带远程控制器

仪器信息网带远程控制器专题为您提供2024年最新带远程控制器价格报价、厂家品牌的相关信息, 包括带远程控制器参数、型号等,不管是国产,还是进口品牌的带远程控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合带远程控制器相关的耗材配件、试剂标物,还有带远程控制器相关的最新资讯、资料,以及带远程控制器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

带远程控制器相关的厂商

  • 德科蒙过程控制(武汉)有限公司是一家致力于工业自动化领域的高新型企业,快速便捷的欧洲工控产品销售渠道,专业完备的产品技术服务体系,在德国、新加坡、香港均有深度合作的战略伙伴,为国内众多知名的大型企业提供欧美100%进口的原产地工控产品,成为了中国工控设备行业的主要力量,公司销售罗斯蒙特、横河川仪、霍尼韦尔、贺德克(HYDAC) 、B F(倍加福)、西克(SICK)、IFM(易福门),奥托尼克斯、SMC、WAGO万可等国内外四十多家知名品牌,产品涉及各种传感器,安全栅,总线模块、仪器仪表、变送器、变频器,可编程控制器 PLC、流体控制、液压气动阀门、电源等等……产品广泛应用于全国各地,如:钢铁厂、石油厂、化工厂、水泥厂、啤酒厂、冶金厂、造纸厂、电力、监控、水利水电、机械等各种不同的工业部门系统需要。同时承接自动化成套工程,是一家专业性强的自动化系统集成商,销售服务商,代表着高新技术力量的自动化公司
    留言咨询
  • 北京斯瑞福过程控制设备有限公司是一家致力于自动化及工业控制产品的销售、技术支持和服务,工业自动化系统设计及项目开发的专业公司。长期以来,斯瑞福公司与多家国外知名自动化设备公司有着广泛的合作代理关系,并且凭着严谨、务实的项目开发宗旨;公平、高效的产品销售原则在广大用户中取得了良好的声誉。根据产品划分不同,公司下设五大部门:称重系统,振动测量,过程控制,仪器仪表,导热油及滤芯
    留言咨询
  • 德科蒙过程控制(武汉)有限公司是中国电子行业最优秀的分销企业之一,近年来的持续高速发展使德科玛成为业界杰出分销商的代表。 发展历程 德科蒙与全球著名仪器企业CS Instruments GmbH(希尔思)及全球测试仪器领导者FLUKE公司成功合作多年,2008年9月德科玛成为希尔思中国的授权分销商,专业代理销售希尔思测量仪器仪表;2008年10月年又成为 Rosemount (罗斯蒙特)和YOKOGAWA(横河)的供货平台; 2009年获得日本理音(RION)的产品代理权。 服务管理 遍布全国重要城市的销售网络,实现德科蒙对整个大中国区业务的有效运作。作为技术驱动型分销企业,德科蒙还拥有成熟的技术支持团队和系统的服务流程,提供针对客户需要的新产品推介、快速样品、应用咨询、方案及软件设计、开发环境、售后等方面的专业服务。
    留言咨询

带远程控制器相关的仪器

  • 高精度温度控制器功能强的温度控制器/ 调节器,具有记录、报警、通讯功能,可以支持30 段编程控制,可自由选择各 种热电偶、热电阻传感器,0.1 级精度。 新一代工业级触摸屏式操作:主要参数设置在一个界面内轻松完成,客户可像使用手机一样轻松地使用。 稳靠硬件设计:整机低功耗,双CPU处理模式,一颗ARM芯片用于处理图形人机操作界面及数据记录功能;独 立的单片机CPU 用于确保控制及采样实时性,满足严格的工业现场要求;通过4KV 群脉冲抗干扰测试。 新一代 AI 人工智慧逻辑 PID 算法:实现对复杂长滞后对象的无超调无欠调控制,用于工业、科研的精 密温度控制。产品参数:型号温度范围℃温度稳定性℃温度显示分辨率工作温度传感器 / 安全保护传感器PL524 Pre-100~ 550 ±0.03TFT / 0.012xPt100 或2xK 型热电偶PL524 Pro0~ 550 ±0.03LED / 0.01 2xPt100 或 2xK 型热电偶
    留言咨询
  • 仪器简介独有远程控制器,可在距离混合器1.8米远的地方进行双键盘控制锁定功能,防止错误改变混合器设置控制器及混合器头均达到IP54的防护等级,防止意外冲溅控制器可立置/悬挂,具有多芯软线控制通道混合器包括:混合器头,悬挂式远程控制器,带1.8米接线,可调节夹具(可固定10mm直径的杆),夹子钥匙,安装支撑杆,外部电源及接地电源线带插头。完整系统还包括:搅拌叶片/轴,底座和底座固定夹。订购指南目录号转速瓦数最大扭矩电源带远程控制的混合器50005-0040~2000rpm75W1.0N.m100~230VAC,50/60Hz50005*1080~4000rpm75W0.5N.m100~230VAC,50/60Hz完整系统50005-5040~2000rpm75W1.0N.m100~230VAC,50/60Hz50005-6075W0.5N.m100~230VAC,50/60Hz
    留言咨询
  • 产品简介:多功能单路GPRS远程控制器,可通过手机远程控制继电器,电源开关,远程无线遥控水泵等。手机APP远程控制电源开关,主机里面插一张移动的流量卡,用手机随时随地远程遥控;带掉电记忆和停电报警功能,简单方便,功能强大!新增基站定位功能,可通过手机APP和电脑网页端实时查询设备位置,一方面便于公司做设备的大数据分析,另一方面,当接收到报警信息时,用户可通过定时迅速赶往现场解决问题;产品功能:1、设备采用GPRS流量 ,通过手机APP和电脑网页端远程控制控制;2、新增基站定位功能,可实时查询设备位置;3、自锁、点动控制功能;4、停电来电报警功能;5、掉线检测功能;6、掉电记忆功能。7、支持12V/24V供电,(默认12V供电)。8、支持220V/380V.产品优势:1、两级用户管理,权限不同,更安全;2、自锁控制,延时控制;3、设备的各种功能设置简单方便;4、继电器支持最大负载功率2000W;5、停电报警功能,内置聚合物锂电池,设备停电来电自动报警提醒;6、三重检测机制,掉线自动重连。
    留言咨询

带远程控制器相关的资讯

  • 在线式四合一气体远程控制器
