于欧美国家的水平。

氨基氢化茚相关的方案

  • 饲料砷的测定方案氢化物原子荧光光度法(快速法)
    样品经酸消解或干灰化破坏有机物,加入硫脲使五价砷预还原为三价砷,再加人硼氢化钠或硼氢化钾使还原生成砷化氢,由氢气载人石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。
  • 人氢化可的松(HYD)检测试剂盒
    人氢化可的松(HYD)检测试剂盒人氢化可的松(HYD)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人氢化可的松(HYD)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人氢化可的松(HYD)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人氢化可的松(HYD)抗原、生物素化的人氢化可的松(HYD)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人氢化可的松(HYD)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 人氢化可的松(HYD)ELISA试剂盒
    人氢化可的松(HYD)ELISA试剂盒中文名称 人氢化可的松(HYD)ELISA试剂盒英文名称 Human hydrocortisone (HYD) ELISA Kit 规格 96T/48T 生 产 商 进口原装/分装 产品介绍 实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人氢化可的松(HYD)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人氢化可的松(HYD)抗原、生物素化的人氢化可的松(HYD)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人氢化可的松(HYD)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。

氨基氢化茚相关的资讯

  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 【瑞士步琦】利用SFC系统纯化利多卡因与乙酰氨基酚
    步琦SFC系统纯化利多卡因与乙酰氨基酚SFC应用”1简介药物是一种由化学或生物来源制成的产品,用于人类或动物的医疗治疗,这些药物往往以化学合成的形式来生产。化学合成是一种通常伴随着杂质存在的过程,因为产率很少是 100%。这些杂质可能会对最终产品的疗效、安全性和质量产生重大影响。因此,对药物进行纯化以确保合成化合物的纯度和完整性是至关重要的,药物的纯化可以通过色谱法等多种方法进行。最近,超临界流体色谱(SFC)已经作为一种替代反相液相色谱(RP-HPLC)的方法出现。SFC 使用超临界二氧化碳作为流动相的一部分,这是一种清洁且环保的溶剂,很容易从最终产品中去除。此外,SFC 结合了气相色谱和液相色谱的优点,在提供高分辨率的同时也能以更快的速度分离样品。在 SFC 的方法开发过程中,最大的难点在于没有一种通用的固定相。因此需要在不同的固定相上进行筛选,以确定要分离的样品的最佳选择性。CO2 的低极性溶剂特性允许在色谱柱筛选时同时考虑非极性和强极性的固定相。在确定最佳固定相后,就可以进一步放大到制备规格。在本次应用中,我们会例举利多卡因和乙酰氨基酚的合成案例,利用 SFC 系统来高效去除合成过程中的杂质,获取高纯度目标化合物。在这一过程中,需要先进行合适色谱柱的筛选,再放大至制备色谱的规格。2设备BUCHI Sepmatix 8x SFC 8通道平行色谱系统BUCHI Sepiatec SFC-50 超临界制备色谱系统BUCHI PrepPure 硅胶,5um,250×4.6mm BUCHI PrepPure 二醇基,5um,250×4.6mm BUCHI PrepPure 氨基,5um,250×4.6mm BUCHI PrepPure 2-EP,5um,250×4.6mm HILIC柱,5um,250×4.6mm (Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×4.6mm BUCHI PrepPure CBD,5um,250×4.6mm 氰基柱,5um,250×10mm ,(Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×10mm BUCHI PrepPure 氨基,5um,250×10mm3化学品与样品化学品:二氧化碳 (99.9%)甲醇 (≥99%)甲醇溶液中2M的氨溶液甲酸(99%)去离子水为了安全处理,请注意所有相应的MSDS!样品:乙酰氨基酚合成产物利多卡因合成产物4程序设定BUCHI Sepmatix 8x SFC平行色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×4.6mm流速:3mL/min(每根色谱柱)检测:DAD 紫外扫描 200 nm - 600 nm流动相条件:0&minus 0.5min5%B0.5 – 8.0 min5 – 50 % B8.0 – 9.4 min50 % B9.4 – 9.5 min50 – 5 % B9.5 – 10 min5 % B筛选过程完全自动运行,流速设置为 3mL/min 每通道,使用流控单元,平衡每一根色谱柱。