二氮杂萘硫醇

仪器信息网二氮杂萘硫醇专题为您提供2024年最新二氮杂萘硫醇价格报价、厂家品牌的相关信息, 包括二氮杂萘硫醇参数、型号等,不管是国产,还是进口品牌的二氮杂萘硫醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氮杂萘硫醇相关的耗材配件、试剂标物,还有二氮杂萘硫醇相关的最新资讯、资料,以及二氮杂萘硫醇相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二氮杂萘硫醇相关的资料

二氮杂萘硫醇相关的论坛

二氮杂萘硫醇相关的方案

二氮杂萘硫醇相关的资讯

  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 电位滴定在油品中硫醇硫含量检测中的应用
    一、油品中硫醇硫是什么?硫醇是含巯基官能团(-SH)的一类非芳香化合物。结构上相当于醇类中的氧被硫替换形成,例如乙醇(俗称酒精)CH3CH2OH,乙硫醇CH3CH2SH。石油产品中有少量硫醇化合物,硫醇的存在不仅会使油品具有令人讨厌的气味,同时在燃烧时转变为有毒、腐蚀性的二氧化硫和三氧化硫,对燃料系统的弹性材料有害,并对燃料系统的构件产生腐蚀,影响相关机械寿命,例如汽车发动机。因此控制石油产品中的硫醇含量是相当重要的。油品中的硫醇含有的硫,称为硫醇硫含量。国家标准强制规定了汽油柴油、煤油、馏分燃料、喷气燃料等一系列油品中硫醇硫的含量。那么该如何测定油品中硫醇硫的含量呢?二、硫醇硫的测定方法目前硫醇硫测定有2种常用方法,一种是定性检测的博士试验,另一种是定量检测的电位滴定法。 方法原理优点缺点博士试验(NB/SH/T 0174-2015)振荡加有亚铅酸钠溶液的试样,并观察混合溶液,从外观来推断是否存在硫醇、硫化氢、元素硫或过氧化物。再通过添加硫磺粉,振荡并观察最终混合溶液外观的变化来进一步确定是否存在硫醇操作流程简单只能定性检测硫醇含量是否超过临界值。通常作为硫醇定量测定法的一种替代方法。二硫化碳会干扰测定。过氧化物和酚类物质大于痕量的情况不适用。电位滴定(GB/T 1792-2015)将无硫化氢的试样溶解在乙酸钠的异丙醇滴定溶剂中,以玻璃参比电极和银/硫化银指示电极之间的电位作指示,用硝酸银醇标准溶液通过电位计进行滴定。在滴定过程中,硫醇硫沉淀为硫醇银,而滴定终点通过电池电位上的突变显示出来。测量快速,准确。有机硫化物,如硫化物、二硫化物及噻吩不干扰测定。质量分数小于0.0005%的元素硫不干扰测定。需要脱除硫化氢。要求工作人员有较高的专业水平。 *天然气中的硫醇硫也采用类似方法检测。参考标准《GB/T 11060.6-2011》(6)依据滴定终点计算出样品中硫醇硫的含量
  • 纯牛奶检出丙二醇不合格,美正检测助力牛奶安全
    近期网红牛奶麦趣尔检出丙二醇引发大家关注,小编帮大家整理此事时间线如下:2022/06/28麦趣尔两批次纯牛奶检出低毒类添加剂丙二醇不合格。2022/06/30麦趣尔深夜回应「监管部门进驻,相关产品封存」。2022/07/03市场监管总局要求严查麦趣尔纯牛奶检出丙二醇问题。2022/07/03麦趣尔被立案调查:牛奶生产过程中超范围使用香精。2022/07/03麦趣尔发布沟通函称,系未有效清洗罐线的残留调制奶,导致丙二醇成分混入纯牛奶。丙二醇为何物?丙二醇属于有机化合物,通常是略有甜味、无臭、无色透明的油状液体,吸湿,并易与水、丙酮、氯仿混合,其黏性和吸湿性好,广泛应用于食品、医药和化妆品工业中,长期过量食用丙二醇可能引起肾脏障碍。丙二醇加入的来源有两个,一是作为添加剂(GB 2760)使用,起到稳定消泡凝固等表面活性剂功能,应用范围比较小。在2022年食品安全监督抽检实施细则中只对生湿面制品和糕点有使用限量要求,其他产品禁止使用。应用范围更大的来源是,丙二醇是最为常用的水溶性液体香精基质(溶剂)(GB 30616)。所以牛奶中丙二醇不是当前监督抽检细则项目,没有常态监管。虽然麦趣尔发布沟通函称,系未有效清洗罐线的残留调制奶,导致丙二醇成分混入纯牛奶,但是浙江省庆元县查出麦趣尔2个批次纯牛奶丙二醇检出量高达0.318g/kg和0.321g/kg,远远高于一般残留带入水平。此外,调制乳的残留受影响的理应只是一个批次,监管部门在 6 个不同批次中都检测到了丙二醇,含量还特别接近(0.0264%~0.0363%),很难让消费者信服。目前现行有效的检测标准为GB 5009.251-2016 食品安全国家标准 食品中1,2-丙二醇的测定,代替GB/T23813—2009《食品中1,2-丙二醇的测定》、NY/T1662—2008《乳与乳制品中1,2-丙二醇的测定 气相色谱法》。美正为中国的牛奶安全保驾护航美正致力于食品健康领域检测与服务,针对此次牛奶检出丙二醇不合格事件,美正检测迅速推出相应的标准品和基体质控样,帮助检测单位迅速建立方法,快速完成检测项目,为中国的牛奶安全保驾护航。