    ET-04型,列在线式多参数气体检测仪是一种可以多配置的单种(臭氧,氨气一氧化碳,二氧化硫,硫化氢等,见列表,任意选配)的气体检测报警仪, 具有非常清晰的大液晶显示屏,声光报警提示,带内置泵,保证在非常不利的工作环境下也可以检测危险气体并及时提示操作人员预防。同时将数据远程传输有:在线检测和无线传输功能特点:-自带吸气泵可将数十米距离外气体吸入仪器进行测定-声、光报警-大屏幕数字、字符显示、瞬时值、峰值显示-开机或需要时对显示、电池、传感器、声光报警功能自检-安全提示:定期闪灯、声音提示-出众的音频声音报警-配有充电器、携带方便、使用灵活-可以同时支持4种的气体检测工作,组成四合一在线检测-四种气体前三种都是按照客户自行挑选的,第四种的气体是标配好的二氧化碳。如想变成在线式的,请看ET-08型在线式气体检测远程传输系统 主要传感器技术指标  技术参数:1:检测气体:任意选择 2:传感器寿命:二氧化碳传感器寿命是7年,其他传感器寿命为30个月3:电池:可充电电池 电池工作时间:连续工作大概 200小时左右,另外配充电器4:显示:大屏幕液晶显示5:工作温度:-10∽45℃6:工作湿度:5-90%RH 可以任意选择四种传感器,组成四合一气体分析仪,第四种定是二氧化碳检测气体量程精 度最小读数响应时间甲醛检测仪0-10.00ppm<± 5%(F.S)0.01ppm&le 25秒氧气(O2)0-30%Vol<± 5%(F.S)0.1%Vol&le 15秒臭氧检测仪0-20ppm<± 5%(F.S)0.01 ppm&le 30秒可燃气(EX)0-100%LEL<± 5%(F.S)1%LEL&le 5秒一氧化碳(CO)0-100ppm<± 5%(F.S)0.1ppm&le 25秒硫化氢(H2S)0-100.0ppm<± 5%(F.S)0.1ppm&le 30秒二氧化硫(SO2)0-100ppm<± 5%(F.S)0.1ppm&le 30秒一氧化氮(NO)0-250ppm<± 5%(F.S)1ppm&le 60秒二氧化氮(NO2)0-20ppm<± 5%(F.S)0.1ppm&le 25秒氯气(CL2)0-20ppm<± 5%(F.S)0.1ppm&le 30秒氨气(NH3)0-100ppm<± 5%(F.S)1ppm&le 50秒氢气(H2)0-1000ppm<± 5%(F.S)1ppm&le 60秒氰化氢(HCN)0-50ppm<± 5%(F.S)0.1ppm&le 200秒氯化氢(HCL)0-20ppm<± 5%(F.S)0.1ppm&le 60秒磷化氢(PH3)0-5-1000 ppm<± 5%(F.S)0.01/1ppm&le 25秒国内诚招各地区总代理商,有意向请来电咨询江苏金坛市亿通电子有限公司地址:金坛市华城开发区华兴路电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com
  • 乐枫推出纯水系统远程控制APP
    2016年5月底,上海乐枫正式向纯水市场推出了一款新研发设计的纯水系统远程控制APP。使用该智能化产品,用户可远程控制和监测实验室纯水设备的工作状态,高效、准确、灵活,让实验室的工作更省时省力外,还更安全可靠。目前该APP功能可使用在乐枫带有智能取水手柄的纯水系统和PURIST超纯水设备上。 信息技术在实验室中的应用,对传统的实验室建设与管理观念产生了巨大的冲击,并且正在改变着实验室工作人员的工作方式和思维观念,可以说,实验室世界正在逐步进入一个崭新的时代。乐枫的这款APP产品,正是基于实验室智能化这样一个理念,通过在纯水产品中使用现代技术,让使用者告别传统繁琐的工作程序,真正体会实验的乐趣,激发更多地研发灵感。这次APP的推出,是乐枫在实验室智能化领域的一次有意义的探索。 安装了APP功能的纯水系统,可通过蓝牙与移动终端(智能手机或平板电脑等)相连。用户无需接触水机系统上的按键,只要通过移动终端上清晰的操作界面,便可远距离控制纯水设备的各项工作。这个功能旨在为用户提供最大程度的用水自由度。 乐枫此次推出的APP功能具有以下几个特点: 远程控制与监测纯水系统 远程控制纯水设备的产水和取水,并随时了解水质情况和用水量等信息。简化工作流程,提高工作效益 纯水系统运行状态查询 随时了解耗材使用寿命,查询水质参数等信息。如果需要更换耗材或水机出现问题,可通过手机应用反馈给乐枫客服人员,进行远程诊断,并协助安排维修或维护服务,让问题及时得到解决,实验工作更安心,放心,省心,用水无忧 取水分帐户管理 可支持10个独立账户使用水机,每个账户用水量一目了然,对于有多项目合作且需独立核算的实验室,更容易达到现代实验室科学管理实验用水的目的。相较老式IC卡管理,更便捷,更高效,更智能化 纯水系统历史数据追溯 支持阶段性用水报告提取,可查询至少两年的水质历史记录。提供实验室科研数据的完善记录以方便实验室数据追踪,满足实验室现代管理模式的要求,为实验保驾护航。 实验室智能化不仅是一种技术,更是一种理念。乐枫未来的努力方向,就是开发更多适应实验室现代化管理模式的创新产品,制造更多体现个性化和人性化结合的纯化工具。关于上海乐枫生物科技有限公司上海乐枫是一家具有深厚的技术背景,专业提供水纯化和实验室分离纯化产品制造商和供应商。发展之初,上海乐枫就树立了尊重知识产权,自主创新的理念,积极建立自己的品牌,目前上海乐枫已经成为全球密理博纯水系统兼容耗材产品线最齐全的供应商,同时提供实验室纯水系统和实验室样品制备前处理针头式过滤器等。产品品质和服务被市场认可,产品销往全球80多个国家和地区。更多 RephiLe 产品信息,请登陆:www.rephile.cnRephiLe 企业微信名:乐枫纯水
  • 对生命进行远程控制:无线生物工程学成为医学研究的前沿领域
    据英国《新科学家》周刊网站近日报道,随着纳米技术、生物技术以及无线通讯技术等领域的迅猛发展和交叉融合,现在,科学家们已经能够使用无线电信号来对细胞、药品甚至动物等进行控制了。尽管远程无线控制医学这一前沿领域可能面临着安全性等问题,但是,其发展潜力和蕴藏的好处都让人不容小觑。  无线生物工程学方兴未艾  美国纽约州立大学水牛城分校的阿诺德普拉勒制造出的线虫看起来与其他蠕虫毫无二致,体长约为1毫米。接着,当普拉勒打开一个磁场,这些滑溜的、不断蠕动的蠕虫会停止动作,随后,在犹豫了片刻之后,接着开始向后退。然后,普拉勒将磁场关闭,再打开,一遍又一遍地重复这个动作,蠕虫会随着他的拍子跳舞,协调一致地前后移动。  这些都是可以进行远程控制的蠕虫。此前,普拉勒和同事已经将纳米大小的接收器植入线虫头部的神经细胞中。无论何时,只要该接收器探测到高频磁场,神经细胞就会通电,蠕虫也因此会转动。  普拉勒的远程控制蠕虫仅仅只是个开始。目前,生物学家们正在研究对其他宿主进行控制 也在研究将接收器植入离子通道、DNA片段和抗体中。他们的目标是使用比无线电更小的电波来控制活体细胞。  这个方兴未艾的无线电远程医学技术融合了纳米技术、生物技术和无线电物理学技术,该领域目前正在为研究人员提供一个强大的研究工具,而且也在创造一类新科学:科学家们将其称为无线生物工程学或者电磁药理学。不管叫什么名字,该领域目前正吸引着很多科学家为之而倾倒,而且,其应用潜力也非常大。  美国西北大学的物理学家贝纳尔多巴尔别利尼-阿米德去年帮助美国国家科学基金会组织了一场与这个课题有关的研讨会。