样品自动注入(V = 5 μL),并开始平行筛选(运行时间 =10min)。背压调节器设置为 150 bar,柱子加热至 32℃,可按需往改性剂中加入添加剂改善峰型。BUCHI Sepiatec SFC-50超临界制备色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×10mm流动相条件:等度运行条件检测:紫外所有 10mm ID 色谱柱都在预设流速下平衡 3 分钟,使用自动进样器上样,并开始运行。背压调节器设置为 150 bar,柱子加热至 40℃,可按需往改性剂中加入添加剂改善峰型。5结果5.1 乙酰氨基酚乙酰氨基酚(下称 AA),也常被称为对乙酰氨基酚,是一种镇痛剂、解热剂和手性药物。它属于非阿片类镇痛剂这一类。在化学上,它可以通过对氨基苯酚(下称 AP)与乙酸酐的反应来合成,在此过程中发生 N-乙酰化(见图1)。为了确定乙酰氨基酚合成产物的最佳纯化分离固定相,首先进行了柱筛选(见图1)。▲ 图 1:顶部:乙酰氨基酚合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI和CBD;运行时间 = 10分钟。图1显示,二醇基和 2-EP 相并未表现出分离度,硅胶相、CBD 相、氰基相和氨基相未显示出理想的分离度,因为它们无法实现基线分离。HILIC 和 PEI 相具有良好的选择性和分辨率,且分辨率始终远高于 1.5(见表1)。1.5 的分辨率意味着可以很好地分离 2 个峰。表1 还显示了洗脱顺序,氰基相显示出相反的洗脱趋势,对氨基苯酚先洗脱,然后是对乙酰氨基酚。筛选结果表明,反应并非百分之百完全,因为产物中仍含有大量对氨基苯酚。▲ 表1:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序选择 PEI 相色谱柱放大至制备规格,因为它具有最高的分辨率(见图2)。根据筛选时的色谱图,我们可以确定 AA 和 AP 在甲醇为 35&minus 40% 之间洗脱。图2(顶部)显示了在 40% 甲醇等度条件下,在10 x 250mm 的PEI 色谱柱上对 AA 进行纯化的情况,结果显示 AA 和 AP 可以非常良好地分离。因此在相同的条件下,可以实施一个堆叠注射方法,用于自动纯化并收集 AA (见图2,底部)。▲ 图2:单次注射(顶部)和堆叠注射(底部)用于AA的纯化;运行条件:流速=30 mL/min, 甲醇= 40 %,温度 = 40 ℃,压力BPR = 150 bar,注射 = 250 µ L,UV波长 = 254 nm;堆叠注射条件:注射次数 = 10,堆叠时间 = 1.8 min,Fractions = 1(基于时间的)。5.2 利多卡因利多卡因(下称 L),化学名为 2-二乙基氨基 -N-(2,6-二甲基苯)乙酰胺,是一种用作局部麻醉剂和抗心律失常药物的药物,它作为钠通道阻断剂起作用。利多卡因可以通过两步合成过程生产(见图3)。第一步中,2,6-二甲基苯胺(下称 X)的氨基组团被酰化 。第二步中,中间产物(下称 IP)通过与二甲胺的亲核取代反应转化为利多卡因。因此,需要进行两步纯化过程。色谱柱筛选的结果如图3所示,筛选过程中,在改性剂甲醇中始终添加 20 毫摩尔氨水作为碱性添加剂。▲ 图 3:顶部:利多卡因合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选IP与利多卡因结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI 和 CBD;运行时间 = 10分钟。从结果来看,所有色谱柱都可用于中间体 IP 的第一步纯化分离,因为都具有基线分离的效果。其中氨基相具有最高的分辨率,且在甲醇比例较低时就能出峰(见图3)。对于第二步利多卡因的纯化,氰基和CBD相无法实现基线分离,而氨基再次表现出最佳的分离度(见表2)。在洗脱顺序上,第一步中间体的纯化出峰顺序都是先 X 再 IP,而第二步的利多卡因的纯化除了硅胶相之外都是先 L 再 IP(见表2)。▲ 表2:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序最终选择 10 x 250mm 的氨基色谱柱进行制备纯化,因为它的分辨率总是最高的(见表2)。氨基柱筛选结果显示,X 和 IP 出峰时的甲醇比例约为 10 - 19%,L 和 IP 出峰时的甲醇比例约为 11 - 19%。图 4 a) 显示的是甲醇比例为 16% 等度条件下的 IP 的单次纯化分离图谱,图 4 b) 显示的是甲醇比例为 20% 等度条件下的 L 的单次纯化分离图谱。在相同的条件下,可以进行叠层进样分离,分别自动纯化 IP 和 L,并进行馏分收集(见图 4 c) 和 d))。▲ 图4:中间体 IP 的单次进样(a)和叠加进样(c);运行条件:流速 = 20 mL/min,改性剂 = 甲醇 + 20 mM 氨水,改性剂 % = 16 %,温度 = 40 °C,压力 BPR = 150 bar,进样量 = 170 μL,紫外波长 = 254 nm;叠加进样条件:进样次数 = 15,叠加时间 = 0. 