二氮杂萘硫醇相关的仪器

  • 酸值、碱值、溴值、溴指数、硫醇硫、碱性氮、盐含量测定仪(AT-710S)Potentiometric Method酸值、碱值、溴值、溴指数、硫醇硫、碱性氮、盐含量测定仪(AT-710S) 适用标准:GB/T 1792 汽油、煤油、喷气燃料和馏分燃料中硫醇硫的测定 电位滴定法。GB/T 6532 原油中盐含量的测定 电位滴定法。GB/T 7304 石油产品酸值的测定 电位滴定法。GB/T 8021 石油产品皂化值测定法(电位滴定法)。GB/T 11135 石油馏分及工业脂肪族烯烃溴值的测定 电位滴定法。GB/T 11136 石油烃类溴指数测定法(电位滴定法)。GB/T 18609 原油酸值的测定 电位滴定法。GB/T 18612 原油有机氯含量的测定(方法A-联苯钠还原电位滴定法)。GB 24747 有机热载体安全技术条件-有机热载体酸值测定法(电位滴定法)。SH/T 0688 石油产品和润滑剂碱值测定法(电位滴定法)。SH/T 0251 石油产品碱值测定法(高氯酸电位滴定法)。SH/T 1767 工业芳烃溴指数的测定 电位滴定法。NB/SH/T 0836 绝缘油酸值的测定 自动电位滴定法。NB/SH/T 0946 多元醇酯和双酯燃气涡轮发动机润滑油总酸值测定 自动电位滴定法。NB/SH/T 0980 石油馏分中碱性氮含量的测定 电位滴定法。NB/SH/T 0995 液体石蜡、白油溴指数的测定 电位滴定法。ASTM D664 电位滴定法测定石油产品酸值的试验方法。ASTM D2896 电位高氯酸滴定法对石油产品碱值的试验方法。ASTM D4739 电势滴定法测定碱值的试验方法。ASTM D1159 电化学滴定法测量石油馏分及商用脂族烯烃的溴值试验方法。ASTM D2710 电化学滴定法对石油烃溴指数的测试方法。ASTM D5776 用电势滴定法测定芳烃溴值的标准试验方法。ASTM D3227 电位差法测定汽油、煤油航空汽轮机燃料及馏分燃料中硫醇态硫含量的试验方法。ASTM D94 石油产品皂化值试验方法。ASTM D4929 测定原油中有机氯化物含量的试验方法。ASTM D6470 原油中盐份含量试验方法(电位滴定法)。酸值、碱值、溴值、溴指数、硫醇硫、碱性氮、盐含量测定仪(AT-710S) 主要特点:1. 采用大型8.4英寸彩色液晶触摸屏,操作控制。2. 智能滴定管单元,滴定剤的信息存储在芯片中。3. 智能化的电极电缆,记录存储电极的相关资讯。4. 新型的滴定管单元,可减少死体积和试剂使用量。5. 触摸屏透过无线蓝牙操作,更加安全且降低危险性。6. 用户权限设定功能,防止错误设置,管控方便。7. 同时记录两个不同的侦测电极,如pH和光度等。8. 测量结果可存储在U盘,可生成PDF实验报告。酸值、碱值、溴值、溴指数、硫醇硫、碱性氮、盐含量测定仪(AT-710S) 技术参数:测量范围: 电位: -2000.0mV~+2000.0mV,pH: -20.000~20.000pH,温度: 0~100°C。滴定方式: 自动控制,自动间歇,间歇,恒pH,石油中和价,COD,学习滴定。滴定方法: 标准方法120组,方法结合10组(最多可结合5组标准方法)。滴定类型: 电位滴定(酸碱, 氧化还原, 沉淀),光度滴定,极化滴定,电导滴定。终点判断: 全量(自动终点),自动终点,设定终点,交叉点,自动终点/设定终点滴定。