剑叶血竭素

仪器信息网剑叶血竭素专题为您提供2024年最新剑叶血竭素价格报价、厂家品牌的相关信息, 包括剑叶血竭素参数、型号等,不管是国产,还是进口品牌的剑叶血竭素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合剑叶血竭素相关的耗材配件、试剂标物,还有剑叶血竭素相关的最新资讯、资料,以及剑叶血竭素相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

剑叶血竭素相关的资料

剑叶血竭素相关的论坛

  • 血竭素对照的拖尾严重

    仪器:LC-100 二元高压,Exformma 经济型C18色谱柱,5µm,4.6×250 mm,加保护柱。流动相:乙腈-O.05mol/L磷酸二氢钠溶液(50:50);波长为440 nm;柱温40℃,进样量20μl。理论板数按血竭素峰计算应不低于4000。对照品溶液的制备 取血竭素高氯酸盐对照品9mg,精密称定,置50ml棕色量瓶中,加3%磷酸甲醇溶液使溶解,并稀释至刻度,摇匀,精密量取1ml,置5ml棕色量瓶中,加甲醇至刻度,摇匀.即得(血竭素重量=血竭素高氯酸盐重量/1.377)。供试品溶液的制备取本品适量,研细,取O.05g,精密称定,置具塞试管中,精密加入3%磷酸甲醇溶液10ml,密塞。振摇3分钟,滤过,精密量取续滤液1ml,置5ml棕色量瓶中,加甲醇至刻度.摇匀,即得。血竭素的保留时间为6.4,但拖尾因子为3 ,不符合中国药典规定,请教大家如何处理?

  • 2015中国药典检测方案有奖问答12.15(已完成)——活血壮筋丸中血竭素的检测

    2015中国药典检测方案有奖问答12.15(已完成)——活血壮筋丸中血竭素的检测

    问题:活血壮筋丸中血竭素的检测使用了迪马哪几款液相色谱柱答案:Platisil ODS,Diamonsil C18、Spursil C18-EP获奖名单:sixingxing(ID:v2889187)dyd3183621(ID:dyd3183621)999youran(ID:999youran)http://ng1.17img.cn/bbsfiles/images/2015/12/201512151527_578069_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512151527_578070_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512151527_578071_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512151528_578072_708_3.jpg【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================活血壮筋丸中血竭素的检测样品制备制备方法1. 对照品:血竭素(30 μg/mL) ,用3%磷酸甲醇将其溶解(血竭素重量=血竭素高氯酸盐重量/1.377)。2. 供试品:取本品30丸,除去糖衣,精密称定,研细,取约相当于10丸的重量,精密称定,置具塞锥形瓶中,精密加入3%磷酸甲醇溶液 25 mL,称定重量,超声处理(功率360 W,频率40 kHz)30分钟,放冷,再称定重量,用3%磷酸甲醇溶液补足减失的重量,摇匀,滤过,取续滤液,即得。分析条件色谱柱Platisil ODS 250 x 4.6 mm,5 μm (Cat#:99503)流动相A:乙腈 B:0.05 M 磷酸二氢钠 A:B=50:50流速1.0 mL/min柱温30 ℃检测器UV 440 nm进样量10 μL色谱图对照品http://ng1.17img.cn/bbsfiles/images/2015/12/201512150958_577936_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 9.011 1396914 137870 16628.096 1.015 -- *药典要求理论板数按血竭素峰计算应不低4000供试品 http://ng1.17img.cn/bbsfiles/images/2015/12/201512150958_577937_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 9.006 854545 85050 16829.320 1.008 -- *药典要求理论板数按血竭素峰计算应不低4000本品种同时使用了Diamonsil C18、Spursil C18-EP两款不同规格色谱柱,在药典规定条件下进行血竭素的检测,均满足药典要求。

  • 【分享】HPLC法测定活血壮筋丸中血竭素的含量

    HPLC法对活血壮筋丸中的血竭素含量。方法:Kromasil C18(4.6mm× 250mm,5μm)为色谱柱,乙腈∶0.05mol/L磷酸二氢钠溶液(35∶65)为流动相;流速:1.0mL/min;检测波长:440nm,柱温40℃。结果:血竭素浓度在5.50~27.48μg/ mL之间线性关系良好,平均回收率96.62%,RSD=1.1%,结论:该方法简单、可靠、专属性强,可用于活血壮筋丸的质量控制。