巴尔别利尼-阿米德指出,一个新的医学领域正慢慢向我们走来。很多疗法,包括基于免疫系统、基因甚至干细胞的疗法都有潜力被远程控制。  与传统药物需要经过几小时才会起作用而且会一直停留在身体里不同,使用无线方法激活的药物几乎能立刻起作用或者随时关闭。美国洛克菲勒大学的萨拉史坦利表示:“使用无线电场能诱导细胞提供具有治疗效果的蛋白质,而采用其他方法做到这一点的成本很高。”  他所在的研究团队也已经找到了使用无线电波来控制胰岛素的生产和释放的方法。我们甚至能够大胆设想:下一代用智能手机应用程序激活并起作用的药物距离我们并不遥远了。巴尔别利尼-阿米德说:“纳米无线系统在医学治疗领域拥有巨大的应用潜力。”  电磁场能“遥控”体内细胞  在很多疗法中,科学家们和医生都会使用强大的磁场来作为治疗手段。例如,名叫经颅磁刺激(TMS)的技术通过诱导大脑内的电流来工作,鉴于其具有一定的疗效,使用该技术治疗抑郁症在美国已经获批。  但是,TMS并非一种十分精确的方法,而且,目前,很多科学家正在研发其他专门使用磁场进行疾病治疗的方式。2005年,加拿大蒙特利尔综合理工大学纳米机器人实验室的西尔万马特尔就想出了一个点子:使用磁感应细菌来制造“迷你型”的药物递送系统。  马特尔的具体想法是,使用一种名为MC-1的菌株作为小拖船。MC-1会沿着地球磁场的磁力线游动——它们使用嵌入身体内名为磁小体的结构中的氧化铁粒子链来感应地球的磁场。马特尔解释道:“每个磁小体就像一根指南针或者一个纳米导航系统。”  2007年,马特尔的团队将细菌同大小为其数倍的塑料小珠连接在一起,并且使用由一台MRI扫描仪产生的、由计算机控制的磁场证明,细菌会遵循精确的路线行进,并且,将它们身上负载的东西铺展在特定的目标上。随后,该研究团队用像细胞一样的胶囊(脂质体)替换下这种塑料小珠子,接着,再让脂质体胶囊负载抗癌药物,该计算机控制的磁场能引导该脂质体胶囊通过血管到达肿瘤所在地。  科学家们已经使用这种方法,引导了很多同纳米尺度的磁体依附在一起的抗癌药物阿霉素通过一只实验老鼠的肝脏的动脉到达肿瘤。科学家们认为,最新方法可以让健康的细胞尽量少暴露在强大的药物下,因此,在治疗时副作用应该可以达到最低。马特尔团队目前正在研究如何使用这一方法治疗直肠癌。  科学家们表示,这一方法真的好处多多,电磁场或许可以通过操控身体内细胞的生物化学特性,从而直接干预身体内的这些内部细胞。这样的无线控制方法提供的精确度很少有药物能够做到。  2002年,美国麻省理工学院的约瑟夫雅各布森领导的科研团队证明了这一点。在研究中,他们认识到,金属纳米粒子能够像天线一样并从以无线电频率振动的磁场那儿吸收能量。这些能量可以被转化为热,而且,雅各布森还认为,这或许对触发细胞内部的生物化学变化非常有用。  随后,他和同事决定用DNA来测试这一想法。他们制造出了DNA片段,其中的碱基对相互依附在一起形成一个像束发夹一样的圆环。接下来,他们让一个个金纳米粒子依附到每个DNA片段上。当他们打开一个高频磁场时,来自于纳米粒子的热量会破坏这些碱基对之间的链接,而且,这个束发夹一样的圆环也会弹开。随后,他们将磁场关闭,分子冷却下来,链接也重新形成。这个循环能够一遍一遍地重复进行,而且,雅各布森也表示,它或许会成为一个有用的工具,可以用它来控制基因的功能。  普拉勒则认为,这种方法还有其他用途:打开和关闭细胞壁上的小孔。这些以蛋白质为基础的小孔调节着离子进出细胞的通道,如果能对这一关键的过程进行很好的控制,会有非常大的用处。  作为美国加州大学伯克利分校的博士后研究员,普拉勒已经研究了一个名为TRPV1的离子通道,疼痛感应神经元中经常会发现这个离子通道。在身体体温为正常的37摄氏度时,这个离子通道是关闭着的,但是,如果温度上升到43摄氏度,TRPV1会打开,而且,钙离子会通过该通道,触发一个会制造出热感的神经脉冲。具体到人体上,辣椒等产生的灼热感也同TRPV1通道脱不了干系。  刚开始,普拉勒考虑使用一个红外激光器来打开该通道,但随后,他无意中看到了雅各布森的研究。他说:“我开始思考另外一个方法,那就是我们能够使用温度来直接刺激TRPV1。”计算结果显示,单个纳米粒子无法聚集到足以打开离子通道那么多的能量。但是,他推断,固定到嵌入有TRPV1的细胞膜上的一小撮纳米粒子提供的热量足以将小孔加热到43摄氏度。  为了测试这一想法,普拉勒和同事修改了位于细胞膜内的TRPV1附近的一个蛋白质,使得该蛋白质同几个由铁锰制成的磁纳米粒子依附在一起。随后,事情果然按照普拉勒他们所想象的那样进行:他们打开一个强大的40兆赫兹的磁场,在短短的10秒钟内,通道的温度上升了6摄氏度,并且,细胞壁上的小孔张开了。  普拉勒的团队使用秀丽隐杆线虫(现代发育生物学、遗传学和基因组学研究重要的模式材料)进行了同样的测试。他们将他们制造出的TRVP1天线系统添加到线虫对热敏感的“鼻子”内,果然不出所料,当鼻子内经过修改的神经细胞探测到磁场时,线虫避开了对它们来说像热源一样的事物。  科学家们几个月前才开始关注这个开关并研究这个开关的应用前景(《科学》杂志第336期第604页)。由美国洛克菲勒大学的杰弗瑞弗里德曼领导的科研团队制造出了经过遗传修改的细胞,在这些细胞中,由TRVP1通道释放出的钙离子触发了胰岛素的产生。接着,科学家们直接将铁纳米粒子添加到TRVP1通道内,并将细胞直接注射进入实验老鼠体内。当他们开启一个以无线电频率震动的磁场时,实验老鼠的血糖浓度下降,这意味着胰岛素已经生成并开始在老鼠体内“发威”。  弗里德曼的团队甚至想出了方法让细胞制造出自己的铁纳米粒子,他们的方法就是赋予细胞合成铁蛋白(铁蛋白是一种将铁原子收集成簇的蛋白质)所必需的遗传机制。科学家们表示,他们也可以对这一方法稍作改变,使用其来远程触发诸如依靠钙离子的肌肉收缩等过程。它甚至可以用来处理大脑内的肿瘤,这里的肿瘤很难对付,因为血脑屏障让血液中的大分子无法进入大脑中。  史坦利表示,他们可以通过修改病人自己的干细胞,制造出一种对无线电信号做出反应的重组抗体,而且,他们也可以将其植入中央神经系统中以递送治疗抗体。普拉勒表示:“很多无线控制方法都有望通过这种方法或者其他方法来实现,这很酷。”  如果这类远程加热方法能起作用,那么,这种方法也不必破坏铁通道中的蛋白质或者伤害附近的分子。普拉勒认为,其中一个原因在于它使加热过程变得更有效。如果他能够在接下来的研究中,找到方法减少提高离子通道的温度所耗费的时间,那么,让附近的分子受到影响的热能也会相应减少。为此,他正在设计更好的纳米大小的热吸收器。  无线拉伸细胞可诱使肿瘤细胞凋亡  科学家们发现,除了可以使用热来对细胞进行远程控制之外,还有其他方法也能对细胞进行远程控制。美国哈佛医学院的唐因格伯进行的研究表明,细胞会通过使用自己身体的扭转来相互交流。