75 min, Fractions = 1 (基于时间) 利多卡因L的单次进样 (b) 和叠加进样 (d) 运行条件:流速 =20 mL/min, 改性剂 = 甲醇 + 20mM 氨水, 改性剂 % = 20 %, 温度 = 40 °C 和压力 BPR = 150 bar, 进样 = 170 μL, 紫外波长 = 254 nm 叠加进样条件:进样次数 = 20, 叠加时间 = 0.65 min, Fractions = 1 (基于时间)。6结论在进行有机合成后,由于副反应或转化率未达到 100%,通常仍会存在杂质,这些杂质必须去除,尤其是在药品生产中。在药物合成研发领域,时间与效率至关重要。BUCHI 的 SFC 色谱解决方案为研发人员提供了强大的工具,通过 Sepmatix 8x SFC 色谱柱筛选系统与 Sepiatec SFC-50 制备色谱系统相结合,可快速筛选出合适的色谱柱并线性放大至制备规格。SFC-50 的叠层进样功能,不仅能实现无人值守自动分离,还可显著提高分离效率,从而加快药物合成研发的速度。7参考文献Medikamente & Medizinprodukte (admin.ch) (Status 23.11.2023).https://doi.org/10.1016/j.chroma.2011.09.029https://doi.org/10.1016/j.chroma.2012.06.029https://doi.org/10.1016/j.chroma.2005.03.073https://doi.org/10.1016/j.jpba.2007.08.013.PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Th. Eicher und H. J. Roth Synthese, Gewinnung und Charakterisierung von Arzneistoffen, Georg Thieme Verlag, Stuttgart (1986).The synthesis of Lidocaine (University of San Diego).Winterfeld, K. – Praktikum der organisch-prä parativen Pharmazeutischen Chemie, 6. Auflage, Steinkopff Verl., Darmstadt (1965).Axel Kleemann, Jürgen Engel, Bernd Kutscher und Dietmar Reichert: Pharmaceutical Substances, 4. Auflage, Georg Thieme Verlag, Stuttgart (2000).
  • 食用油专家:氢化油危害被夸大
    氢化油等于杀虫剂滴滴涕的说法让消费者恐慌,生产氢化油企业的反应更是有过之而无不及,由台湾南侨集团和康师傅控股公司合资的南侨油脂前台人士不由分说拒绝了《第一财经日报》的采访要求,另一家日本企业投资的不二制油(张家港)有限公司也保持沉默。不过,在食用油研究人士看来,氢化油的危害此次有点被夸大了。   一位资深食用油研究人士对记者表示:“20世纪50年代前后,氢化油在美国大规模使用开来,如果说氢化油真的跟滴滴涕一样,美国人吃的氢化油数量是最多的,实际上并没有那么多美国人因为吃了氢化油而死亡,现在媒体对氢化油危害的报道言过其实。”   在食用油专家看来,植物奶油这样一个概念并不准确,确切的说法是人造奶油,氢化油只是人造奶油中的一种,氢化油由于经过了高温加工的环节,含有一定比例的反式脂肪酸,而反式脂肪酸对人体健康的影响经过科学检测得出结论的并不多。   此前有媒体报道,反式脂肪酸除了增加心血管疾病的危险性外,还会干扰必要脂肪酸的代谢,影响儿童的生长发育及神经系统健康,增加2型糖尿病的患病风险并导致妇女不孕。江南大学博士生导师王兴国告诉记者:“反式脂肪酸对人体健康的影响始于美国哈佛大学的一项研究,这项研究证明了反式脂肪酸与心血管疾病存在相关性,欧盟随后的研究也证明了这一结论,但是反式脂肪酸是否导致糖尿病、乳腺癌等疾病目前还没有权威研究证明。”   业内人士介绍,美国作为氢化油技术的发源地,以大豆油、棉籽油作为氢化油的原料,国内企业目前大多使用棕榈油作为氢化油的原料,棕榈油的反式脂肪酸含量与大豆油相比相对较少,另外植物油的氢化工艺有部分氢化和极度氢化的区别,经过极度氢化的氢化油含有的反式脂肪酸含量很少,一些人造奶油的反式脂肪酸含量在2%以下,而肉制品、乳制品等天然食物的反式脂肪酸含量在3%左右,比人造奶油的反式脂肪酸含量还要高一些。   王兴国说,植物油经过氢化处理后,可以产生很浓的香味,因此奶茶、咖啡伴侣含有较多的氢化油,全国每年氢化油的产量在10万吨左右,主要由南侨油脂、日本不二制油等5家左右的公司生产,而今年全国食用油的消费量约为2300万吨,氢化油的占比很少 另外中国人的膳食结构与西方不同,奶茶、咖啡与西方的饮食习惯相对应,除非消费者大量食用西式食品,一般来说反式脂肪酸对身体健康的影响并不大。王兴国主持的调研显示,我国反式脂肪酸人均摄入量占人体能量的百分比仅为1.4%,比日本的1.8%还低,没有摄入过量的危险。   王兴国认为,真正值得注意的是中国人应该改变食用油的消费习惯,他说按照每年2300万吨的食用油消费量计算,平均每个中国人每天消费50克食用油,而营养学的建议是每天摄入25克,食用油吸收过多会导致肥胖等疾病,中国人应该少吃油,吃好油。

