钆镓石榴石

仪器信息网钆镓石榴石专题为您提供2024年最新钆镓石榴石价格报价、厂家品牌的相关信息, 包括钆镓石榴石参数、型号等,不管是国产,还是进口品牌的钆镓石榴石您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钆镓石榴石相关的耗材配件、试剂标物,还有钆镓石榴石相关的最新资讯、资料,以及钆镓石榴石相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

钆镓石榴石相关的资料

钆镓石榴石相关的论坛

  • 石榴石铁氧体晶体结构

    石榴石铁氧体晶体结构

    石榴石晶体结构是由氧离子堆积而成,金属离子位于其间隙中。对于单位晶胞而言,间隙位置可分为以下三种:1.由4个氧离子所包围的四面体位(d位)有24个(也称24d位),被Fe3+离子占据。2.由6个氧离子所包围的八面体位(a位)有16个(也称16a位),被Fe3+离子占据。3.由8个氧离子所包围的十二面体位(c位)有24个(也称24c位),被Y3+或R3+离子占据。请问四面体有24个,八面体有16个,十二面体有24个是如何查出来的,谢谢!

  • YAG样品消解

    [color=#333333]YAG(钇铝石榴石,[/color][color=#333333]化学式为Y3Al5O12,是由Y2O3和Al2O3反应生成的一种复合氧化物,属立方晶系,具有石榴石结构[/color][color=#333333])材质的样品怎么消解,大家有做过的吗,有人用热的磷酸消解,我直接加3ML到0.1g样品中,180度,没有反应。大家有没有好的消解方法,欢迎讨论。[/color]

  • 【求助】标准石榴石XRD衍射峰

    在做一个微晶玻璃的课题,已经作了基本的XRD图谱出来,但是测试的地方无机材料的标准卡很少。现在需要寻找YAG(Y3Al5O12)的晶相,不知道有没有什么软件可以查到标准图谱的?或者哪位高人有相应数据?可以用来对比看看是否出现了这个晶相。

钆镓石榴石相关的方案

  • 拉曼光谱检测合浦九只岭东汉墓出土的石榴石珠饰
    2018年,距合浦汉墓群发现60多年后,上海光学精密机械研究所科技考古中心的李青会老师以及他的同事们,采用LabRAM XploRA型共聚焦显微拉曼光谱仪,对合浦九只岭东汉墓出土的一批石榴石再次进行了测试,测试结果与标准拉曼谱图库进行比对。
  • 利用拉曼和LIBS技术分析宝石特性
    我们分析了来自多个产地的石榴石样品,发现不同产地的石榴石具有明显差异。为什么来自巴基斯坦的样品在近红外中的吸收比其他样品低?为什么来自巴西的样品是深红色,而另外两颗看起来更像琥珀色?是什么导致了三者的拉曼光谱有些许不同?为此,我们测量了石榴石的拉曼光谱,并利用LIBS分析不同石榴石之间的原子结构差异。
  • 石榴汁的掺假检测
    石榴汁中丰富的抗氧化剂使石榴汁逐渐走向消费主流。混合的石榴汁,例如添加了苹果汁和葡萄汁,可以减轻苦味,使其整体味道更易于被刚开始喝石榴汁的人接受。混合石榴汁的成本更低于纯石榴汁。问题在于,有时候石榴汁中添加了低成本的果汁,但是在标签上没有注明。因此,检测出掺假的石榴汁依然很重要。本研究表明,使用DSA/MS检测技术和紫外-可见光谱筛查技术,检查果汁质量不再困难、耗时和昂贵。对于确保进口食品和饮料的安全与真实,上述检测技术是非常重要的。将这些检测技术和溯源软件结合起来,不仅可以从原产地开始追踪产品,也可以快速电子化确认这些产品所经过的测试,最终避免产品掺假等违法行为,使检测技术成为预防方法。