他的团队发现,他们可以仅仅通过采用特别的方式来拉伸细胞,从而改变细胞内的基因活动的模式甚至触发细胞自杀——也就是所谓的细胞凋亡。  因格伯的研究团队采用的方法是,将具有磁性的纳米小珠依附到整联蛋白上,整联蛋白是一种出现在细胞的外膜内的蛋白质,其会将纳米小珠锚定到细胞的外基质上。打开一个磁场会对塑料小珠施加一种力,这个力会拖动整联蛋白并将细胞拉变形。  2007年,因格伯就已经证明,他能够将细胞拖成扁平的形状,而且,当磁场关闭时,细胞会死亡。他表示:“这表明,我们可以通过磁场的关闭这种方式来控制细胞的命运。”而且,他和他的团队也已经发现,让一个干细胞变形可以决定它会发育成为哪类身体组织。因格伯解释道:“力学在发育过程中和基因一样重要。”  使用磁场拖拉细胞也能影响我们的免疫系统。在另外一套实验中,因格伯团队让磁性纳米粒子依附到肥大细胞表面的抗体受体上,这种抗体受体会对特定抗原产生过敏免疫反应。在一个磁场中,纳米粒子形成一簇,将这些抗体受体聚拢到一起,其采用的方式与抗原依附于其上一样。在一般情况下,这个聚簇行为会触发一系列的生物化学事件,导致组织胺释放出来——这是一种免疫反应。结果表明,磁场是这一切事件背后的幕后推手。因格伯说:“磁场在这方面表现得非常好。”  因格伯表示,这样通过无线触发方法释放出的组织胺可以更好地控制炎症。组织胺影响血管扩张、肌肉收缩以及肠道内的胃酸分泌。它也能像神经传递素一样影响人的清醒和睡眠状态。而且,这种聚簇效应也能同细胞表面的其他分子结合在一起以制造抗癌药物,例如,制造能触发肿瘤细胞死亡的抗癌药物。  目前,普拉勒打算厘清一个问题,那就是,这种远程加热技术是否能通过激活动物嗅球内特定的神经元(嗅球是大脑内与处理气味有关的组织)来刺激老鼠的触觉。实际上,也就是通过这种方法,让老鼠“闻到”并不存在的物质。去年,他的团队接受了美国国立卫生研究院(NIH)提供的130万美元的资助来研发这项技术。他说:“嗅觉提供了一个大的实验场地,因为嗅球能够从外面送达,因此,递送纳米粒子相对来说也比较容易。”  细胞自身或许就拥有无线机制  要想对细胞进行无线控制,小磁铁可能并非最好的接收器。据《科学美国人》杂志报道,早在2007年,美国加州大学伯克利分校的物理学家亚历克斯策特尔就已经证明,纳米管完全可以作为无线电接收机来使用:可以被当做一个配备了放大器和谐调器的天线来使用。  为了制造出一个能对无线电波做出反应的纳米管,策特尔团队在该碳纳米管的尖端施加了一个电荷。当出现无线电波时,电荷会在管内制造出振动,这种振动能被转化回来成为一个震动的电磁信号。通过改变碳纳米管的长度可以改变其共振频率——策特尔发现,采用这种办法能让纳米管与特定的无线电频率保持一致。策特尔甚至也证明,他的碳纳米管无线电接收机能够通过播送与披头士乐队齐名的沙滩小子乐队的歌曲《Good Vibrations》来重复产生传送信号。在纳米管接收器的音频输出那儿,很容易看到这种谐调。  策特尔宣称,纳米收音机可以被“轻松嵌入一个活细胞中,届时,科学家们可以制造出一个与大脑或肌肉功能接口的装置,用无线电控制在血管中游动的器件也将不再只是梦想”。  然而,甚至纳米无线电接收机可能也并不是必须要有的。科学家们表示,细胞或许拥有自己的无线机制。2009年,法国免疫学家、2008年诺贝尔生理学或医学奖获得者之一吕克蒙塔尼断言,DNA分子可以使用无线电波来传送信息,他之所以做出这一判断是因为,他找到了从富含细菌的水中传来的无线电信号,而且,即使当细胞被杀死时,只要他们的DNA完好无损,信号就会保持。  不过,很少有科学家接受这个观点。但是,去年,美国西北大学的物理学家阿兰维多姆计算出,这样的信号可能源于细菌染色体内的DNA环周围的电子,此前,科学家们就认为,循环的电荷能产生电磁波。维多姆指出,人们很早就知道,有些古老的细菌能够通过导电的纳米线将其同电网相连。维多姆预测道:“那么,或许会有很多现代细菌会使用无线电来做事。”  安全问题首当其冲  然而,尽管一切看上去都很美好,这项技术的应用潜力似乎也非常大,但是,我们仍然不能忽视可能会存在的问题。其中一个关键的挑战是,如何将所有这些功能(包括感应无线信号并将其变成有用的反应)整合为一个安全的集成系统。很多科学家们也认为,手机等发射出的电磁信号对细胞具有危险的影响,其会改变基因表达甚至诱发癌症。因此,迄今为止,无线生物工程学这一理念还存在诸多争议。  安全问题则紧随其后。今年2月,西雅图信息安全测试公司McAfee的主管巴纳比杰克表示,他找到了一种方法,可以用无线信号探测糖尿病患者所携带的胰岛素泵,同时控制这些胰岛素泵。他随后进行的初步研究也证明,依靠无线连接的胰岛素递送系统、起搏器、除纤颤器有可能受到黑客的攻击或者被修改。有鉴于此,美国政府问责局目前正着手进行调查,以弄清楚是否应该为医疗设备工业制定更加严苛的安全规则,研究报告预计今年出炉。  显然,不管是无意的还是有意为之的,任何这样的干扰和破坏都会带来令人担忧的问题。巴尔别利尼-阿米德表示:“我们应该关注纳米世界内计算机和通讯领域的安全问题。未来的医用无线纳米设备必须包含更加严谨的安全机制。”  科学家们也表示,尽管面临着一定的风险,但是,我们应该花大力气来解决目前面临的挑战。这是值得的,因为,无线生物工程学具有非常巨大的应用潜能。

带远程控制器相关的方案

带远程控制器相关的资料

带远程控制器相关的论坛

  • 超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    [b][color=#000099]摘要:远程控制软件是高级PID调节器随机配备的一种计算机软件,可在计算机上远程进行调节器的所有操作,并还具有过程曲线显示和存储功能。本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些最基本的重要操作和参数设置。[/color][/b][align=center][img=PID控制器远程控制软件及其安装使用,550,349]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202138407464_1087_3221506_3.jpg!w690x439.jpg[/img][/align][size=18px][color=#000099][b]1. PID控制器远程控制软件简介[/b][/color][/size] PID控制器在众多控制领域有着十分广泛的应用,但绝大多数控制器并未随机配备相应的远程控制软件,有些控制器也仅配置的简单的显示软件,这使得控制器的操作,特别是在调试阶段,还基本都是使用人员通过按键方式进行手动操作。