剑叶血竭素相关的方案

剑叶血竭素相关的资讯

  • 杰出女科学家是科学界的珍稀品种
    p style=" text-align: center " img title=" U12776P1T940D4676F24202DT20151010162159.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/4935cd3e-8fc4-4ce3-9ff6-2a65287d6b29.jpg" / /p p style=" text-align: center " 一百年前就获得诺贝尔奖的居里夫人/资料图 br/ p style=" text-align: right "   /p p   一百多年来,女性的社会地位不能说没有改善。但是,她们在科学界的状况可以乐观吗? /p p   因为居里夫人的故事几乎家喻户晓,使世人趋向于高估女性在科学界的地位,低估了女性在科学界面临的困境。事实上,虽然居里夫人一百年前就获得诺贝尔奖,但全世界迄今女性只有12人获13次诺贝尔科学奖。居里夫人一人获得两次(1903年的物理奖、1911年的化学奖),她女儿获1935年的化学奖。而全世界其他女性仅获一次物理奖(德裔美国物理学家迈耶Maria Goeppert Mayer,1963)、一次化学奖(英国化学家霍奇金Dorothy Crowfoot Hodgkin,1964)。其后迄今近半个世纪,女性获10次科学奖皆在生理医学。 /p p   1963年至今,女性没有问津诺贝尔物理奖,1964年至今女性未再获化学奖。自然提醒人们:这些现象是否反映在物理和化学界女性的境遇有待较大改善? /p p   女性在20世纪大量接触科学、进入科学界。女性在科学界做出了重大贡献,除13位诺贝尔奖得主外,数学的Emmy Noether、 物理的Lisa Meisner和吴健雄、生物的Rosalind Franklin都有杰出的贡献。但是,虽然很多专业大学本科生男女数量相似,研究生常常也接近,但是越到后来女性越少。国外到助理教授时,女性比例出现低于男性的现象,国内外科学界正教授女性常常明显少于男性。而女性仅占诺贝尔获奖总数的2%。1999年的统计数据 ,美国国家科学院女性占6.2%,日本学士院0.8%,英国皇家学会3.6%,瑞典皇家科学院5.5%,土耳其科学院14.6%,荷兰艺术与科学院0.4%。2007年 ,中国科学院和中国工程院的女院士不到5.5%。与此同时,科学界的组织领导职位仍以男性占绝大多数。无论是中国科学院、还是德国马普学会,都很少女性研究所所长。 /p p   在浩瀚的科学史上,本文撷取几个与诺贝尔奖有关联的女科学家,从科学上成功的女科学家之历程,看她们的异同、做科学的动力,也涉及家庭和事业的关系。希望本文能起激励华裔女性打破玻璃天花板,突破女性在科学界发展的社会藩篱。 /p p strong   单身女性,情有独钟 /strong /p p   1902年6月16日出生的巴巴拉?麦克林托克(Barbara McClintock)是遗传学家。1983年她81岁时获诺贝尔生理学或医学奖,肯定她30多年前发现的基因跳跃现象(转座子)。 /p p   麦克林托克是由好奇心驱动而从事科学研究的典型。 /p p   终生致力于研究艺术创造原动力的精神分析学家菲利斯?格里纳克认为,巨大的才能或天才之花的必要条件是:在幼儿中发展 “对世界的强烈爱好。”幼年时代的麦克林托克有类似特质。她常对独特的事物具有一种“非常强烈的感情”,她对科学的热爱达到入迷的程度。她自述,在孩提时代,没有感到需要和任何人有感情上亲密的必要。自然世界成了她智力和感情活力的主要中心。通过阅读自然教课书,她获得了其他人从个人的亲密交往中所得到的某种了解和满足。青春期过后,她越来越明显有冲动要干“那种姑娘们不该干的事情”。对体育的爱好让路给对知识的爱好。“我喜爱知识,”她回忆道。“我爱知道各种事物。”在高中,她发现了科学。解答科学难题开始使她滋长着一种快乐。“我解答问题的方法常出乎教师的意料之外& amp #823& amp #823我请求教师,‘请允许我& amp #823& amp #823看我能不能找到标准答案,’而我找到了。那真是一种巨大的快乐啊,寻找答案的整个过程就是一种纯粹的快乐。” 虽然她的母亲不支持她上大学,怕她嫁不出去,她坚持己见,其后也得到复员回家的父亲的支持。而她一生从来没有要结婚的感觉。 /p p   麦克林托克在大学期间的一些经历进一步激励、诱发了她的好奇心。1919年,麦克林托克入读康乃尔大学农学院。1921年秋,她上大学三年级的期中,选修了一门唯一向本科生开放的、她认为特别兴奋的研究生课程《遗传学》。当时很少同学感兴趣遗传学,他们大多热衷于农业学,并以此顺利就业。但麦克林托克却对遗传课很有兴趣,引起了主讲教师赫丘逊(CB Hutchuson)的注意。课程结束后,赫丘逊打电话给她说,我们还有专为研究生开设的其它遗传学课程,你要不要来选修。她知道作为一个学生,不仅自己感兴趣,老师也开始欣赏她了。老师的邀请进一步强化了她的兴趣。麦克林托克欣然接受了邀请,从此就非正式地获得了研究生的身份,并踏上遗传研究的道路。在大学三年级末,就完全走上了成为一个职业科学家的道路。 后来,她在康奈尔大学植物学系注册正式为研究生,主修细胞学,副修遗传学和动物学。细胞学的染色体和遗传学的交叉研究就成为她研究的方向。 /p p   获得博士学位后,麦克林托克在康内尔大学农学院的试验地里种下第一畦玉米,开始进行基因研究。她没和人结婚,但是和玉米是终身相守。她用玉米做出了许多重要的发现。她42岁时当选美国科学院院士。此后她经过对玉米进行交配实验和实地观察,发现了“转座基因”。基因在染色体上作线性排列,基因与基因之间的距离非常稳定。常规的交换和重组只发生在等位基因之间,并不扰乱这种距离。在显微镜下可见的、发生频率非常稀少的染色体倒位和相互易位等畸变才会改变基因的位置。可是,麦克林托克发现单个的基因会跳起舞来:从染色体的一个位置跳到另一个位置,甚至从一条染色体跳到另一条染色体上。麦克林托克称这种能跳动的基因为“转座因子”(目前通称“转座子”,transposon)。20世纪50年代她把这个发现在一个理论框架下提出,认为转座是基因表达的主要调控机理之一。当时的科学界没有接受她的理论,对转座现象的重要性也没有很快意识到。有人嘲笑“她一定是发疯了”。在遭受冷遇的30多年时间里,她虽然为人们不接受她的理论而不高兴,并在1951年后她拒绝在工作单位冷泉港实验室作学术报告,但是她继续开展自己的研究。 当动物中也发现转座现象后,科学界认可了她对DNA跳跃现象的发现,虽然她的基因表达调控理论不重要、也没有普遍意义。 /p p   麦克林托克“对生物的钟情”是她创造力的主要源泉。驱动她一生在生物学世界孜孜以求的主要力量,是她对自然科学、生命世界的巨大好奇心。她曾说过,“重要的是培养一种能力去发现一个异乎寻常的籽粒并使它可以被理解”,“如果(有什么事情)出了格,那必定有个原因,你就得查明这是怎么回事”。 /p p   strong  “做科学与做母亲可二者兼得” /strong /p p   在获得诺贝尔奖的12位女科学家中,有几位终身未婚(麦克林托克、萝莎琳?