钆镓石榴石相关的资讯

  • 科学仪器为古文物正名,证实千年前海上丝绸路
    导 语在中国历史悠久的文化传统中,玉文化备受推崇,宝石类较少使用,目前还没有发现汉代及之前有开采和使用绿柱石的证据,绿柱石类的珠饰品主要经过陆上或者海上丝绸之路由海外传入。南临北部湾的广西合浦,在1988年发掘的汉代古墓中,出土了一批宝石珠饰类文物,以前缺乏检测仪器,该批宝石珠饰一直被认为是水晶。直到20多年后,使用拉曼光谱、X射线荧光光谱仪等现代科学仪器,无损检测该批文物69颗宝石珠饰,鉴定其中28颗为水晶、36颗为绿柱石(海蓝宝石、透绿宝石等)、其余为铁铝石榴石、钾硅酸盐玻璃等。合浦古墓出土文物由“水晶”正名为“绿柱石”,赋予了文物特定的历史意义,证实在2200多年之前,作为古代海上丝绸之路沿途的合浦,与海外有着繁荣的贸易往来。 图1 合浦汉代古墓出土珠饰类文物(图片来自于网络) 宝石外观的绚丽多彩性宝石种类繁多,以其绚丽多彩的外观获得人们的喜爱,如四大宝石之一的祖母绿属于绿柱石种类。绿柱石是一个色彩丰富的宝石品种,有浅蓝色的海蓝宝、绿色的祖母绿、粉色的摩根石、无色的透绿柱石等。水晶也多具有绚丽的外观和多变的色彩,包含有无色、粉色、紫色、黄色,茶色等,外观色彩与绿柱石极为相似,为绿柱石的相似宝石。其他种类和绿柱石相似的宝石还有石榴石、碧玺、尖晶石、沙弗莱、玻璃、合成宝石等。 图2 海蓝宝石珠饰 (汉代) 图3 祖母绿表 (斯图亚特王朝) 图4 摩根石(1911年马达加斯加首次发现) 图5 水晶石蝉(战汉时期) 图6 石榴石发簪(维多利亚时期) 图7 合成海蓝宝石(现代) EDX-7000揭开宝石成分的秘密宝石都具有绚丽的外观,不同宝石的组成元素等却各不相同,宝石外观色彩与其含有的微量元素有关。岛津EDX-7000能量色散型X射线荧光分析仪,可以快速无损分析宝石成分。本文以绿柱石及其相似宝石等6种样品的成分检测,重现文物珠饰等宝石的成分分析鉴定过程,揭开宝石的组成成分秘密。 图8 EDX-7000能量色散型X射线荧光分析仪 l 新型硅漂移检测器(SDD),更高灵敏度、更高分辨率、更快分析速度;l 高清晰度COMS摄像系统,多种准直器的选择,适用于样品选择指定区域定位分析;l 完善的FP法分析软件,应用于样品的成分分析,可以对宝石成分进行无损分析;l 元素分析范围:13Al-92U(大气)、11Na-92U(真空)。 EDX分析绿柱石成分宝石中的组成元素多以氧化物存在,EDX分析结果中以氧化物形式表征组成元素。绿柱石为铍铝硅酸盐矿物,基本化学式为Be3Al2(Si2O6)3,组成物质理论含量为SiO267.07%、Al2O318.97%、BeO 13.96%。自然界出产的宝石成分可能与理论值略存在差异。天然纯净的绿柱石是无色透明的,绿柱石中的Be、Al可被不同元素所替代,替代元素的存在产生了多种不同颜色绿柱石,常见有无色、绿色、黄色、浅橙色、粉色、红色、蓝色、棕色、黑色等。绿柱石类宝石的颜色及其致色离子是宝石研究及鉴定的重要项目指标。如透绿柱石不含致色元素;祖母绿由Cr3+或者是Cr3+、V3+共同致色形成,祖母绿中含有Fe3+对颜色起到微调作用;海蓝宝主要由Fe2+和Fe3+之间价态的转换造成的;摩根石的粉色调是由于存在的Mn2+和Cs、Rb所导致。 图9 海蓝宝石 图10 祖母绿 图11 摩根石 图12 合成祖母绿 表1 EDX分析绿柱石成分 绿柱石分析结果显示主要组成元素为SiO2、Al2O3及其微量元素组成,Be不在EDX的元素检测范围内,Be元素的量依据理论值固定。天然绿柱石中多见含有Rb、Ga元素,除主要组成元素外,海蓝宝石中检出Fe等微量致色元素。天然祖母绿中含有Rb、Ga,同时检出微量Cr、V等主要致色元素。摩根石(粉色绿柱石)含有Rb、Ga,同时检出微量Cs、Mn等致色元素。合成祖母绿中缺失Rb、Ga元素,含有致色元素Cr、V,同时可见含有元素Cl、Cl在天然绿柱石中没有检出,Cl元素为水热法合成绿柱石的特征。 EDX分析铁铝榴石成分铁铝榴石通常呈暗红色至棕红色的半透明状晶体,基本化学式为Fe3Al2(SiO4)3,组成物质的理论含量为Fe2O3 43.30%、Al2O3 20.49%、SiO2 36.21%。常见的颜色以红色色调为主,包括褐红色、粉红、橙红等,其色彩与所含的Fe、Mn、Cr等金属元素有关系。铁铝榴石中Fe2O3、Al2O3、SiO2含量接近理论值(表2),铁铝榴石成分明显区别于绿柱石。 