目前只有比较高端的PID调节器会配备随机控制软件,这些控制软件的使用会带来以下优势: (1)一般PID控制器整体都十分小巧,如最大的标准面板尺寸为96mm×96mm,且大多采用面板式安装形式以便于人工操作和过程数据显示。由于要在如此小的面板上集成更多的数据、功能甚至曲线或图形,绝大多数PID控制器只给人工操作配置了3~4个操作按键,由此造成操作过程十分不友好。如对于功能强大的PID控制器,其按键操作过程往往是复杂的菜单式树状结构,由此造成在使用过程中,特别是在调试和更改控制参数时,操作人员需要仔细阅读使用说明,并对照说明书进行繁复的按键操作,还需经过多次重复操作才能熟练。如果隔段时间不用,还需重新上述学习步骤才能进行正常操作。采用远程控制软件则完全解决了操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作。另外,图形化的控制软件具有更友好的人机界面。 (2)PID控制器随机配套软件由于具有图形化人机界面,可使得操作人员更直观的熟悉和了解控制器的各种功能,可快速完成PID控制器的各种设置并投入使用,这在调试使用阶段十分有效。特别是对于还需要上位机与PID控制器进行通讯并与其他仪表一并集成后进行总体控制编程的开发人员而言,通过配套软件进行先期PID控制器调试运行后,可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,更有利于后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间。 (3)PID控制器随机配套软件除了具备所有设置功能之外,更是具有强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。曲线显示坐标可以根据需要进行改变,由此可观察各种曲线局部或整体的变化细节。 为了展示PID控制器随机软件的强大功能,本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些基本操作,本文同时也可做为软件使用说明书。[align=left][b][size=18px][color=#000099]2. 安装条件[/color][/size][/b][/align] 操作系统要求:WINDOWS 7或WINDOWS 10。 软件运行环境:需要安装MICROSOFT OFFICE(ACCESS)软件和VB6MINI软件,其中随机软件中带有可直接安装和运行的VB6MINI软件。 其他要求:计算机中不能用WPS,暂停360杀毒、360安全卫士等其他安全软件。[b][size=18px][color=#000099]3. 软件安装和计算机通讯接口设置[/color][/size][color=#000099]3.1 软件安装[/color][/b] 在VPC 2021系列真空压力和温度控制器系列中,配备了两个计算机软件,一个用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一个用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在VPC 2021系列真空压力和温度控制器系列中,配备了两套计算机软件,一套用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一套用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在上述相应压缩文件解压后,将解压后的JETR文件夹及其内容拷贝到C盘根目录下即可,在C:\JETR文件夹内的文件清单如图1所示。控制器软件分别为 vpc 2021-1 controller.exe 和 vpc 2021-2 controller.exe 可执行文件。[align=center][b][color=#000099][img=01.控制器软件文件夹内容,600,229]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202144285143_5595_3221506_3.jpg!w642x246.jpg[/img]图1 控制器软件文件夹内容[/color][/b][/align][b][color=#000099]3.2 串口通讯线连接和串口通讯参数设置[/color][/b] 在软件使用之前,需要先在计算机上插入USB转485串口通讯线,并将此通讯线另外一端的的两根引线分别接入控制器的11和12号通讯接线端子,其中12接T/R+,11接T/R-。 当计算机上插入串口通讯线后,在计算机“设备管理器”界面上能看到相应的串口通讯功能和端口编号显示,如图2所示。鼠标双击图1中所示的USB串口端口,进入此串口的参数设置界面,如图3所示。[align=center][b][color=#000099][img=02.485串口通讯,500,342]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202145480183_3300_3221506_3.jpg!w584x400.jpg[/img]图2 USB串口通讯端口[/color][/b][/align][align=center][b][color=#000099][img=03.串口通讯参数设置,462,376]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202146196471_3404_3221506_3.jpg!w462x376.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图3 串口通讯参数设置[/color][/b][/align] 在控制器软件中,默认的串口通讯参数是端口1,其他默认参数如图2中所示,参数设置的原则是要使计算机和软件的通讯参数设置为完全相同,如果要修改计算机的串口通讯参数,如提高波特率以加快传输速度,控制器软件也要进行相应修改。[b][size=18px][color=#000099]4. 软件的主界面[/color][/size][/b] 在控制器软件运行后,出现的软件主界面如图4所示。软件主界面有几个功能区域组成,下面将分别对常用的几个功能区域进行介绍。[align=center][b][color=#000099][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202156131241_560_3221506_3.jpg!w690x425.jpg[/img]图4 VPC 2021-1单通道程序控制器的软件主界面[/color][/b][/align][b][size=18px][color=#000099]5. 