雅洛、乐薇?芒塔琪妮),还有长期单身的。有的是性格所致,有的是因为女科学家受家庭和社会压力,难以兼顾家庭和事业。用一位女生物学家的话说“(对女科学家来说)婚姻不是他们所要考虑的事情。你若要献身于科学,那么你就要伪装起来,不能正常地装束打扮& amp #823& amp #823你不能结婚 你不能有孩子。” /p p   但这并不是做杰出女科学家的必要牺牲。居里夫人对家庭非常照顾。她结婚后一直给家里记账,为了长女的教育,她和朋友给一群小孩开了两年的课。她也讲究休闲。 /p p   科学与家庭不是非此即彼、互不相容的关系。J?R?科尔和 H?朱克曼在20世纪80年代研究发现,“对大多数妇女而言,科学与做母亲可二者兼得。” 居里夫人、迈耶、霍奇金的故事表明,科学研究与婚姻家庭呈互补关系,而且科学文化、科学精神可以在一个家族内部传承,形成科学家家族。有趣的是,获物理学和化学奖的4个女性科学家,都有科学家族。 /p p   马丽亚?居里(Marie Curie,1867-1934)是物理学家兼化学家。居里夫人的故事广为人知。但是通常是少年儿童版。她最早的流行传记是次女写的,一些艰难的、当时认为不利于科学家形象的材料给省略了,而有些特殊情况,当时没有看清,事后才清楚。居里夫人在巴黎的索邦念研究生第一年(1897到1898)非常有运气。这年她的研究奠定了自己两度诺贝尔奖,而且还生了一个三十年后会获诺贝尔奖的长女。有这样运气的人,世上不多见。她的课题是步发现X射线的伦琴和发现放射性现象的贝克勒尔后尘。居里夫人开始并没有一个雄心勃勃的计划,课题原创性不高。她到丈夫皮埃尔所在的巴黎市立工业物理和化学学院,拿到片子在全校找可以有放射性的材料。在这个过程中,她发现了钋和镭的原材料。她和皮埃尔两人的共同实验记录从1897年12月6号开始,到1898年2月17号就发现了钋的原材料。时间跨度一共只有两个月。1898年7月18号,居里夫妇的工作正式在法国科学院宣读,发现了钋,提出了放射性的概念。1903年,她获索邦的物理学博士学位。7月中旬,得知他们夫妇俩和贝克勒尔因为放射性而获当年诺贝尔物理奖。 /p p   居里夫人在研究生期间特别顺利,但她的一生却颇坎坷。她第一个恋人(Kazimierz Zorawski)的家长嫌她家穷不许他们结婚(她等待不成后去巴黎,他以后成为波兰著名数学家,一生后悔自己听了家长的话)。1903年诺贝尔颁奖时只请了皮埃尔演讲,没请居里夫人。1905年,皮埃尔出车祸去世对居里夫人是很大的打击,她曾有一年每天给去世的丈夫发寄不出去的信。1911年,居里夫人因发现元素镭和钋而获诺贝尔化学奖。但是,同年她和物理学家朗之万的恋情被曝光,化学奖委员会主席建议她写信表示“自愿”不领奖。她虽然坚持领奖,但其后因抑郁症,领奖后没有回法国而是到英国朋友家休养了约一年。1934年67岁的居里夫人去世逝于长期无防护地接触放射性物质导致的白血病。1935年她的长女爱琳和女婿获奖,爱琳先和外祖母一样患结核、59岁和母亲一样逝于白血病。居里夫人的次女伊婺是钢琴家、记者。1937年伊婺出版《居里夫人》一书,她丈夫曾代表联合国儿童基金接受诺贝尔和平奖。和她父母、姐姐、姐夫不同,她到2007年以102高龄去世。居里的科学家族通过长女的后代延续至今:外孙女Hé lè ne Langevin-Joliot是物理学家(而且和朗之万的孙子结婚)、外孙Pierre Joliot是生化学家。 /p p   诺贝尔物理奖得主玛丽亚?苟帕?迈耶(Maria Goeppert Mayer)是德裔美国物理学家,她父亲是德国哥廷根的教授,她是家族第七代教授,她父亲从来不愿她做家庭妇女。哥廷根大学在20世纪初数学和物理都非常好,座右铭是哥廷根外无生活。玛丽亚?苟帕聪明、漂亮,从小在教授堆里长大,邻居里有大数学家希尔伯特,她的大学和研究生都在哥廷根,起初喜欢数学后来转成理论物理。她的博士论文委员会有三个诺贝尔奖得主。1930年获博士,并和美国人迈耶结婚后到美国定居。丈夫在大学做教授、系主任,而她三十年没有正规教职,只能兼职。但她喜欢科学,长期坚持研究,她说,“我工作多年,没有丝毫报酬,只是为了研究物理学时有着无穷的乐趣” 。她和多位教授合作,最初包括丈夫迈耶。四十年代她与德国物理学家汉斯?詹森等分别提出“核壳层结构”的解释,她写好文章以后,听说詹森等也有文章,要求编辑等詹森的文章到一道发表。其后,她和詹森联系,继续合作,1955年共同出版“核壳层结构基本理论”一书。1963年他们共同获奖。 /p p   英国科学家、牛津大学教授朶萝西?霍奇金(Dorothy Crowfoot Hodgkin)患有类风湿关节炎,手足受严重影响。她凭着毅力,克服了病痛的折磨。1964年,她因解开青霉素和维生素B12的结构获得诺贝尔化学奖。她对中国很好,她自己是第一个解胰岛素结晶的专家,但是当她看到中国的研究结果后,向世界上热情介绍中国科学家的工作,说中国的胰岛素结晶是最漂亮的结晶,分辨率比她的还要高。霍奇金也和科学家族有关:丈夫家多年有很多科学家。祖先Thomas Hodgkin(1798-1866)于1832年发现何杰金氏淋巴瘤(Hodgkin’s lymphoma)。在她本人得化学奖奖的1964年前后几年内,家族还有两个获奖者:1963年获生理奖的英国剑桥大学教授Alan Hodgkin是她丈夫的堂兄弟,1966年获医学奖的美国洛克菲勒大学教授劳斯(Peyton Rous)是Alan Hodgkin的岳父。他们家族现在还有科学家:Alan Hodgkin的儿子Jonathan Hodgkin是剑桥大学研究线虫的发育生物学家。朶萝西?霍奇金不仅热爱科学,而且关心公益,政治左派,丈夫和老师都曾为英国共产党党员,而她也到越南抗议美国,并曾十多年担任国际科学家反战组织Pugwash的主席。 /p p   家庭对于这些女科学家不是累赘,而可以并存,或相得益彰。 /p p   strong  合作的伙伴和友好的环境 /strong /p p   女科学家和夫妻关系以外的科学家合作不如男科学家常见。这一方面可能是因为历史上男子相对长期习惯形成同盟关系,另一方面,在科学家年富力强的时期,男女之间易于碰撞出感情的火花,科研合作关系和情爱关系之间的尺度有时难以把握,对科学合作关系的影响有时是正性、有时是负性。 /p p   犹太裔英国科学家萝莎琳德?富兰克林(Rosalind Franklin)孤军奋战,而与她竞争的沃森和克里克却紧密合作。 /p p   1953年,沃森和克里克在英国《自然》杂志上发表论文《脱氧核糖核酸的结构》,提出了DNA双螺旋结构。这篇简短的文章从开头、结尾和致谢总共不到一页。但这篇划时代的文章中,有一句话意思是说,我们在做这项研究的时候,对富兰克林的研究成果只是模糊地知道一点。这句话是一个谎言,因为沃森和克里克对富兰克林的成果不是模糊的知道,而是知道的很清楚。 /p p   富兰克林1921年生于伦敦,早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。