图13 石榴石 表2 EDX分析铁铝石榴石成分 EDX分析水晶石成分水晶的主要化学成份是SiO2,纯净时形成无色透明的晶体,当含微量元素Al、Fe等金属元素时可呈现粉色、紫色、黄色,茶色等。水晶石主要由SiO2元素组成(表3),水晶石成分明显区别于绿柱石。 图14 水晶石 表3 EDX分析水晶石成分 总结文物宝石纵使穿越千年,现代仪器仍能识别真身。利用岛津EDX-7000能量色散型X射线荧光光谱仪分析宝石成分,可以快速得到样品的组成结果,依据成分信息从相似宝石、合成宝石中进行筛选区分。依据组成的微量元素,宝石色彩外观,判定致色元素,初步筛选区分宝石种类。可结合宝石其他项目的检查结果,对宝石进行综合判定,适用于绿柱石等宝石分析鉴定的辅助分析。
  • 我国中子散射技术旗帜人物、物理学家章综院士病逝,享年90岁
    p   中国科学院院士、著名物理学家、中国科学院物理研究所研究员章综,因病医治无效,于8月27日在京逝世,享年90岁。章综是我国第一代从事中子散射技术和应用研究的旗帜人物, 80年代主要从事科研管理工作,同时担任中法合作在我国建造三台中子散射谱仪的中方负责人,近几年仍在关注着我国散裂中子源的建造和有关中子散射方面的研究工作。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 412px " src=" https://img1.17img.cn/17img/images/201908/uepic/e5a67efd-7db8-4b97-99ef-a35570a2efcc.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 300" height=" 412" border=" 0" vspace=" 0" / /p p   章综是我国中子散射科学研究领域的主要奠基人之一,长期从事磁学与磁性材料和中子散射方法学等交叉前沿领域的研究,领导和推动了我国散裂中子源的建设,为我国中子科学和中子技术的发展做出了卓越的贡献,于1978年获得中国科学院重大科技成果奖和全国科学大会奖。科研之外,章综也十分关心科普,并主编了两本科普图书《我们生活在磁的世界里——物质的磁性和应用》《触摸无形的物质之网》。 /p p   1929年5月16日,章综出生在江苏宜兴。1948年7月,他从重庆南开中学毕业后,考入国立中央大学(1949年更名为南京大学)理学院物理系。4年后,章综从南京大学物理系毕业,进入中国科学院物理研究所并一直在该所工作。 /p p   入所后,章综在陆学善等的指导下做科研。 1957年左右,他用以X射线粉末衍射为主的方法对Al-Cu-Ni三元合金系的部分相图进行研究,解决了长期遗留下来的τ相晶体结构变迁问题,首次发现了单相区内晶体结构可按一定规律变化的现象,修正了“一个单相区只能有一种晶体结构”的传统观念,并于1957年将研究成果《铝-铜-镍三元合金系中τ相的晶体结构变迁》一文发表在《物理学报》和《中国科学》(英文版)上,该成果后来多次被晶体化学和物理学方面的研究者引用。 此外,他还研究了单晶和多晶体石榴石型铁氧体的软磁特性及其机理,成功研制了当时具有最高起始磁导率的多晶石榴石型铁氧体,阐明了变价铁离子间的电子扩散过程对石榴石型铁氧体射频磁谱的影响。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/e3a57fb9-9ff8-41e1-9553-295a340ccbba.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 1957年章综(左二)与陆学善等在工作 /p p   1959年,章综前往苏联科学院半导体研究所铁氧体、铁电体实验室进修,学习苏联在软磁铁氧体领域的先进经验。3年后,他学成归来,回到中科院物理所,进入磁学室工作并担任软磁铁氧体组组长,继续软磁铁氧体的研究,主要研究方向为软磁铁氧体材料和变价离子对镍锌铁氧体的磁导率及磁后效的影响。 /p p   70年代,章综先后完成了几项具有特殊用途的小型接收天线的任务。1978年,他担任中国科学院物理研究所负责人、副所长,并于同年晋升为研究员。两年后,章综当选为中国科学院数学物理学部学部委员,年仅51岁的他成为中科院院士。 /p p   80年代起,由于现实需要,章综的工作发生了变化,开始从科学研究转到科研管理方面。1982年,章综出任中国科学院数学物理学部副主任,两年后担任主任。