通讯端口参数设置[/color][/size][/b] 软件主界面中,进行通讯参数设置的“(一)通讯端口参数设置区域”如图5所示。[align=center][img=05.通讯端口参数设置区域,690,37]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147187832_3612_3221506_3.jpg!w690x37.jpg[/img][/align][align=center][b][color=#000099]图5 通讯端口参数设置区域图[/color][/b][/align] 在软件运行后,首先要在进行通讯端口参数设置,以在控制软件和控制器之间建立通讯以传输数据。首先要根据计算机插入RS485通讯线后形成的通讯端口编号,进行图5中通讯端口选择,可通过键盘数字输入或下拉菜单中的数字选择来设定相应的端口编号。 VPC 2021系列控制器的默认模块地址都为“1”,除非用软件进行多个不同地址的并联控制器的控制操作,则需要同时修改控制器和软件的模块地址。 VPC 2021系列控制器和软件中的“波特率”默认值为9600,若需要选择其他通讯速度,则需要更改控制器、计算机通讯接口和软件的波特率,使它们三者始终保持一致。 VPC 2021系列控制器和软件中的“校验方式”默认值为“偶校验”,同样,若需要选择其他校验方式,则需要更改控制器、计算机通讯接口和软件的校验方式,使三者始终保持一致。 当上述通讯端口参数设置完成后,可分别点击区域右边的“打开”或“关闭”名录按钮,从而在计算机软件和控制器之间建立通讯和断开通讯。[b][size=18px][color=#000099]6. 控制器的软件控制操作[/color][/size][/b] VPC 2021系列控制器的一些常用调试和操作,都可以在软件的第二个功能区域“(二)控制操作区域”内进行,第二功能区域如图6所示。[align=center][b][color=#000099][img=06.控制操作区域,690,44]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147376474_9076_3221506_3.jpg!w690x44.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图6 软件的控制操作区域[/color][/b][/align] 在完成图5所示的通讯参数设置,并点击“打开”命令按钮激活通讯后,有以下两个特征: (1)COM 灯会由黄色背景变为绿色或红色背景,接收数据时背景为绿色并显示RXD字符,发送数据时背景为为红色并显示TXD字符。 (2)控制器内的当前参数(如PV、SV、OP值,手动/自动状态等)都会自动在图6中的相应数字框内显示。如果数字框内的显示数字与控制器面板上的显示数字不同,则表示出现了错误。 通过图6所示的控制操作区域内的数字框和命令按钮,可进行以下内容的操作: (1)用鼠标点击“手动/自动”命令框,可使得控制器在手动和自动之间进行切换,并在“手动/自动”命令框左边的兰色数字框内显示相应状态“手动”或“自动”的字符。当设置为“手动”状态时,PID控制器上的状态指示灯变为红色背景并显示M字符,表示控制器的当前状态为手动状态。当设置为“自动”状态时,PID控制器上的状态指示灯变为黄色背景并显示A字符,表示控制器的当前状态为自动状态。 (2)在设置为“手动”状态时,点击“SV1值”右边的白色输入框,在此输入框内输入设定值“10”数字,并点击随后出现的“修改SV1”命令框进行确认,此时“SV当前值”右边的数字框显示10,同时在控制器面板上会观察到SV值为10的显示。同样,在“手动”状态时,点击“OP值”的右边白色输入框,在此输入框内输入“5.01”设定值,并点击随后出现的“手动OP”命令框进行确认,此时“OP当前值”右边的数字框显示5,同时在控制器面板上也会观察到OP值为5.01%的显示。在手动状态下进行SV和OP值的设定,可以检查软件和控制器连接后是否工作正常。检查完毕后,可以将SV和OP值全部设为“0”。 (3)当需要进行“单点”控制时,首先需要输入设定值SV,然后启动自动状态,使控制器进行自动设定点控制。自动控制要达到准确控制需要合适的PID参数,这时需要在自动控制运行过程中用鼠标点击“主自整定”命令按钮,使控制器进行自整定,“主自整定”命令按钮左边的显示框内会显示自整定状体,此时控制器面板上的“AT”指示灯会发生红黄交替闪烁。当“AT”指示灯停止闪烁后,表示自整定已经完成,自整定得到的PID参数会输出显示到“(七)控制参数状态显示区域”。 (4)同样,用鼠标点击“单点/程序”命令框,可使得控制器在单点和程序控制之间进行切换,并在“单点/程序”命令框左边的兰色数字框内显示相应状态“单点”或“程序”的字符。 (5)同样,用鼠标点击“待机”命令框,可使得控制器切换到待机状态,同时控制器面板表上的状态指示灯会红黄交替闪烁并显示“STB”字符。 (6)同样,用鼠标点击“SV1/2”命令框,可使得控制器在SV1和SV2模式之间切换,并在“SV1/2”命令框左边的显示框内显示所切换的模式。这里SV1值代表控制器内置设定值,SV2值代表远程控制设定定。 注意:为保证以上操作和显示的正确性,还需进行后续控制器的输入/输出参数设置,否则显示数字位数和SV1/2等功能无法正常使用。具体设置参见下章内容。[b][size=18px][color=#000099]7. 控制器的参数设置[/color][/size][/b] VPC 2021系列控制器的所有参数设置和编制控制程序,都可以在软件的第四个功能区域“(四)各种参数设置区域”内进行,第四功能区域如图7所示。这里针对“CONFIG”中必须设置的几个重要参数“主输入设置、仪表参数设置和主输出设置”进行介绍。[align=center][img=07.控制器参数设置区域,689,41]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148015054_637_3221506_3.jpg!w689x41.jpg[/img][/align][align=center][b][color=#000099]图7 软件的参数设置区域[/color][/b][/align][b][color=#000099]7.1 主输入设置[/color][/b] 点击“CONFIG“命令框,首先进入如图8所示的仪表参数设定的“2.主输入设置”界面。[align=center][img=08.