此时,人们已经知道脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它的机制还不甚了解。就在这时,富兰克林加入了研究DNA结构的行列,1951年,富兰克林受伦敦大学国王学院John Randall之聘任,与威尔金斯(Maurice Wilkins)共同进行DNA的X-光分析。富兰克林以前研究煤和其它无机物的机构,回英国后做DNA是分派的工作,并不完全清楚DNA的重要性。 /p p   富兰克林在伦敦大学国王学院成功地拍摄了DNA晶体的X射线衍射照片。她也知道碱基在里面,磷酸在外面。1954年因为发现蛋白质& amp #945 螺旋结构而获诺贝尔奖的Linus Pauling,曾在1953年提出一个DNA核酸的模型,在这个模型中,Pauling错误地认为DNA是三螺旋结构,而且碱基是在外面。沃森和克里克也曾犯同样的错误,但他们和富兰克林讨论时,富兰克林纠正了碱基在外的错误。如果她不指出碱基在内,沃森和克里克就缺乏提出碱基配对的一个非常重要基础。富兰克林后来在伦敦伯贝克学院的合作伙伴克卢格(1982年诺贝尔化学奖得主)看了她的笔记和论文打字稿,证明她独立提出DNA双螺旋结构。但是她没有提出碱基配对。 /p p   1962年,克里克、沃森和威尔金斯因为发现DNA双螺旋结构而分享了诺贝尔生理学或医学奖,而富兰克林已经在4年前因为卵巢癌而与世长辞。“如果她还活着或者诺贝尔奖早些授予双螺旋的话,获奖名单将不是克里克、沃森和威尔金斯,而是克里克、富兰克林和沃森”。 这是很多人的共识。美国作家Anne Sayre 于1975年出版的《罗莎琳德?富兰克林和DNA》一书中,全面记述了富兰克林的科学成就。 /p p   富兰克林是被人叫去做DNA结构,她没有意识到DNA的重要性,她对解DNA结构的兴趣是有的,是因为工作要好好做。而沃森知道DNA的重要性,当时老想着做了可以拿诺贝尔奖。富兰克林工作环境对她很不友好,她也没有平等的合作者,而沃森和克里克有非常紧密的合作。 /p p   诺奖对科学发现的眷顾,时间常常难预计。有人在做出成果的次年就被授予诺奖,而有人等了30甚至40年才被授予诺奖——如果科学家活得足够长,直到诺贝尔奖评委醒过来。麦克林托克是这方面的典型例证,而富兰克林是一个反例。“长寿是坚守的一种形式,对于诺贝尔奖来说,它就象别的因素一样必需” 。另外一方面,诺贝尔奖只是科学研究的副产品, 不是莎琳德?富兰克林们追求的终极目标。 /p p strong   作为科学家的女性 /strong /p p   19世纪以来,世界经历了两次女权主义运动的高潮。女权主义运动的第一次浪潮发生在19世纪下半叶到20世纪初 女权主义运动的第二次浪潮是在20世纪的60-70年代。女权主义运动挑战了传统分工。原有的分工让男性控制所有的公共领域——工作、运动、战争、政府,有时使女性成为家庭中没有报酬的工人。女性要求享有人的完整权利,挑战男女不平等关系,挑战造成女性无自主性、附属性和屈居次要地位的权力结构、法律和习俗 。20世纪后半叶, 女权主义思潮从政治运动、意识形态向文化界、学术界弥漫, 包括人文、社会科学和自然科学。女权主义也从寻找“女性在科学中相对缺席现象”的原因为起点, 对科学活动中的性别偏见进行了深入的批判。 /p p   在这一历史过程中,科学界的女性数量递增,有人崭露头角。但女科学家在迈向科学之巅的征途上,仍面临艰难险阻。在20世纪上半叶,首要的险阻是女性应固守在家庭支持男人事业的观念。幸运的是,居里、迈耶、霍奇金和富兰克林都有较为开明的父母。家庭环境为她们在科学界的脱颖而出提供了一定的条件。 /p p   在科学女性们谈婚论嫁的年龄,有人选择了婚姻,有人选择了终身以科学为伴。迈入婚姻殿堂的科学女性,有人把更多的精力放在照顾家庭方面 也有人同丈夫进行科学合作。迄今为止,夫妻携手共同摘取诺贝尔奖的例子至少有三个:居里和居里夫人、约里奥-居里夫妇、科里夫妇(Gerty and Carl Cori)。 /p p   制约女性科学家发展的另一个因素是工作场所、环境及制度。在20世纪上半叶,大多数教育和科研机构对女性的入学、工作都有性别限制,对女性予以平等对待甚至优厚待遇的机构就更少。“自由、平等和不拘礼节的交流,都是一个好场所的财富” ,在美国获得诺贝尔奖的六位女性中,四位科学家与纽约的汉特学院或者圣路易斯的华盛顿大学有关。埃里昂和雅洛是汉特大学的毕业生,捷克裔的科里夫人和意大利人蒙塔尔西尼的获奖研究都在美国圣路易斯的华盛顿大学做出。居里夫人一家创了诺贝尔奖记录,科里夫人与她丈夫在华盛顿大学医学院的实验室,一共培养了8位诺贝尔奖得主,可能创了实验室记录。著名女科学家如此不随机的分布,也许说明有一些场所的差别。 /p p   哈佛前校长劳伦斯?H?萨默斯曾把女性在科学领域成功的几率比男子低的原因归咎于男女先天的性别差异,“尽管人们更愿意相信男女表现上的不同取决于社会因素,但是,我觉得这点还需要进一步研究。”尽管他陈述的是自己的个人观点,但他以哈佛校长的身份参与到一场历时已久的话题、以经济学家的方式抛出了一个备受争议的观点,因而受到广泛关注,是他最后逼迫辞职的原因之一。男女先天性别差异是否导致在他们才能不同,是不容易明确解答的科学问题。它和社会问题交织在一起,难以分开原因和结果。对女性不平等对待、缺少机遇、缺少支持体系,使女性难以获得男性的平等机会。,在社会因素不能排除以前,谈自然因素,引起人们怀疑是否故意延续歧视女性的传统。 /p p   另外,也可以听1977年诺贝尔生理学医学奖得主耶洛在斯德哥尔摩宴会的演讲,她说,“我们不可能期待在短期的未来,所有追求的女性都将获得平等的机会。但是如果女性开始向这个目标努力,我们必须相信自己,否则其他人不会相信我们。我们必须把我们的渴望与我们获得成功的能力、勇气与决心结合起来,我们必须懂得,使那些后来的女性的道路宽松一些是我们每个人的责任。如果我们去解决困扰我们的许多问题,这个世界就不会承受人类一半智力的损失。” /p p   我们希望本文说明著名女科学家和男科学家一样,不是刻板的,而是多种多样的,她们有着各异的背景和生活,有科学才能、有一定机遇、遇到和克服了不同的问题,在科学上作出了影响人类的工作。 /p p   我们祝愿更多热爱科学的女性,突破现实中不尽人意的限制和不便,以敏锐的触角探索世界万象,使科学之花结出更多的芳香之果。 /p p style=" text-align: right "  文/贾宝余 饶毅 br/ /p p /p /p
  • 医学界那些“草菅人命”的学术造假