这时候,章综不仅要负责中科院数学物理学部的行政工作以及其他科研管理工作,同时还是中法合作在中国建造三台中子散射谱仪的中方负责人,并担任中子散射组组长。身兼数职的章综,尽管科研管理工作十分繁忙,但他的目光始终注视着中国散裂中子科学的发展方向,时刻关注着我国散裂中子源的建造和有关中子散射的研究进展。 /p p   这一期间,作为中法合作项目的主要负责人,章综还在原子能院研制建成了中子三轴谱仪、中子四圆衍射仪和中子小角散射谱仪,填补了我国在这方面的空白。该成果获1985年中国科学院科技进步二等奖。 /p p   进入21世纪后,章综开始积极倡导并推动中国散裂中子源的立项和建设,领导物理所中子科学团队开展散裂中子源靶站和谱仪的设计研究。 2001年,他参加了香山科学会议和数理学部“散裂中子源”院士咨询会议 2004年,又参加了中国散裂中子源(CSNS)概念设计结题验收会。 也是从2004年开始,章综筹划召开了多年的散裂中子源多学科应用研讨会,亲自设计各种专题报告内容和打电话邀请相关专家学者,该会议现已发展成为我国中子散射界的全国中子散射学术年会。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 275px " src=" https://img1.17img.cn/17img/images/201908/uepic/c4fe63a7-d86a-4421-af31-391646d07ceb.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 275" border=" 0" vspace=" 0" / /p p   2011年10月20日,章综参加中国散裂中子源工程奠基仪式 /p p   2011年10月20日,章综亲自到广东东莞参加中国散裂中子源工程的奠基仪式,而这时候他已经82岁高龄了。 /p p   去年8月,我国重大科学装置中国散裂中子源工程顺利通过国家的验收,我国中子科学再添大国重器,如虎添翼,章综奋斗了40年的目标终于在生命的最后一年实现了! /p p   他一生埋首科研,几乎没有接受过采访,桃李虽不言,下自成蹊。章先生千古,我们永远铭记! /p
  • Science 和 Nature 子刊连续发文!TESCAN 综合矿物分析仪助力固体地球科学前沿问题研究
    近期,北京大学地球与空间科学学院许成研究员、张立飞教授和费英伟教授联合团队合作发现来自地幔过渡带(深约400公里处)的超高压矿物和古元古代现代板块构造的岩石学证据,在地球深部物质组成和板块构造启动时限等科学问题上取得了重大突破,研究成果相继发表于权威科学期刊Science Advances(2017年)和Nature Communications(2018年)上。其中一些重要的矿物学和岩相学工作是由捷克孟德尔大学宋文磊博士和Jind?ich Kynicky博士与TESCAN总部应用部门(位于捷克布尔诺)使用TESCAN综合矿物分析仪(TIMA)合作完成。 地球内部的结构组成和板块构造运动的起始是当今固体地球科学研究最前沿、最具挑战地球内部的结构组成和板块构造运动的起始是当今固体地球科学研究最前沿、最具挑战性的关键科学问题。俗话说,上天不易,入地更难。人类对于地球内部的了解还非常有限,固体地球的半径达 6400 公里,而目前人工钻探最深仅到 12 公里。科学家只能通过出露于地表的岩石或深部岩浆携带的捕虏体来推测地球的深部物质组成。 (图片来源于网络)板块构造是地球区别于其它太阳系类地行星的主要特征,它不仅影响着地幔的组成和演化,而且还控制着地球的水圈和大气圈,对地球上生命的起源具有重大意义,然而对现今板块构造启动的时间和机制的认识仍然存在很大分歧。近期,北京大学地球与空间科学学院许成研究员、张立飞教授和费英伟教授联合团队合作发现来自地幔过渡带(深约 400 公里处)的超高压矿物和古元古代现代板块构造的岩石学证据,在地球深部物质组成和板块构造启动时限等科学问题上取得了重大突破。研究的成果相继发表于权威科学期刊 Science Advances(2017年)和Nature Communications(2018年)上。其中一些重要的矿物学和岩相学工作都是使用TESCAN综合矿物分析仪(TIMA)完成,文中也对TIMA分析方法进行了具体解读。 △ 研究成果发表在 Science Advances (2017年) △ 研究成果发表在 Nature Communications (2018年)许成团队首次在我国华北克拉通中北部的内蒙古丰镇和河北怀安一带的幔源火成碳酸岩内发现了极少量的厘米级榴辉岩捕虏体(许成等,2018)。榴辉岩(由俯冲板块在深俯冲过程中遭受超高压变质作用形成)主要由绿辉石和石榴石组成,其次为蓝晶石、石英、帘石、多硅白云母和角闪石等。通过各种矿物温压计和 THERMOCALC 程序计算获得其峰期矿物组合石榴石+绿辉石+蓝晶石位于 2.5-2.8 GPa和 650-670℃ 的稳定范围,对应 250 (±15)℃ GPa-1 的低温古俯冲带地热梯度。 △ 图 1:TIMA 解离分析碳酸岩内榴辉岩捕虏体及其矿物组成(修改自许成等,2018)石榴石内独居石 U-Pb 定年确定其变质峰期年龄为 18.4 亿年,这是迄今为止记录的最“冷”的古元古代俯冲带中低温高压变质作用。“冷”的深俯冲作用很可能在古元古代非常普遍,但全球的低温记录很容易被后来陆内碰撞所产生的高温变质作用覆盖。板块构造何时启动一直存在争论,其主要原因在于缺少岩石学证据。该发现提供了直接的岩石学证据表明古元古代存在现代板块深俯冲。这些碳酸岩的地球化学特征显示其地幔源区含有俯冲的地壳物质,进一步表明地球早期已存在地壳物质深俯冲进入地幔,从而导致地幔深部碳循环。此外,科研团队还在这些榴辉岩的石榴石内发现了超硅石榴石(超高压矿物,主要在深源金刚石或者陨石冲击坑中有零星发现)包体(许成等,2017),分析显示该矿物具有高的三价铁 Fe3+(Fe3+/全Fe~0.87),远高于目前金刚石内发现的超硅石榴石(Fe3+/全Fe △ 图 2:TIMA拍摄的榴辉岩捕虏体中的超硅石榴石(Maj):图 (A) 为石榴石(Grt-II)中超硅石榴石包体的背散射图;图 (B) 显示超硅石榴石包体的铁和铝含量明显高于赋存矿物石榴石(引自许成等,2017) 高温高压合成实验标定其形成压力为14GPa,起源于地幔过渡带(400公里)。该发现为碳酸岩岩浆起源于地幔过渡带提供了直接的矿物学证据,同时异常富三价 Fe 超硅石榴石说明地幔过渡带存在局部富氧成分,这与俯冲地壳物质相关。这一发现对人们认识深部地幔的物质组成和演化具有非常重要的意义。 上述成果中 TIMA 分析工作(图1和图2)是由捷克孟德尔大学的宋文磊博士与 Jind?ich Kynicky 博士和 TESCAN 扫描电镜公司总部(捷克布尔诺)TIMA 应用部门合作完成。由于捕虏体结构复杂、矿物类型多样、颗粒繁多且大小不等(毫米至微米级),有时与寄主岩石和矿物在结构和成分上差别并不显著,因而普通光学显微镜、扫描电镜、激光拉曼和电子探针等分析仪器对于寻找和识别这些包含在捕虏体中且非常稀少的来自地球深部的(高压)矿物效果并不明显,研究过程相当耗时且仅限于对局部的观察,极易遗漏重要信息。全球著名扫描电镜公司 TESCAN 的综合矿物分析仪(TIMA,图4)可以很好的解决以上问题。该仪器是利用扫描电镜的岩石矿物自动定量化分析系统,具有将电镜和能谱高度集成的独特技术,能进行极高分辨率的 BSE 与 EDX 快速全谱成像和大范围面扫描自动拼接功能,可以完成对整个样品的快速、准确的多元素面扫描;其配备的矿物处理专业软件可以辅助分析扫描结果,实现各种矿物相的快速鉴定、分布模式、含量测算以及自定义矿物寻找功能,避免相似结构和成分的分析误差,揭示样品的整体形态、矿物含量、结构构造和矿物共生组合特征。对于以上研究样品量很少的榴辉岩,通过其各矿物含量估算的有效全岩成分将提高变质岩视剖面图温压计的可靠性,同时还可以查明矿物相内部和不同矿物相之间的显微结构关系以及对含量很少(如用于准确定年的锆石和独居石)或未知矿物的辨别,从而获取捕虏体的起源和演化的关键信息。 △ 图 4:TESCAN 综合矿物分析仪(TIMA) 上述科研成果表明,固体地球科学的研究越来越侧重于地质样品的微观结构、精细矿物学和微区原位分析测试。TIMA 对矿物的结构分析和定量解析达到微米的尺度,相对于传统光学显微镜和扫描电镜具有非常大的优势。TIMA 可以对岩芯、岩屑、岩石、矿石、精矿、尾矿、浸出渣或冶炼产品等进行快速定量矿物分析,能有效识别岩石类型,测量矿物种类和分布、颗粒大小、解离或锁定各种参数。此外,还提供亮相搜索模块,可以快速准确鉴定出铂族金属、金银矿和稀土元素。TIMA 已广泛应用于地质、石油、矿业和冶金等领域。目前,北京大学和中南大学今年已经引进了 TESCAN TIMA 综合矿物分析仪,目前设备正在安装调试中,期待 TIMA 用户做出更多重要的研究成果!