特殊应用: 测量电极电位(pH, mV),酸解离常数(pKa),同时记录双通道电位。输入设置: 触摸屏输入。显示: 8.4英寸彩色液晶屏,中/英/日/韩/俄/西/德/法八种语文,一个通道显示。计算: 浓度计算,统计计算(平均值,标准差,相对标准差),自动输入空白值和滴定度。数据储存: 500组样品结果。GLP认证: 登记操作者/使用群组管理,滴定剂和电极记录管理。滴定管单元: 20mL玻璃滴定管附褐色保护套(标配),选配: 10mL, 5mL或1mL。20mL滴定管准确度: 滴定管: ±0.02mL,重复性: ±0.01mL,分辨率: 0.001mL。10mL滴定管准确度: 滴定管: ±0.015mL,重复性: ±0.005mL,分辨率: 0.0005mL。5mL滴定管准确度: 滴定管: ±0.01mL,重复性: ±0.003mL,分辨率: 0.00025mL。1mL滴定管准确度: 滴定管: ±0.005mL,重复性: ±0.001mL,分辨率: 0.00005mL。滴定管分辨率: 1/20,000。扩大器: STD: pH(mV), mV, 双通道(标配),PTA/POT/CMT/TET(选配)。扩充功能: 最多10组滴定管驱动单元,多样品自动进样器CHA-600/CHA-700。使用环境: 温度: 5~35°C,相对湿度: 85%RH以下。电源: AC100~240V ±10%,50Hz/60Hz。耗电量: 主机: 约30瓦,打印机: 约7瓦。尺寸: 触摸屏: 225(W)×190(D)×42(H)mm,滴定单元: 141(W)×292(D)×367(H)mm。重量: 触摸屏: 约1.5公斤,滴定单元: 约4.0公斤。京都电子(KEM)中国分公司 客服热线: 400-820-2557
    留言咨询
  • 硫醇硫测定仪 测量范围:0.0003%~0.01%(m/m) 基本误差:0.1%±0.5mV 滴定管体积:10mL 滴定管精度:±0.1%FS 精 密 度:GB/T 1792 ,ASTM D3227 外形尺寸:350×280×178(mm) 硫醇硫测定仪瑞士万通滴定单元仪器带操作系统,自动判定电位的突跃值。微机硫醇硫测定仪 仪器采用电位滴定法测量原理,用PH玻璃电j做参比,硫醇硫电j作指示,由计算机捕捉二电j的电位差突跃锁定为终点测定硫醇硫含量。仪器适用于测定燃料、汽油、煤油和轻柴油中的硫醇硫。GB/T1792、ASTM D3227硫醇硫测定仪Windows操作平台,滴定曲线实时显示、自动清洗、自动补液、自动定值加液、自动终点判别、自动滤除假终点、同时可选择性判定终点、滴定曲线、相关数据、结果可打印和存盘
    留言咨询
  • 一、概  述:  滴定分析法是常规化验室中最常用的精密分析方法之一,国标GB/T 1792-88规定了用电位滴定法测定无硫化氢的喷气燃料、汽油、煤油和轻柴油中的硫醇硫。FJA-05型硫醇硫测定仪(下称仪器)由自动滴定仪主机、硫醇硫专用软件、硫醇硫电极、pH电极和微型搅拌器等组成。仪器能实现自动滴定、自动计算出百分含量。因此该仪器对评价喷气燃料、汽油、煤油和轻柴油的气味、对燃料系统橡胶部件的影响程度及对燃料系统腐蚀性能的研究具有重要的实用意义。根据GB/T 1792-88提供的测试方法将无硫化氢试样溶解在乙酸钠的异丙醇溶剂中,用硝酸银醇标准溶液进行电位滴定,用pH玻璃电极作参比电极,硫醇硫电极作为指示电极,二电极之间的电位突跃指示滴定终点。