控制器仪表主输入设置界面,690,267]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148240223_2270_3221506_3.jpg!w690x267.jpg[/img][/align][align=center][b][color=#000099]图8 软件CONFIG界面的主输入设置[/color][/b][/align] 在图8所示的主输入设置中,依次进行如下设置: (1)输入类型设定:VPC 2021系列PID控制器是一款万能输入型仪表,可输入多达47种传感器信号。具体设置时,需根据所用传感器的输出信号类型和量程进行选择,如真空度传感器,一般选择“28:0V10(0-+10V)”设定,压力传感器一般选择“19:4MA20(4-20MA)”。输入量程的设定非常重要,这会关系到后续的测量值PV和设定值SV显示的小数点位数的选择。 (2)显示上限:显示上限的作用是规定出与传感器最大量程对应的控制器测量最大量程,如对应0-10V的传感器输入量程,显示上限可以选择10。在VPC 2021系列控制器中,显示上限的范围都是-10000至30000,这也就是说可以将传感器最大量程10V,最大放大到三千倍的数值30000。在实际应用中,一般是以十进制放大倍数进行设置,如对应于10V,选择上限为10000,放大一千倍。由此可结合后续的三位小数点位数设置,测量值PV和设定值PV就可以完整的显示0-10.000范围的数值,并都保持小数点后三位小数,从而可以高精度的测量和观察到测量值和设定值。 (3)显示下限:同样,显示下限的作用是规定出与传感器最小量程对应的控制器测量最小量程。对于一般各种物理量传感器最小0V的输出电压,显示下限选择“0”即可。而对于有些具有方向特征的传感器输入信号,如温差热电堆±10mV范围的电压信号,则需选择相应的非零的显示下限。非零显示下限的放大功能,与上述显示上限完全相同,但最好是选择相同的放大倍数。如对上述温差热电堆±10mV范围的电压信号,正负信号要保持相同的放大倍数,那么可选择显示上限为10000,显示下限为-10000。 (4)小数点:小数点位数总共有五种设置,从整数到小数点后面四位。小数点位数的功能正好与上述显示上限功能相反,起到一个测量值除以10的缩小功能。假如一个传感器输入的电压信号为5V,如果控制器显示上限设定为10,小数点设定为“0:XXXXX”的整数,那么控制器面板上的PV显示格式就是整数5;如果显示上限设定为100,小数点设定还是整数,则控制器面板上的PV显示格式就是整数50,但代表还是5V的真实电压信号。为了准确直观的显示5V信号输入,此时则需将小数点位数设定为“1:XXXX.X”,那么PV显示格式就是带一位小数的5.0V。以此类推,若显示上限设定为10000,则小数点位数设定应为“3:XX.XXX”,则PV显示格式就是带三位小数的5.000V。 (5)对于后续的“输入异常处理、输入异常预置值、修正偏移量、冷端补偿类型、输入多点曲线修正”等高级参数的设置,可参看控制器使用说明书内的详细介绍。在一般应用中较少会用到这些高级设置,它们的设置一般选择“0”或禁止。[b][color=#000099]7.2 辅输入设置[/color][/b] VPC 2021系列控制器有个强大的功能,就是具备双通道的功能,由此可衍生出众多应用,可通过对辅助通道进行设置来激活第二通道的功能。具体设置是选择“CONFIG“界面中进入如图9所示的仪表参数设定的“3.付输入设置”界面。[align=center][b][color=#000099][img=09.控制器仪表辅输入设置界面,690,102]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148582742_2164_3221506_3.jpg!w690x102.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图9 软件CONFIG界面中的辅输入参数设置[/color][/b][/align] 辅输入参数设置基本与主输入参数设置相同,主要不同的是有一项“辅助通道功能”设置。辅助通道共有六种选择以实现不同的高级功能,需要根据具体使用情况进行选择。在大多数情况下会选择“禁止”,不使用辅助通道,但如果选择其他设置,所选择的功能需要查看使用说明书中的详细介绍。[b][color=#000099]7.3 仪器参数设置[/color][/b] 选择“CONFIG“界面中进入如图10所示的仪表参数设定的“1.Instrument”界面。[align=center][b][color=#000099][img=10.控制器仪表参数设置界面,690,316]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149212211_8085_3221506_3.jpg!w690x316.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图10 软件CONFIG界面中的仪表参数设置[/color][/b][/align] 在图10所示的仪表参数设置中,本文主要介绍红色方框标识的几个常用的重要参数设置。 (1)控制方式:VPC 2021系列控制器共有五种控制方式,而最常用的是“单输出”。其他如“双输出”等控制方式则是用于冷热控制等其他形式的控制。 (2)设定值上限SVHI:设定值上限的设定范围是-10000~30000,在具体设定时一般要选择与前述“显示上限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (3)设定值下限SVL0:设定值下限的设定范围同样也是-10000~30000,同样,在具体设定时一般要选择与前述“显示下限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (4)显示工程单位:VPC 2021系列控制器共有26种工程单位符号可选,但不可能覆盖所有需要用的工程单位,可根据需要进行定制。[b][color=#000099]7.4 主输出设置[/color][/b] 选择“CONFIG“界面中进入如图11所示的仪表参数设定的“9.主输出1设定”界面。[align=center][b][color=#000099][img=11.控制器仪表主输出设定界面,690,186]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149393277_7139_3221506_3.jpg!w690x186.