钆镓石榴石相关的仪器

  • PowerLyzer 24是一款设计独特的基于珠磨研磨原理的高效彻底破碎各类生物样本的均质裂解仪。它可在短短30秒内,同时处理24个2ml样品管,坚固样本通过循环程序设置可实现自动化裂解。PowerLyzer 24可以对任何生物样本进行强劲、快速、可靠的均质裂解。PowerLyzer 24特点一览 数秒完成24个2ml样本的均质裂解 宽泛的运行速度及循环间隔时间 体积小巧、运行安静、解放双手 配套DNA和RNA提取试剂盒使用 卓越的编程性能PowerLyzer 24均质裂解仪可支持99个程序设置满足任何应用要求,提供了最灵活的均质和裂解方式,以及同类产品中较优的表现。 低噪音设计PowerLyzer 24 均质裂解仪独特设计最大程度节省了实验室空间并使样本处理更快速,安静及安全。坚固的电机,盖子和垫圈确保操作耐用且安静。 高效的均质化方法PowerLyzer 24均质裂解仪独特的运动方式搭配QIAGEN不同材质、粒径、规格的珠磨研磨管使PowerLyzer破碎样本更快速高效,比其他同类仪器产热更少。无论您处理样本存在何种挑战,PowerLyzer 24均质裂解仪都是满足您要求的最佳全能仪器。 即用型配套珠磨研磨管:PowerBead Tubes, Ceramic 1.4 mm:珠磨研磨管,包含1.4mm陶瓷研磨珠PowerBead Tubes, Ceramic 2.8 mm:珠磨研磨管,包含2.8mm陶瓷研磨珠PowerBead Tubes, Glass 0.5 mm:珠磨研磨管,包含0.5mm玻璃研磨珠PowerBead Tubes, Metal 2.38 mm:珠磨研磨管,包含2.38mm不锈钢研磨珠PowerBead Tubes, Glass 0.1 mm:珠磨研磨管,包含0.1mm玻璃研磨珠PowerBead Tubes, Garnet 0.7mm:珠磨研磨管,包含0.7mm石榴石研磨珠PowerBead Pro Tube:2ml珠磨研磨管,包含0.1和0.5mm混合氧化锆研磨珠
    留言咨询
  • 单晶铁石榴石YIG球体和立方体铁石榴石球体和立方体(单晶YIG)具有低衰减和很高的品质因数!单晶铁石榴石YIG球体和立方体产品描述:昊量光电全新推出的单晶铁石榴石YIG球体和立方体,十多年来,matesy一直在制造具有高Q值的低衰减单晶铁石榴石球体,用于商业微波应用。单晶铁石榴石YIG球体和立方体设计与功能:单晶材料通常由高温溶液(助焊剂熔体)生长而成。将单晶切成薄片,然后切成立方体,以产生直径约为 0.25 毫米的光学抛光球体。然后将它们四舍五入成球体,并进行蕞高质量的蕞终表面抛光。球体的饱和极化(4pMs)取决于抗磁性离子取代的程度。matesy 目前提供 4pMs YIG 立方体和 1600 ± 80 G 的球体,铁磁共振线宽 ΔH 的典型 FWHM 小于 1.5 Oe。单晶铁石榴石YIG球体和立方体技术规格:铁磁共振线宽ΔH的典型FWHM小于1.5 Oe4pMs von 1600 ± 80 G球体直径: 0.25 mm立方体尺寸:0.5 mm 边缘长度单晶铁石榴石YIG球体和立方体产品亮点:低缺陷单晶确定每个球体的饱和磁化强度单晶铁石榴石YIG球体和立方体优势:低衰减高 Q 值YIG薄膜应用领域:钇铁石榴石 (YIG) 单晶主要用于构建微波振荡器(YIG 振荡器)和滤波器,这些振荡器和滤波器可以通过外部磁场进行频率调谐。YIG球体被用作这些固态谐振器中的频率决定元件。产品详细信息可联系我们或下载数据资料!更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