在滴定过程中,硫醇硫沉淀为硫醇银。MIA-4型微机硫醇硫测定仪是一种理想的测定仪器,它采用滴定法测定硫醇硫含量。 仪器采用电位滴定法测量原理。将无硫化氢试样溶解在乙酸钠的异丙醇溶剂中,用硝酸银醇标准溶液进行电位滴定,用pH玻璃电极作参比电极,硫醇硫电极作为指示电极,二电极之间的电位突跃指示滴定终点。在滴定过程中,硫醇硫沉淀为硫醇银。 适用范围:适用于测定无硫化氢的喷气燃料、汽油、煤油和轻柴油中的硫醇硫。二、技术参数:1、测量范围:≥3μg/g2、电位测量范围:0~±1999.9 mV ,最小读数:0.1mV.3、测量电压的精度:为读数的0.025%±2个字4、输入阻抗:≥1×10的12次方欧5、滴定管体积:10mL 滴定最小体积:0.01mL 6、测定准确度:相对误差≤5% 重 复 性:符合GB/T1792、ASTMD3227等标准。7、外形尺寸:240×120×210(mm)8、重 量:5 kg 功 耗:≤10 W 三、主要特点:1、菜单操作 一目了然,软件丰富 方便实用。自动清洗或依靠清洗注射器人工清洗。自动补液,体积累加。2、光机电一体化,结构紧凑。仪器溶液流通系统(注射器、阀和管道)能耐强酸(高氯酸和冰醋酸)和强碱(浓氢氧化钠溶液)的腐蚀。有防扩散滴定头。3、双高阻输入,可用三电极系统,电极电位更加稳定、终点自动判别更加可靠。4、采用电位滴定,无需指示剂,适合于石化产品中多种浅色、深色油的碱性氮的分析。5、仪器自动化智能化好。自动数据采集、数据处理、自动控制、自动判别、自动学习、删除终点、继续滴定、调整终点和人工生成终点(由鼠标器来完成)。6、 采用平滑曲线滴定法(STE),由专家系统支持,不需要用户输入难以确定的终点判断的参数,使用十分方便。7、 能存贮和打印滴定结果、滴定图谱及完整的滴定数据。8、 充分利用PC机丰富的显示功能 边滴定边显示滴定曲线;显示操作者的设置与中间运算结果等。使用方法,详见说明书注意事项1 在使用本系统前,必须认真阅读本仪器说明书。2为了保证本仪器的使用安全和稳定,交流电220伏电源的地线必须有效接地。3滴定管精度的校正,仪器在第一次使用前必须进行滴定管精度的校正。在环境温度变化较大或要求有较高的发送精度时,操作者随时可以校正滴定管,可按下列方法进行:在主菜单的【仪器测试功能】中的【测试滴定功能】,在其中发送一定体积的液体(如6ml)到一个已知重量的称量瓶中,在千分之一或万分之一的数字天平上进行称重,并换算成该温度时的体积,如读数为6.12ml。然后在【设置滴定管比例系数】中,将原比例系数(如1095)改为1073.5294(也即1095×6÷6.12)就可以了。4 使用完毕后,如不再使用时,请要用蒸馏水清洗管道与注射器(一般稀酸不一定)。千万不能用拆卸注射器的方法来清洗,必须用清洗注射器(附件)来清洗,具体方法为:拔去三通阀与注射器的连接头,用带针头的清洗注射器抽去残液,再用蒸馏水与滴定剂清洗后,插紧三通阀与注射器的连接头。5 所使用的滴定剂应避免含颗粒状杂物,易于结晶和沉淀的溶液就充分溶解后进入管道,以免堵塞和损坏仪器。6 在使用仪器过程中,如发现仪器有缺陷(包括硬件和软件)或有一些建设性意见,望及时给我们反映,以便及时改进。如果仪器出现严重故障不能正常工作时,请及时与我们取得联系,进行检修。用户请不要自己修理。 8 仪器价格不包括安装、调试和上门服务费用。售后服务方式为通过各种运输方式寄回我中心,服务后寄还用户。
    留言咨询