    一些科学家的造假只是为了名和利,其结果会导致大量学术经费的浪费,并使得从事相关研究的科学家误入歧途;另一些科学家的造假或失误所带来的伤害却要大得多,大到或许只有政治领导人的错误才能相提并论。 “高效率”的化学家 2016年4月12日,美国麻省弗拉明翰监狱,一位身材小巧、戴着厚厚眼镜的女子被释放出狱。这个消息引起了很多美国媒体的关注,科学界也议论纷纷。 这位女子的名字叫安妮杜汗,2013年入狱。她在入狱前是麻省州立犯罪实验室的化学家,在该实验室工作了10年。杜汗看起来工作极其出色,不但速度快,而且效率极高,一个人能干三四个人的工作。但是在2011年她的同事无意中发现她伪造同事的签名,于是上报。 之后的调查爆出惊天丑闻。经她手的案子大约多达4万例,而据可信的调查,其中有一半以上的检测根本就没有做过,要么是她随意捏造,要么就是篡改数据。为了维持高效准确的名声,她常常在检测出现第二次跟第一次结果不符的情况下,添加化学物(比如大麻成分),以便两次检测结果相符,而更多的时候干脆不经检测随意编造检测数据。经她的数据被定罪或者被无罪释放的人不计其数,据估计成千上万。 2012年底,她被以26项罪名起诉,最终于2013年11月被判处有期徒刑5年。今年4月因表现良好被提前假释。她检测的案子现在由州政府一件件重新检测审查。三年过去了,才审查了不到十分之一,耗资几百万美元。还不知道什么时候才能完成重新检测和审查,也许永无可能了。 一个不起眼的实验室化学工作者为了个人虚荣而造成的损害就已经如此惊人,而探索未知开发新知的科学家的造假造成的损失有时更是难以估量。 医学界的造假这些年时有耳闻。比如十年前被肿瘤学界盛赞为“伟大的突破,将拯救无数人性命”的美国杜克大学的明星科学家安尼儿珀替(Anil Potti)连续在《柳叶刀》《美国医学学会杂志》《新英格兰医学杂志》等著名医学杂志上面发表数篇文章,风光一时。但很快就被查出来他的研究全是伪造,很多实验根本就没有做,学界一时哗然。前两年日本的干细胞科学家小保方晴子的造假丑闻导致她的导师笹井芳树黯然自杀更是轰动全球。 医疗指南草菅人命 现代医学的发展早就远离了某个医生使用祖传秘方或者独门秘籍治病的时代。临床上医生们做出的每一个决定,比如术后用药、手术方式的选择,都是严格遵循各大医学专业机构定期发布的权威指南进行的。如果偏离临床实践指南而任意而为,是要负医疗差错甚至刑事责任的。 这些权威机构的医疗指南从哪里来的呢?通常的指南都是通过组织业内的权威专家定期聚会讨论和评估最新的临床研究的结果,权衡利弊,修订以前的不足,补充最新的进展,最后成为指导临床实践的权威指南。现代医学也即循证医学,是要循证据而行的。这个证据就是来自临床研究所得出的结论。而医学研究是持续进行,不断推陈出新的,这就是为什么临床指南通常过个几年就会出一版新的,大多数情况下是对前有的指南进行少量的修订和补充,但也有时候会出现大的修改甚至颠覆。 既然这些指南指导着临床医生的每日医疗实践,事关患者的生死,它的正确性和可靠性显然是极端重要的。如果临床指南所依赖的临床研究本身出了问题,比如结果出现偏差,甚至在最恶劣的情形下研究人员无心或故意造假,可想而知导致的会是怎样的灾难。 2014年1月,世界最为著名的医学学术杂志之一《欧洲心脏杂志》发表了一篇质疑文章,轰动了医学界以及世界各大媒体。文章来自英国伦敦皇家学院国立心肺研究所的两位医生科尔(Graham D. Cole)和弗朗西斯(Darrel P. Francis),题目非常有冲击力:“研究的失误会致命:临床研究是这个世界上最为危险的专业吗?” 文章很短,只有三页纸,结论却惊天动地,现摘译如下: “2011年,欧洲新版心脏病指南推荐对于大多数进行非心脏手术的病人在术前给予β 受体阻滞剂(作者注:一种用于治疗和预防心脏病的药物)。然而,这个指南是基于一组现被发现有数据造假和学术不端的临床研究文章的结论而做出的。该研究的作者所属的大学所进行的调查发现该研究的领头人涉及一系列不正确或前后矛盾的声明,所涉数据有伪造以及不可信的成分。2012年该大学的后续调查确认了其中一个被此临床指南直接引用的文章数据不严谨,有严重的偏差。欧洲心脏学会的临床指南非常倚重于此系列相关研究,因为这些研究提示在前述情况下给予患者β 受体阻滞剂能大幅度降低死亡率。然而,如果剔除这个小组的系列研究结果,剩下来的大样本大研究数据则得出相反的结论:非心脏手术的患者术前给予β 受体阻滞剂可能提高围手术期死亡率达27%。” 两位医生接着指出: “根据此版指南,整个欧洲每年进行非心脏手术后而死亡的病人数达76万之多。使用该指南小组推荐的计算方法则可推算出大约有16万不必要(因为错误指南而导致)的死亡。基于此计算,则可以估计在该指南的5年有效期间内会有80万欧洲人因错误的指南而丧命。讽刺的是,也许有很多医生因未能严格遵循指南而无意地救了很多个生命。” 科尔和弗朗西斯认为: “如果是临床医生出现失误,哪怕没有人死亡,英国的医学委员会也会进行调查。然而如果研究有误,它所带来的伤害会大得多得多,大到只有政治领导人的错误才能相提并论。过去50年世界各国因政治领导人的错误决定所导致的8个最大的人口死亡平均数是50万。也就是说,据以上估计,临床研究的错误导致的不必要死亡甚至(比政治动荡)更为严重。” 这篇文章引发了惊天巨浪,很多知名媒体争相转载。著名的《福布斯》杂志用了这样一个题目:“医学还是大屠杀?” 难以估计的损失 两天后,《欧洲心脏杂志》非常罕见地悄悄撤下了这篇文章,却没有公示撤下的理由,也没有贴出公告。当被问及原因时,杂志主编给出的解释是:“因为该文章作为学术文章在本杂志发表,也是需要通过同行评议的。最初部门主编忽视了这个必要性而将该文章轻易发表。我们认识到这一问题,现已经通知该文原作者,同时将该文送出进行同行评议。” 科尔和弗朗西斯博士在文中没有点名,但学术界都知道被他们形容为导致比大屠杀更严重的原系列文章的作者是谁——荷兰著名的心血管专家堂珀德曼(Don Poldermans)。 珀德曼是荷兰伊拉斯谟医学中心的心血管专家,长期而深刻地影响着临床医生们对于围手术期的用药选择。 珀德曼是荷兰伊拉斯谟医学中心的心血管专家,领导着一个围手术期心脏监护室,是世界知名的心血管疾病研究科学家,同时是欧洲心血管疾病协会临床指南委员会成员,以及欧洲心脏病协会任务组主席。他多年来致力于围手术期的心脏病预防和治疗的研究,发表了多达五百多篇论文。他的研究文章被广泛引用,很多研究团队的课题都是基于他们发表的研究成果,所以欧洲心血管委员会才会采用他的研究团队的研究结果来更新临床指南。 但2011年11月,伊拉斯谟医学中心发布公告,解雇了珀德曼。公告中列出的理由主要有这样几点:1.未能适当地保留和管理研究的原始资料和数据,导致进一步的调查和分析成为不可能;2.在临床研究中未能记录实际所用药物的数据;3.未能取得研究参与患者的知情同意书;4.最严重的指控是他的多项研究中出现伪造或者篡改的数据。 一篇被引用超过150次的关于围手术期心脏预防和治疗的文章认为,“研究过程的书面材料极端缺乏。涉及最终研究结论的多名研究人员的记忆出现很大的差别。比如一位成员说研究的最终结论的推导手段是基于研究大纲中预先定好的方法,但副作用评估委员会的成员却不能证实这一点;再比如关于提前终止初步研究的决策过程,调查委员会发现此决定不是由独立的安全委员会所做出的,而是由执行团队的三个成员自己决定的。” 最为严重的指控是,“珀德曼所领导的研究未能遵循现有科学标准。珀德曼在收集数据时非常草率混乱。在一个研究中,他使用了病人的数据,却未能事前获取知情同意书。他还被发现使用捏造的数据,其中两个提交到学会的研究报告含有不可靠的数据。” 珀德曼被解雇的消息一传出,全世界尤其欧洲的临床医生们除了错愕就是迷惑。珀德曼的研究文章达五百多篇,尤其是围手术期的治疗和预防,长期而深刻地影响了临床医生们对于围手术期的用药选择,几乎左右了欧洲心脏协会的临床指南的内容,甚至影响了欧洲各国对于临床医药的相关政策的制定。