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图11 软件CONFIG界面中的主控输出1的参数设置[/color][/b][/align] 主控输出1的参数设置是VPC 2021系列控制器重要的一个参数设置内容,详细设定如下: (1)输出方式设定:首先要根据外部执行机构可接受的控制信号进行输出方式的选择,如果外部执行机构是接收模拟信号(如4-20mA或0-10V)进行调节,则选择“0:线性电流输出”选项。在选配VPC 2021系列控制器时,都会明确规定输出方式作为技术指标,也就确定了相应的输出方式,因此这里的输出方式设定只需与控制器技术指标一致即可。 (2)输出作用方向:VPC 2021系列控制器具有“反作用”和“正作用”两种输出作用方向,因此需要根据实际控制需要进行选择。一般选择“反作用”用于进气或加热控制,“正作用”一般用于排气或制冷控制。 (3)输出信号类型:VPC 2021系列控制器具有六种输出信号类型,主要有模拟电流和模拟电压两类形式。同样,在选配VPC 2021系列控制器时,都会明确规定输出信号类型作为技术指标,这也就确定了相应的输出信号类型,因此这里的输出信号类型设定只需与控制器技术指标一致即可。 (4)输出上限:VPC 2021系列控制器规定的输出百分比范围是0.00~100.0%,特别需要注意的是最小输出百分比是小数点后面两位,即0.01%,由此可以提供更高精度的控制。在具体设定过程中,可根据需要选择输出上限,因为在很多具体控制过程中并不需要满功率输出,特别是在一些较低量程范围内的控制时,可选择较小的输出上限可达到很高的控制精度,选择较大的输出上限值反而会使控制精度受到影响。 (5)输出下限:在绝大多数情况下,输出下限会选择“0”。有些特殊控制,则会根据实际控制对象选择不同数值的输出下限,但前提是输出下限一定要小于输出上限。[b][size=18px][color=#000099]8. 控制器PID参数设置[/color][/size][/b] 在使用VPC 2021系列控制器时,一般通过在自动控制状态下运行“自整定”功能可获得满意的PID参数。但有时需要在自整定基础上对PID参数进行人工修改,此时就需要进行PID参数的设置。在控制器软件主界面上点击位于下方的“PID”功能按钮,进入如图12所示的PID参数设置界面。[align=center][b][color=#000099][img=12.PID参数设置界面,511,509]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149545389_762_3221506_3.jpg!w511x509.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图12 PID参数设置[/color][/b][/align] 在PID参数设置界面上,有三组相应参数设置,一组是常用的PID1设置,这组PID1用于单输出方式下的反作用模式,第二组PID2设置则用于双输出方式下的正反向模式,第三组参数设置用于更精细的PID控制,具体内容参见说明书。 (1)输出比例带:P参数。 (2)输出积分时间:I参数。 (3)输出微分时间:D参数。 有关PID参数的调整,请详见使用说明书或其他PID参数调整相关资料。[b][size=16px][color=#000099]9. 图形显示和操作[/color][/size][/b] 控制器软件具有强大的图形显示功能,可在对各种测量值、设定值和输出值进行测量和监视的同时,并进行显示。图13为软件的图形显示界面。[align=center][b][color=#000099][img=13.图形显示操作区域,690,422]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202150197729_5514_3221506_3.jpg!w690x422.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图13 软件图形显示界面[/color][/b][/align] 需要说明的是,为了控制器测控曲线的正常显示,必须要事先安装好OFFICE套装中的数据库软件ACCESS,否则软件界面只能有三分之一区域能够显示变化曲线。 图形显示界面会自动显示测量值PV、设定值SV和输出百分比值OP随时间的变化曲线,并具有两套纵坐标轴。一个纵坐标轴是用于测量值PV和设定值SV的显示,此纵坐标可进行调整以优化显示效果;另一个纵坐标轴是用于输出百分比值OP的显示,其纵坐标最小值为固定值-10,最大值为固定值110%,并不可调整,以显示OP值在0~100%范围内的随时间变化曲线。 如图13所示,在图形显示界面的右上角,还设置了快捷功能区,可通过快捷功能键或鼠标点击进行图形的其他操作。 注:在软件激活通讯后,软件就开始在后台进行运行,并采集控制器仪表的相应数据。这些数据都随时存储在数据库软件的文件中。调用这些历史数据的方法,请咨询技术支持人员。[b][size=18px][color=#000099]10. 总结[/color][/size][/b] 采用远程控制软件彻底解决了体积小巧的工业用PID控制器面板操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作,图形化的控制软件具有更友好的人机界面。 通过配套软件可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,非常后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间,加快设备集成和开发速度。 PID控制器随机配套软件强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。由此,通过软件和计算机,与PID控制器可组成一个完备的控制系统。[align=center][/align][align=center]~~~~~~~~~~~~~~[/align]

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • Waters 2489 本地(方法号)/远程控制的设置

    Waters 2489 本地(方法号)/远程控制的设置,本来Waters 1525 带2489 使用Empower 软件,不小心把远程控制改成本地控制了,怎么切换本地和远程控制图标。谢谢各位大虾们,帮我解决下!!!!!!!!!

带远程控制器相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制