    留言咨询
  • 商业成熟的皮秒时间门控拉曼仪器诞生于芬兰的TIMEGATE INSTRUMENT,北京富尔邦科技发展有限责任公司是其在中国的总代理商。时间门控拉曼光谱仪是基于皮秒时间门控技术的新型拉曼光谱仪,它从原理上直接排除荧光干扰以及高温样品黑体辐射干扰。国内时间门控拉曼光谱仪已在上海大学开展应用研究工作。时间门控拉曼光谱仪的典型应用:1.晶体材料YIG晶体YIG(Y3Fe5O12,钇铁石榴石)是重要的激光材料,是一个典型的具有荧光的样品,其产生的荧光在普通拉曼测试中无法消除,而利用时间门控拉曼技术则无荧光导致的虚假谱峰。如下图:YIG在785CW,532CW,532TG下的拉曼谱图传统连续激光785波长和532波长下,在800-2000cm-1区间因荧光出现所谓拉曼峰;而时间门控拉曼532波长测得的谱图才是YIG干净的拉曼谱峰。2.纳米材料纳米材料因特殊表面能而产生荧光在通常拉曼测试中也无法消除,荧光的干扰常常导致‘馒头峰’出现,无法获得拉曼信息。如下图:纳米材料(1#催化剂)传统拉曼和时间门控拉曼的光谱对比,可以看出利用时间门控拉曼可拒绝样品荧光干扰测得拉曼本身谱峰。 3.高温下晶型转变利用时间门控拉曼研究高温下硅酸钙材料的晶型转变,获取了1500至1600度间的晶型转变谱图,如下图,充分证明时间门控拉曼在高温冶金领域的潜在应用。高温下碳酸钙时间门控拉曼谱图4.TIMEGATE-SERS检测大肠杆菌生物样品常伴有荧光,即使单独SERS亦有不足,而TIMEGATE-SERS却有强的拉曼信号,如下图,CW Raman普通拉曼粉色谱线;Timegate绿色谱线信号有所改善;Timegate+SERS红色谱线拉曼信号强度大,可清晰分辨。Timegate+SERS,Timegate,CW Raman检测大肠杆菌的拉曼谱图对比 时间门控拉曼光谱仪耦合显微镜成为时间门控显微拉曼光谱仪系统,主要对微区开展分析检测,获得微区多点拉曼信息,其在皮秒水平捕捉拉曼信号消除荧光和背景功能的突出优势不变。 仪器物镜与光斑大小对应关系:10X–210μm 20X–105μm 40X–52μm 100X–21μm 拉曼位移最小至55波数 兼容奥林巴斯所有立式显微镜 皮秒时间门控拉曼光纤套件:100微米FC接口激光输出光纤 200微米FC接口输入光纤 仪器光纤集成设计 USB相机捕获图像和视频 可实现时间分辨的显微拉曼 具有专利的时间门控皮秒拉曼光谱仪(timegate PicoRaman)可以很方便地与任一款奥林巴斯BX和CX系列的立式显微镜一起连接使用,安装显微探针适配器也非常简单,轻松实现对任何样品微区进行精确识别和时间分辨分析的目标。用户可以通过目镜观察样品,也可以通过集成的USB相机观察样品,仪器集成的USB相机可捕捉样品的微区图像,也可提供样品微区的实时状态图像。新型拉曼微探针为研究人员利用时间门控拉曼在地球科学、生物制药、催化剂和法医鉴定等领域开展研究提供了新的机会。时间门控显微拉曼光谱仪实现了样品表面微区的多点扫描和成像,拉曼信息更加丰富细腻。仪器可提供高特性的时间分辨信息,包含由拉曼强度、拉曼位移和时间轴组成的三维光谱。时间门控显微拉曼可应用于地球科学、生命科学和诊断学、生物制药、催化剂研究、食品及饮料、法医鉴定、油气、聚合物和化学品等领域。 欢迎带样测试,让时间门控拉曼光谱仪助力您的科研工作!
    留言咨询