他的学术不端不但损害了无数从事相关研究的科学家,导致大量经费的浪费,更严重的是无数患者的健康可能因此受损。 科研人员的学术不端,或者学术造假,不仅仅是损害了科学的诚信,浪费研究经费,更严重的是错误地引导了科学技术的正确进程,使得科学进展偏离正确的轨道,以及因此带来的难以估计的损失。事发至今,珀德曼被解雇,却仍然在从事临床工作,他的文章也还没有一篇被撤稿,欧洲心脏协会也还没有出台更新的临床指南。很多事情仍然是一个谜团,比如珀德曼是故意造假,还是只是因为对手下的研究人员监管不足而导致数据出现非故意的偏差,或者如他所说只是因为太忙不够严谨而致,至今难下结论。 撤稿数量急剧上升 实际上,科研工作者们在科研过程中操纵数据、隐瞒不利的结果,或者为了期待的结论而修改原始数据等等这样的问题远比我们想象的常见和严重。 比如2009年发表在PLOS ONE上的一项研究发现,20%的科研人员承认自己捏造过数据,多达三分之一的科研人员承认有过其他的学术不端行为,比如隐瞒或剔除对最终结论不利的数据,或者为了得出更好看的结论而回过头去修改实验设计的细节,使用不适宜的研究方法,甚至为了应付研究出资机构的评估或者同行的竞争压力而修改结果。 与此同时,近些年很多著名的学术杂志在发现论文的问题后撤稿数量也急剧上升。根据2011年发表在医学伦理杂志上的一项调查文章统计,2000年学术杂志的论文撤稿的数量还仅只是个位数,而到了2010年就达到了近两百篇之多,10年间仅医学杂志数据库pubmed上能查到的撤稿数就达到了742篇。其中73.5%是因为数据的错误或者未公示的原因,26.6%是因为伪造或修改数据。另外,撤稿数与杂志的知名度成正比,杂志的知名度越高,撤稿数就越多。 虽然有些科研论文的错误的确是无意失误造成的,也的确有一些学者是抱着良好善意的目的修改数据,但科学研究最重要一点应该是:追求真实,且只追求真实。只要是人,就可能出现错误或者失误,但科研的前提条件应该是这些错误不能是故意的,不能是刻意欺骗。因为科研的造假或者错误,不仅仅是事关学术声誉,有时也事关成千上万人的健康和生命。
  • 韩春雨事件:撤稿验证科学界“自净”机制
    p   备受关注的韩春雨基因编辑论文争议事件近日有了结果,韩春雨团队在英国著名学术刊物《自然》子刊《自然?生物技术》网站上发表撤稿声明。“施普林格?自然集团”大中华区总裁安诺杰告诉新华社记者:“此次撤稿展现并证明了科研群体对于维护科学发现过程基本规律的承诺。” /p p   确实,这次撤稿首先证明了科学界的“自净”机制,也说明了媒体舆论监督的价值,以及学术研究的复杂性。 /p p   科学能够“自净” /p p   “国际科学界有‘自净’机制”,北京大学生物学家饶毅对新华社记者表达了与安诺杰相似的观点。 /p p   一项研究有了数据、形成论文并通过同行评议发表,通常意味着得到了国际科学界的初步承认。但这并不是终点,论文发表后,各国同行会根据论文中的描述来重复实验,如果不能经受这一检验,研究成果就会受到质疑。 /p p   韩春雨团队2016年5月在《自然?生物技术》上发表的关于一种新型基因编辑技术NgAgo的论文就是如此。这篇论文因其所宣称成果的重要性而引发巨大关注,各国同行纷纷跟进。但一两个月后就出现质疑,如澳大利亚国立大学的研究人员加埃唐?布尔焦在网上公开发文表示,他不能重复韩春雨论文中描述的实验,并且在与许多同行的讨论中得知他们也无法重复该实验,因此“我对NgAgo技术有严重的怀疑”。 /p p   2016年11月,《自然?生物技术》就此发表“编辑部关注”。今年初又有消息说韩春雨团队提供了新的数据,但杂志最终认定:“我们判定韩春雨及同事提供的最新数据不足以反驳大量与其初始发现相悖的证据。我们现在确信韩春雨的撤稿决定是维护已发表科研记录完整性的最好做法。” /p p   “维护已发表科研记录完整性”,正是科学界的“自净”机制。论文等科研记录是科学交流的基础,它们必须真实可靠。为了维护这一点,许多科研人员跟在“先行者”后进行没有名利的重复验证。正如《自然?生物技术》社论所说:“那些进行可重复性研究的人,其付出的努力往往得不到回报——这样的工作单调乏味,没有资金支持,还吃力不讨好。”但正是这种对真理的追求让科学不断前进。 /p p   媒体可以监督 /p p   “这显示了论文发表后的同行评议在全天候媒体时代的重要性”,《自然?生物技术》在社论中提到了这一事件中媒体的重要性。社论说,“这无疑是一篇中国去年被报道最多的论文”,开始时媒体大量报道原论文所宣称的重要成果,而质疑声出现后也很快引起媒体注意,“有关该初始报告有效性的正反两方面的声音开始交锋”。显然,媒体在这一事件中发挥了舆论监督作用。 /p p   饶毅也是网络科学媒体“知识分子”的主编,在韩春雨论文发表后,“知识分子”率先报道了论文中所宣称成果的重要性。在质疑声出现后,“知识分子”又刊登了多篇质疑的文章,保持了客观公正。 /p p   “新闻的常规是很快报道事情的重要进展,科学新闻的国际标准是请多个专家读论文后发表评论。但即使这样有时也不能判断其中的问题。好在对科学研究的判断还有时间的考验——同行的重复和验证。”饶毅说。 /p p   的确,新闻的时效性和科学验证的长期性之间存在矛盾,这就要求媒体报道时理解科学验证的特点。《自然?生物技术》社论认为:“这篇NgAgo论文也显示了社交媒体的利与弊。显然,这些平台对于迅速提醒广大科学界留意该论文可能存在的问题发挥了重要作用。但是它们也抬高了人们的预期,以为有关这篇论文的问题是直截了当,可以快速解决的。然而,关于NgAgo的各种问题是无法在几个星期或几个月内就能澄清的,这是有原因的。即使是简单的实验也需要花费数周来准备、实施、分析和解决出现的问题。” /p p   定性不应仓促 /p p   韩春雨团队在《自然?生物技术》刊登的撤稿声明是英文,《自然》方面提供的译文是:“由于科研界一直无法根据我们论文提供的实验方案重复出论文图4所示的关键结果,我们决定撤回这项研究。”不过韩春雨团队也表示:“我们会继续调查该研究缺乏可重复性的原因,以提供一个优化的实验方案。” /p p   韩春雨工作的河北科技大学也声明说,韩春雨团队一直在进行深入的实验研究工作。鉴于该论文已撤稿,学校决定启动对韩春雨该项研究成果的学术评议及相关程序。 /p p   可见,虽然论文的关键成果不能被重复导致撤稿,但各当事方还是在以学术的方式讨论这个问题,并没有仓促定性。 /p p   美国乔治城大学神经科学系教授吴建永说,许多科研人员都有过学术失误,“我个人有过多次体会,自己认为百分之百对的事,实际是错的。我没有因为学术错误被捧上天,或被批得身败名裂,都是一种幸运。” /p p   当然,如果最终调查证实这不是学术失误而是学术不端,也必然会受到相应处理。就在7月27日,中国科技部、教育部、卫生计生委、自然科学基金会、科协等机构联合公布《肿瘤生物学》107篇论文撤稿事件处理结果,其中有的研究人员被认定无过错,一些研究人员被认定不同程度存在过错并追究责任。 /p p   这正是以“实事求是”的态度处理学术问题的最好体现。 /p