二氮杂萘硫醇相关的耗材

  • 三丁基硫醇Tertiary Butylmercaptan检测管
    产品信息:德尔格检测管系统德尔格检测管是装满化学试剂的玻璃管,此化学试剂与特定的化学物质或相关化学物质发生反应。用德尔格accuro气泵抽取定量标准气样到检测管中,如果检测管中的试剂改变颜色,颜色变化的长度通常表明被测物质的浓度。德尔格检测管系统是全世界气体检测领域公认的、且应用最广泛的检测形式。**表示采样次数在20次以上的检测管,建议选配x-act 5000电动采样泵。订货信息:三丁基硫醇Tertiary Butylmercaptan检测管检测管名称测量范围订货号三丁基硫醇Tertiary Butylmercaptan3 to 15 mg/m38103071Natural Gas Odorization1 to 10 mg/m3
  • 日本GASTEC 75L 叔丁硫醇气体检测管
    日本GASTEC 75L 叔丁硫醇气体检测管,日本GASTEC 75L 叔丁硫醇气体检测管检测范围0.5- 1 mg/m31 -15 mg/m315- 30 mg/m3抽气次数211/2修正系数1/212取样时间1分钟/次检测限度0.1 mg/m3 (n=2)颜色变化黄色 → 粉色反应原理(CH3)3CSH +HgCl2 → (CH3)3CSHgCl + HClHCl + 指示剂 → 氯化物误差10% (1-4 mg/m3), 5% ( 4- 15 mg/m3)保存期2 年温湿度修正需温度修正 10oC (50oF)以下冷藏保存.干扰及影响物质浓度影响颜色变化硫化氢+粉色其他硫醇类+粉色二甲二硫醚无无可以检测的其他物质物质浓度抽气次数检测范围2-巯基乙醇0.510.5- 7.5 ppm
  • 硫醇类气体检测管130U/164SA/164SH
    硫醇类 R.SH类叔丁基硫醇130U0.1~10ppm10支/盒乙基硫醇异丙基硫醇甲基硫醇(正)丙硫醇甲硫醇(甲基硫醇)164SA5—140ppm10支/盒164SH50--1000ppm10支/盒乙硫醇165SA4—160 , 2—80 , 1—40ppm10支/盒165SB5—80 , 2.5—40ppm(英文版)10支/盒130U 检测管说明检测对象硫醇类 RSH测定范围1~10ppm(读取值×2)0.5~5ppm(印刷刻度) 取气量50ml100ml测定时间1分钟/100mL颜色变化淡黄色→桃色检测限度0. 2ppm(100mL取气量时)使用温度范围0-40℃(温度无影响)湿度影响无影响反应原理RSH+HgCl2→RS(HgCl)+HCl有效期限2年其它物质的影响名称浓度影响结果砷化氢指示值偏高硒化氢〃磷化氢〃硫化氢〃氰化氢二氧化硫指示值无影响操作步骤:① 用顶端tipcutter切割槽将检测管的两端折掉。② 将检测管上的箭头(G→)朝向采集器并安装在上面。③ 将拉手推入到最里面,使拉手柄与泵体红色的标记对上。④ 将拉手迅速拔出到底,拉手被固定。⑤抽取100ml气体。等到泵体顶端indicator红色指示器弹出就说明气体已全部进入检测管中,并完全同药剂发生反应。(测定时间即指示器弹出时间) ⑥在检测管上读取两种颜色的分界面刻度值,即所测气体浓度。取气量增多,重复3-5步骤浓度单位浓度换算(ppm和mg/cm3之间)测定浓度(mg/cm3)= 测定浓度(ppm)×【分子量/22.4】×【273/(273+t)】在取气为50ml测定1~10ppm范围时,结果×2T:测定时的温度使用环境温度:0-40℃无影响湿度:无影响气压:读取值(ppm)×1013(hpa)/ 测定点的气压(hpa)日本光明理化学硫醇类气体检测管,现场检测硫醇类气体,只需手泵一支,配合相应的硫醇类气体检测管即可,现场读数,方便快捷,因为不采用电和热的装备,既使在可燃性空气中操作,也无任何危险。北京航轩科技发展有限公司是光明理化的中国区总代理气体检测管原理:根据被测气体同检测管内化学药剂发生反应,产生颜色变化。检测管上有刻度值。颜色变化到哪里,读取相应的刻度,既是对应的气体浓度的检测方法
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制