氨基氢化茚相关的仪器

  • 产品名称:柱型连续流动氢化反应装置 产品型号:FFX-1000G 产品代码:262770 反应方式:连续流动反应方式 反应容器:催化剂填充反应柱 内径5x50mm 1支 最高使用压力:小于1MPa(氢气导入压力上限) 温度调节范围:50-200℃(铝块恒温槽) 流量调节范围:液体 0.01-1.00mL/min 氢气 2-100mL/min 压力调节范围:0-0.8MPa 温度气体液体参数设定:按键输入数字显示 温度控制种类:铝块夹套控制 温度控制方法:P.I.D控制 液体泵流量控制:单柱塞泵定量送液 气体流量控制:气体流量控制器(mL/min) 液体流路:2路送液(泵、泵+进样阀) 气体流路:1路(氢气) 回收流路:1路(大气开放) 安全功能:压力传感器上限压力报警、气体流量报警、液体泵自我诊断功能(上限压力报警)、独立过升防止器、保险丝、温调器自我诊断功能(可变式上限温度、传感器异常)、保护盖 环境温度范围:5-35℃ 接液部材质:SUS316、FFKM、PEEK、FTFE、玻璃 气体连接口:外径1/16管路适配器 原料容器:玻璃瓶100mL、进样阀4.5mL以下 外部尺寸(mm):300Wx420Dx377H 电源:5A、500VAAC100V 50/60HZ产品特点:1、 小型紧凑型可以进行催化反应的流程式反应装置。对于柱型管填充的催化剂通过流动反应液。可进行不均匀的催化反应。可用于流程反应条件研究,规模扩大合成。2、 通过精密控制流程反应的各参数(反应液流量氢气流量压力柱管恒温槽的温度),实现流程式合成反应。3、 通过压力调整阀,可设定液体以及气体任何压力条件下。压力调整范围从0-0.8MPa进行调整。4、 压力、温度、流量(液体以及气体供给)的控制设定在运行中也可以更改。因为是研究连续的反应条件,可迅速进行最适化实验。5、 对于高浓度的反应液,不依靠泵,可通过注射器直接向柱管里添加。6、 通过使用机能性催化剂(PPD-60型),根据反应不同,可维持催化剂的活性,再利用。另外,能改善氢气消耗量,可以进行批式反应条件(温度、压力)和比较试验。
    留言咨询
  • 55i 型甲烷/非甲烷碳氢化合物分析仪应用气相色谱技术实现甲烷和非甲烷碳氢化合物的完全分离和分别测量测量范围从C1到C12以上没有可能被毒化或消耗的催化剂量程可调自动点燃FID的火焰和检测火焰状态量程0-5,50,500 ppm 或 0-10,100,1000 ppm 或0-20,200,2000 ppm或0-50,500,5000ppm零点噪声0.025 ppm RMS (300秒平均时间)最低检测限0.050 ppm CH4跨漂(24小时)2%跨点分析时间(90%)约70秒精度2%读数或是50ppb(取大值)
    留言咨询
  • minispec 碳氢化合物含氢量测定全新 ASTM* D 7171:基于脉冲时域核磁共振的国际标准方法采用时域核磁共振技术分析诸如柴油或航空煤油等碳氢化合物的含氢量。采用时域核磁共振技术测定含氢量快速、无损、无溶剂质量控制/质量保证测定支持所有官方国际标准方法(ASTM D 7171、ASTM D 3701和ASTM D 4808)利用少量市售化合物轻松完成校准最低限度试样制备高投资回报率卓越的可再现性配备改良版软件的专用分析仪 氢含量分析带来的经济效益碳氢化合物和植物油精炼通常包括加氢处理。氢消耗是精炼厂的重要成本问题,氢含量被用作精炼进度的重要指示。含氢量是诸如航空煤油和柴油等产品必须满足的技术规范之一。为了证明产品符合官方技术规范,同时尽可能降低氢用量,必须采用精确、可靠的分析方法。minispec核磁共振方法符合工艺控制对精确度、准确度和速度的要求。操作minispec不要求技术娴熟的人员。仪器设计十分稳健,维护要求很低。进行含氢量分析的其他原因含氢量越高,汽油燃烧越好,质量越高积碳、废气、热辐射等随含氢量的下降而增加 minispec校准两种校准方法可行:采用从化学品供应商处购得的纯碳氢化合物——如十二烷采用用户提供的试样和参考值 试样处理和试管直径这种方法通常采用两种试管直径:18毫米或40毫米直径试管。可提供带杆 PTFE 试管塞,用以避免试样蒸发。 哪怕在长期运行中,大多数时候都使用金属块恒温器对试样进行预加热,这仅需用电。 典型测定用时试样生成很强核磁共振信号。这可实现很高信噪比,从而将典型测定用时缩短至短短一分钟。 minispec 在石化行业的其他应用煤的总含氢量蜡/石蜡的含油量测定油页岩和油砂的含油量测定油粘度测定国际方法国际标准方法推荐使用纯碳氢化合物进行校准。最新 ASTM D 7171 方法列出了推荐校准物质及相应的含氢量值。 氢百分比含量计算由于化学式众所周知,并且物质纯度很高,亦可直接计算出化合物的含氢量。 国际方法列表ASTM D 7171 ( 2005年发布,基于脉冲核磁共振),适用于中间馏分石油产品ASTM D 4808 (轻质和中间馏分、瓦斯油和渣油)ASTM D 3701 (航空涡轮机用燃油) 通过将原来的连续波核磁共振仪器更换为脉冲核磁共振仪器minispec,可以满足甚或超出 ASTM 方法 D 3701 和 D 4808 的要求。脉冲核磁共振分析方法更快速、更灵敏、更精确,并且适用于更多应用。
    留言咨询