剑叶血竭素相关的仪器

  • 电化学由于其在电池、燃料电池、腐蚀、合成和催化等各个领域的广泛应用而受到越来越多的关注。在电化学系统中,会发生各种复杂的过程,包括物质的吸附、解吸和扩散,表面重建,电荷转移,表面和物种之间化学键的形成或断裂以及发生在电化学界面化学反应等。因此,电化学界面的结构决定了整个电化学系统的电化学响应以及材料的性质和性能电化学的研究主要涉及电化学界面的结构、性质和性能之间的内在关系,以促进电化学设备的合理设计。电化学表征技术主要基于电信号的测量,包括电流和电势,这些方法可以根据电化学理论分析电信号来获得丰富的信息,包括界面性质的热力学和动力学信息、表面上反应物的数量以及电极的反应性。然而,由于反应物的化学指纹信息缺乏,很难在没有经验的情况下确定化学结构。另外,从整个电极表面的响应测量得到的电信号,是针对整个电极的,对于非均匀电极的结构和性能无法进行研究。因此,需要开发具有丰富化学信息和高空间分辨率(低至几个纳米)的原位表征方法,以全面了解电化学界面和过程。 电化学-针尖增强拉曼光谱( EC-TERS)是一种具有纳米尺度空间分辨率分子指纹信息的技术,可以用于实现上述目标。 EC-TERS联用优势● 分子水平的一致性:拉曼光谱可以提供分子水平的信息,可以检测到电化学界面上的单个分子。这使得我们能够研究电化学反应的瞬间变化。● 高空间分辨率:通过使用针尖增强拉曼光谱(TERS)技术,可以在纳米探针上实现高空间分辨率。这使得我们能够研究界面的局部结构。● 可以在液体环境下工作:拉曼光谱可以在液体环境下进行测量,这对于研究电化学修饰过程非常重要。传统的电化学表征技术通常需要在干燥的条件下进行测量,而拉曼光谱可以在多孔溶液中直接进行测量。● 化学指纹信息:拉曼光谱可以提供化学指纹信息,通过分析拉曼光谱的峰位和强度,可以研究反应的中间体、吸附物和反应产物。● 非破坏性测量:拉曼光谱是一种非破坏性测量技术,不需要对样品进行特殊处理或标记。这使得我们能够对电化学界面进行实时监测。EC-TERS方案电化学-针尖增强拉曼光谱测试系统系统采用倒置显微镜结构,底部激发,底部拉曼信号收集。兼容常规拉曼测试、常规电化学拉曼测试,针尖增强拉曼测试。电化学池位于XY压电位移台上,可以进行纳米级的步进移动; 探针链接XYZ压电位移台,可进行三维精细调节;从而实现探针-激光-样品三位一体。 电化学-针尖增强拉曼光谱测试系统技术参数 光谱分辨率2cm-1激发光源532nm激光器,100mW633nm激光器,15mW光谱仪焦距320mm,配置3块光栅探测器≥2000*256像素,300-1000nm响应,峰值效率高于90%,芯片深度制冷到-60℃常规拉曼空间分辨率1um@XY方向
    留言咨询
  • 光学界面流变系统两块平行板提供剪切力,获取从流体到固体的流变数据,放置在倒置显微镜上使用。请通过我们的联系我们!应用:结晶、诱导取向、凝胶动力学、流动行为与成像、松弛、成分间相互作用、悬浮体稳定性、界面行为、胶体凝聚等。平行板间隙宽度0,01 to 5 mm应变率0.01 to 640剪切速率0,01 to 1 000 s -1频率0,01 to 10 Hz温度10 to 80 °C控温速度0 to 15 °C.min-1兼容任何倒置显微镜工作模式连续,应变跳跃,震动售后服务相关视频资料下载快速询价 请 登录 或 注册在线询价 (请留下您的联系方式,以便供应商联系您)* 姓  名:* 地  区: 请选择省份 北京 上海 广东 江苏 浙江 山东 湖北 河南 福建 四川 河北 湖南 辽宁 陕西 安徽 重庆 黑龙江 吉林 江西 天津 广西 山西 内蒙古 甘肃 贵州 新疆 云南 宁夏 海南 青海 西藏 港澳台 海外 其它 单  位:职  位:* 手机/电话:* E-mail:请寄产品资料: 需要 不需要请报价格: 需要报价 不需要报价留  言:验证码: 换一张 我希望获得多家供应商报价发表评论在线评论(0条)更多相关新闻安东帕新品COBRIX2600在线分析设备即将全球同步发布安东帕SAXSpoint散射仪落户欧洲生物医学技术中心Nicoya双通道LSPR分子相互用分析仪重磅上市!安东帕科研奖正式成立,助力仪器分析和表征科研项目安东帕子公司康塔质量管理体系成功通过ISO 9001认证中国生物器材网招聘编辑,客服人员Molecular Devices在细胞系大会展现新品牌ForteBioTA仪器2018流变学原理与前沿应用大师课程圆满结束更多相关文章为什么要选择番茄酱流动式粘度计?如何用QCM-D测量薄膜的膨胀单分子技术最新进展小鼠(Mouse)去甲肾上腺素(NE)ELISA检测试剂盒使用说明称,以知轻重也——奥豪斯工业衡器的应用麻雀虽小,五脏俱全——奥豪斯与电池世界的不解之缘分析氧弹热量计(量热仪)检定结果不准确的因素中药的水分的快速测定程序(红外)更多浏览该公司同类产品耗散型开放式石英晶体微天平分析仪QCM椭偏实时成像分子相互作用仪zeta电位仪-视频跟踪法更多浏览其他公司同类产品Biacore X100全自动科研系统生物分子相互作用分析系统MA水份仪Lumicks高通量分子操控分析仪(声镊)液体动态表面张力测试仪您最近浏览过的产品耗散型开放式石英晶体微天平分析仪QCMLB膜仪-卷对卷式光学界面流变系统微量注射泵聚合物单分子层沉积系统MLDzeta电位仪-视频跟踪法Dipcoater浸渍镀膜机多功能扫描探针显微镜关于我们 | 法律声明 | 广告报价 | English | 网站地图Copyright
    留言咨询
  • 一.叶绿素检测仪 来因科技植物叶绿素检测仪用途:叶绿素测定仪根据叶绿素光谱吸收规律,采用两种不同的发光管照射叶片,通过测量透过叶片的光的强度计算出叶片内的叶绿素相对含量或者绿色程度,从而为合理、适当、及时施肥提供可靠的科学依据,广泛应用于农业、林业、植物等科学研究和生产指导。二.叶绿素检测仪 来因科技植物叶绿素检测仪技术指标1.测量范围:0.0-99.99SPAD2.测量面积:2mm*3mm3.测量精度:±1.0 SPAD单位以内 (室温下,SPAD值介于0-50)4.重复性:±0.3 SPAD单位以内 (SPAD值介于0-50)5.叶绿素检测仪 来因科技植物叶绿素检测仪测量时间间隔:小于0.8秒6.数据存储:16GB 可根据用户需求进行分组存储7.电源:4.2V可充电锂电池8.电池容量:3000mah9.重量:230g10.工作及存储环境:-10℃~50℃ ≤85%相对湿度三.叶绿素检测仪 来因科技植物叶绿素检测仪功能特点1.快速无损植物活体检测,测量时只需将叶片插入即可,不需要采摘叶片,不影响作物正常生长,可以在作物生长过程中全程对叶片进行监测,从而得到更科学的分析结果2.测量精度高(精度:± 1.0 SPAD,重复性:±0.3 SPAD)3.16GB大存储空间,数据可进行分组存储、查看、导出4.多功能USB接口,可实现数据导出与充电功能,可将仪器与电脑直接联机,数据导出无需上位机软件,还可选择使用内存卡直接导出数据,操作简单方便5.数据浏览:可在仪器上随时浏览测量的数据以及可任意删除异常数据6.叶绿素检测仪 来因科技植物叶绿素检测仪高对比度LCD显示屏,强光下也可清晰显示数据7.低功耗模式设计,内置大容量锂离子充电电池,具有防过充功能,节能环保并方便进行户外操作8.内置中英文双语显示,一键切换,无缝对接9.标准配置: 主机、充电器、USB数据线、内存卡、读卡器、便携铝箱,合格证、说明书等
    留言咨询