钆镓石榴石相关的耗材

  • 铝酸镥石榴石晶体
    优质进口LuAG:Ce晶体或Ce:LuAG晶体或铝酸镥石榴石为闪烁体,可根据用户要求做成薄片的荧光屏,典型的直径范围为2mm到50mm,厚度范围为0.1mm到5mm.当然我们也可以提供其他各种形状和大小的探测器,包括:棱镜型/球形或薄片型,并提供当面抛光,双面抛光和多面抛光。并提供铝、鋯或氧化铟锡的窗口等多种选择。LuAG:Ce, Lutetium Aluminum Garnet activated by cerium (chemical formula Lu3Al5O12), is a relatively dense and fast scintillation material. Its density of 6.73 g/cm3 is about 94% of the density of BGO (7.13 g/cm3). Its decay time is much faster (70 ns) than that of BGO (300 ns). This is of advantage in time dependent and coincidence measurements. The wavelength of scintillation emission is about 535 nm, which is ideal for photodiode and avalanche diode readout. The material can also be used for imaging screens, similarly to YAG:Ce. A particular advantage of LuAG:Ce is its higher density resulting in thinner screens with higher spatial resolution. The material is mechanically and chemically stable, and can be machined into a variety of shapes and sizes including prisms, spheres and very thin plates.LuAG:Ce晶体或Ce:LuAG晶体或铝酸镥石榴石可用于电子、X射线、伽玛射线、UV和EUV的探测,具有如下典型应用: 荧光屏或成像屏 我们提供的闪烁屏或成像屏是由YAG:Ce, LuAG:Ce和YAP:Ce晶体材料构成。目前提供如下三种选择: *标准的成像屏:直径可达50mm,厚度0.5-0.1mm.用于:X射线、电子、UV和EUV的成像。 *带衬底超薄屏:超薄LuAG:Ce晶体或Ce:LuAG晶体或铝酸镥石榴石厚度可小到为0.005mm,耦合到光纤光学、玻璃、石英等衬底上使用。可用的规格是:厚度为0.010mm直径最大为40mm, 厚度为0.005mm直径最大为25mm. *独立薄成像屏: 这种超薄LuAG:Ce晶体或Ce:LuAG晶体成像屏是独立使用的闪烁屏,不需要耦合到衬底上。目前可用的规格如下: LuAG:Ce晶体或Ce:LuAG晶体或铝酸镥石榴石成像屏:厚度0.050mm的屏直径最大是50mm,厚度为0.025mm的闪烁屏的最大资金是10mm LuAG:Ce晶体或Ce:LuAG晶体或铝酸镥石榴石成像屏:厚度0.1mm的屏直径最大是50mm, 厚度为0.050mm的屏的最大直径是10mm. 这种独立使用的闪烁屏非常脆,极易损坏,为此,我们为您提供了一种刚玉外壳用于保护成像屏,或者可提供陶瓷或钢铁外壳保护。 导光元件 我们为各种探测器提供不同的导光元件,根据不同的闪烁材料和应用,我们提供如下多种材料的导光元件: 有机玻璃(PMMA),近紫外的特殊有机玻璃,光学玻璃BK7, 石英玻璃,有机玻璃或石英玻璃光纤,蓝宝石,YAG 电镜探测器 我们提供独具特色的电镜探测器采用YAG:Ce,YAP:Ce,CRY18材料制成,特别适合电子探测和成像,并配备多样的导光元件,非常方便测量。闪烁探测器:提供多种类型的探测器用于电镜,这些探测器具有工作寿命长,荧光效率好等特点,提供的标准产品有: 标准探测器:SE, BSE,TEM,Dark Field (ADF) 特殊探测器:带镜头的探测器,阵列探测器,阴极荧光探测器(CL)
  • EOT Yb:YAG 掺镱:钇铝石榴石晶体 Y3Al5O12 1030nm
    EOT GmbH已经发展了超过20年的掺镱钇铝石榴石。在此期间,材料的性质和质量经过改进,使其成为市场上优秀的解决方案之一。你会发现我们的材料相较于市场上常见的材料有低的吸收率和更高的传输率。我们专门控制掺杂水平,以优化您的泵浦要求。高质量掺镱钇铝石榴石是一种高效的激光介质,可用于发射1030nm的高功率激光。它被广泛应用于工业激光器。拥有超过20年的抛光和制造经验,EOT GmbH在提供2D和3D水晶设计方面已非常卓越。我们还提供低吸收,高损伤阈值光学涂层。 技术参数产品特点晶体质量高大尺寸球 (根据要求没有核心) 应用高功率皮秒激光器二极管-泵浦激光器工业激光器 选择可提供平板、盘和杆大尺寸可用大量掺杂浓度粘结杆和板定制涂料可用 技术参数 材料参数基质晶体Y3Al5O12 Yb3+ 掺杂浓度0.1 at% to 25 at%朝向[111] and [100]激光波长1030 nm吸收截面积 8.2 x 10-21 cm2发射截面积2.03 x 10-20 cm21030nm处折射率1.82 技术规格杆长或盘厚度0.1 mm 到 100 mm杆和盘直径1 mm 到 75 mm倒圆角0.08 mm 到 0.13 mm 在 45° ± 5°滚筒抛光可根据要求打磨或抛光平坦度优于 λ/10平行度小于10弧秒垂直性小于5弧分
  • Cr:YAG晶体
    Cr:YAG晶体和掺铬钇铝石榴石由孚光精仪进口,孚光精仪公司是中国进口激光器件的第一品牌, 最大的进口精密光学器件和仪器供应商!精通光学,服务科学.提供的Cr:YAG晶体系高质量原装进口晶体, 在国外生长, 切割,抛光,高质量的镀膜,并进行严格的质量控制后进口到国内,质量非常优异,在中科院上海光机所,安徽光机所,中国工程物理研究院等单位成功使用。 Cr:YAG晶体中文名掺铬钇铝石榴石,是一种良好的被动Q开关材料或者饱和吸收体,Cr:YAG晶体(被动Q开关,饱和吸收体)提供高功率激光脉冲而不需要电光Q开关。这种被动Q开关材料或者饱和吸收体能够大幅度减少脉冲激光器,避免电光Q开关的高压供电。我们提供一系列被动Q开关晶体材料。例如:Cr:YAG晶体, Co:MgAl2O4晶体, V:YAG晶体。Cr:YAG晶体是Nd或Yb掺杂激光的良好的被动Q开关晶体材料,特别适合Nd:YAG,Nd:YLF或者Yb:YAG激光. 适合波长范围在900-1200nm之间的激光。 |Cr:YAG晶体,掺铬钇铝石榴石主要参数有:Cr:YAG晶体工作波长:1200-1600nm 掺铬钇铝石榴石损伤阈值:10J/cm^2 Cr:YAG晶体对比值:10掺铬钇铝石榴石孔径:5-12mm Cr:YAG晶体厚度:1-5mmCr:YAG晶体初始透过率:30-99 % 掺铬钇铝石榴石镀膜:1.54微米增透镀膜或其他波长镀膜。领先的进口精密激光光学器件旗舰型服务商--孚光精仪!

钆镓石榴石相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制