氨基氢化茚相关的耗材

  • 842318050001 赛默飞光谱配件 简易氢化物系统
    842318050001Basic Vapour System简易氢化物系统842318050101Enhanced Vapour System氢化物增强系统842312051611Replacement Plumbing Kit Enhanced Vapour氢化物增强替换泵组件842313050001iCAP Software UpgradeICP软件更新组件942339030131Aluminium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030511Antimony Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030331Arsenic Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030561Barium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030041Beryllium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030831Bismuth Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030051Boron Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030481Cadmium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030201Calcium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030551Caesium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030241Chromium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030271Cobalt Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030291Copper Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030661Dysprosium Data Coded HCL单元素编码空心阴极灯942339030681Erbium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030631Europium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030641Gadolinium Data Coded HCL单元素编码空心阴极灯
  • 氢化物发生器
    最佳的氢化物原子吸收法应用-我国原子吸收分析行业著名专家吴廷照教授集数十年研究的多项专有技术应用于仪器的相关部件,特别是流动注射氢化物发生器原子吸收的应用,使氢化物原子吸收法的灵敏度和检出限都达到国际最佳水平,例如测砷最佳灵敏度可达0.08ng/ml/1%( 文献指标为0.15 ), 检出限最佳可达0.06ng/ml,精密度RSD<2%。测定效率极高,按下启动键25&mdash 30S即可完成进样、测定、清洗全过程。用氢化物原子吸收 光谱法可测定痕量元素As、Se、Sb、Bi、Sn、Pb、Te、Ge、Cd、和冷原子吸收法测Hg 。仪器内装氢化物原子化器电热石英吸收管电源,自动读数接口。
  • 842318050101 赛默飞光谱配件 氢化物增强系统
    842318050101Enhanced Vapour System氢化物增强系统842312051611Replacement Plumbing Kit Enhanced Vapour氢化物增强替换泵组件842313050001iCAP Software UpgradeICP软件更新组件942339030131Aluminium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030511Antimony Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030331Arsenic Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030561Barium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030041Beryllium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030831Bismuth Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030051Boron Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030481Cadmium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030201Calcium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030551Caesium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030241Chromium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030271Cobalt Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030291Copper Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030661Dysprosium Data Coded HCL单元素编码空心阴极灯942339030681Erbium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030631Europium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯942339030641Gadolinium Data Coded HCL单元素编码空心阴极灯942339030311Gallium Data Coded Hollow Cathode Lamp单元素编码空心阴极灯

氨基氢化茚相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制