剑叶血竭素相关的耗材

  • 茶叶中黄曲霉毒素检测专用柱
    货号产品名称规格描述AN60F021茶叶中黄曲霉毒素检测专用柱 Anavo AFT-IV SPE, 6mL, 30/PK
  • 三菱化学精细分离填料DIAION® HP20SS
    绿百草科技现货提供HP20SS,HP20SS是HP20直接聚合成小粒度的品种,粒度分布在75~150&mu m。化学结构及其物理结构都和HP20相同。在制备与制程规划上,HP20SS这种宽孔聚合基体对于小的生化分子具有良好的动力学和吸附容量。进样时,HP20SS表现良好的平衡压力与色谱分离,对多种小生化分子也提供在SMB方面的应用。 等级名称DIAION® HP20SS 化学构造 外观密度(G/L) 680 水含量(%) 55-65 粒度大小 在150&mu m 15% max. 150-63&mu m 70% min. 至63&mu m 20% max. DIAION® HP20SS的应用 HP20SS用于对显色络合物的固相萃取根据2-(2-喹啉偶氮)-5-二乙氨基苯胺(QADEAA)与钯的显色反应及HP20SS反相固相萃取小柱对显色络合物的固相萃取,建立了一种测定痕量钯的方法。 HP20SS用于天然结合雌激素的纯化利用HP20SS对孕马尿中获取的结合雌激素提取物及除结合雌激素外的其它成分进行分离纯化及结构鉴定,对所分离的化合物进行含量测定,并对孕马尿提取物生产工艺过程中的各中间体以及经HP20SS柱分离纯化后的孕马尿提取物进行成分监测。 HP20SS对含羞草成分进行分离纯化利用Diaion HP-20、Toyopearl HW-40、HP20SS、Sephadex LH-20、RP18及硅胶等柱色谱法对海南含羞草成分进行分离纯化.根据理化性质和波谱方法(1H-NMR、13C-NMR、1H-1H COSY、HSQC、HMBC、ESI-MS、IR等)鉴定化合物的结构。 HP20SS分离国产血竭中的化学成分用甲醇提取,Sephadex LH-20、HP20SS和硅胶柱色谱分离国产商品血竭中的化学成分,用现代波谱方法进行结构鉴定。 HP20SS对猕猴桃中多酚类物质的纯化以中华猕猴桃为原料,采用有机溶剂浸提法提取、柱层析法分离纯化其中的多酚类物质。
  • PriboFast 叶酸/维生素B9酶联免疫检测试剂盒
    1、产品简介产品名称:PriboFast® 叶酸/维生素B9酶联免疫检测试剂盒英文名称:PriboFast® Folic Acid/Vitamin B9 ELISA Kit产品编号:EKT-103规格:48/96T 人体中不能产生足够的维生素,食品摄入是人体获取维生素的主要渠道。食品生产加工过程中维生素的添加是否遵守了法律规定,申报的维生素含量是否确实适量的存在于食品中,市食品安全邻域布克花似的环节。普瑞邦能够提供维生素免疫亲和柱,酶联免疫试剂盒,标准品,维生素纯化与快检产品。Pribolab公司采用先进的单克隆抗体免疫技术开发出了维生素检测免疫亲和柱和免疫试剂盒产品,具有以下特点:&bull 采用高特异性和高亲和力的的单克隆抗体;&bull 检测限符合国内限量标准;&bull 良好的稳定性和可靠性,回收率达到90%; &bull 稳定性:18个月;&bull 可用于食品 保健品中等各种复杂基质的产品中维生素检测。2、普瑞邦产品维生素免疫亲和柱产品维生素免疫亲和柱产品PriboFast® 肝素(乳铁蛋白)免疫亲和柱PriboFast® Heparin Immunoaffinity ColumnPriboFast® 维生素B12/钴胺素免疫亲和柱PriboFast® Vitamin B12/Cobalamin Immunoaffinity ColumnPriboFast® 生物素/维生素B7免疫亲和柱PriboFast® Biotin/Vitamin B7 Immunoaffinity PriboFast® 叶酸/维生素B9免疫亲和柱PriboFast® Folic Acid/Vitamin B9 Immunoaffinity Colum维维生素固体标准品产品维生素固体标准品产品Pribolab® 叶酸/维生素B9Pribolab® Folic Acid/Vitamin B9Pribolab® U-[13C7]-维生素B12(Vitamin B12)-1 µ g/mL /甲醇Pribolab® U-[13C7]-Vitamin B12-1µ g/mL - MethanolPribolab® D-生物素/维生素B7Pribolab® D-Biotin/Vitamin B7Pribolab® 10ug U-[13C5]-生物素(Biotin)-干态Pribolab® U-[13C5]-Biotin-10ug - dried downPribolab® 维生素B12/钴胺素Pribolab® Vitamin B12/CobalaminPribolab® U-[13C5]-维生素B9(Vitamin B9)-10µ g/mL /5‰氨水Pribolab® U-[13C5]-Vitamin B9-10µ g/mL /5‰ AmmoniaPribolab® U-[13C5,15N]-维生素B9(Vitamin B9)-10µ g/mL /5‰氨水Pribolab® U-[13C5,15N]-Vitamin B9-10µ g/mL /5‰ Ammonia维生素试剂盒产品维生素试剂盒产品PriboFast® 维生素B12/钴胺素酶联免疫检测试剂盒PriboFast® Vitamin B12/Cobalamin ELISA KitPriboFast® 维生素B7/生物素酶联免疫检测试剂盒PriboFast® Vitamin B7/Biotin ELISA KitPriboFast® 叶酸/维生素B9酶联免疫检测试剂盒PriboFast® Folic Acid/Vitamin B9 ELISA Kit 3、关于普瑞邦 普瑞邦(Pribolab)专注于食品检测产品的研发与应用,以认证认可的检测实验室为技术依托,先后建立四个专业性技术研发与产品应用平台,产品覆盖真菌毒素、蓝藻/海洋毒素、食品过敏原、转基因、酶法食品分析、维生素、违禁添加物等领域。尤其在生物毒素类标准品、稳定同位素内标(13C,15N)、免疫亲和柱、多功能净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品在不同行业得到广泛应用和认可。 Pribolab始终以持续创新的态度,致力于食品安全每一天!

剑叶血竭素相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制